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The study of the propagation of low frequency acoustic fields through 2— dimensional
ocean environments - wherein the height of the ocean channel, overlying a fluid bottom.
decreases linearly with range — has generated si ‘tcant interest in'recent years [1,2]. The
pressure field in this variable depth ocean waveguide cannot be determined by applying
separation of variables or transform techniques. because of the inherent weak range
dependence. This weak non-separability does permit approximate analytical methods. by
assuming that on each local cross- section the field consists of the transverse modes of the
local cross—Section. Two methods based on this assumption are coupled modes [3] and
adiabatic modes [4].

Solutions of weak range dependent problems can also be generated by fast and stable
numerical routines. Development of this type of routine is through approximation of the
elliptic equation by a parabolic equation. The analysis is discuged extensively by Tappen [5].
the essential feature of the worlt being that the boundary value problem of interest is
approximated by an initial value problem. allowing stepwise integration throughout the range
dependent structure. The Parabolic Equation Method (FEM) [5] and the Beam Propagation
Method (3PM) [Gl‘a're two of the marching algorithms resulting from this approximation.

The wedge shaped ocean of Jensen and Kuperman [7] is one of the simplest
non- separable structures, and comparisons between various numerical solutions are informative.
provided a benchmark solution is available. as all the above methods are approximate even in
the limit of zero propagation step.

Recent developments using spectral synthesis have obtained global solutions to the wedge
shaped ocean which adapt intrinsically to the local wedge environment. -These 'intrinsic

' Modes' [8] are global spectral objects which are mg solutions of the wave equation except at
the wedge apex: Consequently the Intrinsic Mode field is a benchmark solution for the wedge
ocean environment and analysis of the performance of other schemes is possible. Although
the structure is large scale. the transfer 0! guided modes into radiation modes will occur over
.1 few wavelengths regardless of size of the wedge angle. The determination of this transition
rt-gion (mode cut—off), by approximate algorithms, is a useful mesoScale phenomenon to
CXt’lI’I’llne.

Firstly a brief description of the derivation of the different approximate solutions and
the exact intrinsic Mode solution for the wedge shaped ocean will be given.

AW
Attention is confined to modal cut-off in the two dimensional wedge shaped ocean

discussed by Jensen and Kuperrnan [7] which is depicted in Figure i. it is apparent from the
geometry of the structure that the field propagating upslope has weak range dependence. Theessential feature of the approximate solutions derived below is the exploitation of this '
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weak range dependence.
The Adiabatic Modal field in this two dimensional geometry is constructed as a sum of

local transverse modes’of the local transverse cross- section with a global phase propagation
incorporated This type of field can be represented in the form

H! (z) ' 'Uam(z.x) = g 0q(rz,x)e q (2.1)

with (2 representing weak dependence on range of the transverse mode d 52.x). W 2) is the
global phase of each mode at the local cross- section defined by z. Subs ttuting (1.1 into the
2— dimensional scalar Helmholtz equation yields two l—dimensional equations; one confirms the
transverse modal nature of tbq(rz.x) and the other determines \llqu). Weak non- separability
implies the coupling between modes may be neglected. the energy in each mode remains
Cmtstnnl and the second derivative of the phase. 1'41). with respect to the longitudinal
parameter 2 may be neglected. For small wedge angles of the Jensen-Kuperman model
ocean the Adiabatic Mode field is

’ _§ 2 sln[7n(h(cz)-x)] 0<x<h(tz)
. a . .Um“(z.x) [6—4————q(1+7qh(‘z))] exp I 6(2 )dz ( M qu (2'2)

20 sin 7 ez))e am)
‘1

The modal‘ parameters are defined using the refractive index of the structure (determined from
the velocity of the pressure field) and are

7 2 2 2 2 2 2 2- k _ - — n k - cot h - .3in n Bq rq Bq 1 TI] (‘Iq ) r:I (2 )

The AM field produces a non— physical phenomenon at the modal cut— off, the
explanation of which is given later. This particular AM solution is specific to the
Ct'nss- section environment encountered in the ocean wedge problem as each adiabatic mode is
determined entirely by the eigenvalue equation (23) at each local cross- section.

The PEM and the BPM are more general approximate solutions of the scalar Helmholtz
equation Provided the variation in sound speeds with respect to a background speed is
small,
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exact (IM) dispersion relation

BPM dispersion relation

the field is paraxial, and back reflection processes are negligble, then in principle application
of the PEM and RPM is legitimate It will be demonstrated that although application may
appear legitimate. in some instances, discrepancies between methods may occur. The
derivation of the two dimensional PEM starts from the premise that the field is predominantly
travelling in the z direction. i.e.

. Inlkz
. Upem(z,x) Crt£2.x)e

Consquently the PEM field can be viewed as a plane wave propagating in the z direction with
a transverse envelope function which changes slowly with range. By substituting (2.4) into the
acoustic Helmholtz equation. and neglecting the second derivative of G((1,x) with respect to
range. the envelope function C((mt) must satisfy the equation

(2.4)

gm Zinlkg—z- + k’(n‘(ez,x)-n1’)]c(iz,x) - o (2.5)

The generation 0! the envelope function G(tz,x) for given initial conditions on a fixed
transverse cross- section is achieved by application of Fourier transform methods. At each
cross- section the spectrum is obtained by application of an FFI'. Each plane wave
constituent is then propagated to the next transverse cross— section by addition of n Itz phase
term obtained from the dispersion relation of (25). given in (2.6) and shown in Figure 2.

k‘ + 2n
X

1ka - (n’(ez,x) - nl’)t<2 ' (2.6)
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The FEM field is obtained by the inverse Fourier transformation.of this propagated
spectrum. via the FFI‘. PEM is a marching algorithm method because the field is evaluated
at each transverse cross~ section as the observation point moves forward through the structure.

The BPM field is of the marching algorithm type. but in this case the sound velocity at
each point in the structure is treated as a small penubation on a chosen background velocity.
In refractive index terms this is represented as

n(z.x) - n1 + dn(rz,x) (2.7)

/\l a particular cross— section the field is Fourier transformed and propagated to the next
cross- section as though the medium had a constant refractive index n. At this cross- section
a phase term is added which then corresponds to propagation through the pertubation 5n (the
thin lens approximation [6]). These two phase additions can be calculated from the dispersion
relation of the BPM wave equation. The wave equation and its dispersion relation are given
in equation (2.8) and (2.9) repsectively, with the latter depicted in Figure 2.

[ v’ — 2ik6n(x)g—i + Itz(n;-5n:(x)) lubpm(z",x) - o (2.9)

k; + [ kz- kan(x)]2 A rtsz (2.9)

3.W

The previous methods generate a solution which under certain constraints is a good
approximation to the solution of the elliptic wave equation. However. even in the limit of
zero propagation step the approximate solutions generated by AM. FEM, and 3PM will not be
exact solutions of the scalar Helmholtz equation. it is desirable to test and evaluate the
performance of approximate algorithms with respect to an exact benchmark solution. The
Intrinsic Mode field [8]. synthesised In the spectral domain. is such a benchmark solution.
Construction of the Intrinsic Mode is based on superposition of known solutions to the wave
equation (planewaves) in order to satisfy the boundary conditions. The strategy is as follow:—
the field U(z,x) in a medium n. with a wave number k, can be represented as the sum of
upward and downward planewaves from a chosen datum. The upward'and" downward field can
be represented in the form

U-(zlx) _ J l—J:(a”tnlt(zcost9:xsln0)rm (3.1)
C:

with + and - signs denoting upward and downward fields respectively. and 0 the angle ofthe plane wave with respect to the lower boundary shown in Figure 2. The contours C’
range over all propagation directions and fully account for inhomogeneous wave propagation a
full derivation is given in [s]; but it suffices to treat the integral as ranging over an interval
(Ml/2) (i.e. forward propagation). The evaluation of U301) will then determine. via the
transformation of (3.1), the field in the wedge geometry. The upward and downward fields
must satisfy the boundary conditions. Consider a plane wave travelling towards the upper
boundary at angle a to the lower boundary, Which has an amplitude U"'(0). After reflectionin the upper boundary the plane wave is travelling downwards at an angle 0+2ot to the
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lower boundary and as a consequence has an amplitude U‘(a+ 21:). Thus for the upward and
downward fields to be consistent the amplitude of the downward propagating field must equal
the upward propagating field multiplied by a reflection coefficient due to the interaction with
the upper boundary. i.e.

u+(r)e”u”+°‘) - u‘(9+2a) (3.2)
At the bottom boundary the relation between the upward and downward fields is

u‘m - u mew“) (3.3)
with on and o. being the phaSe reflection coefficients at the upper and lower boundaries
respectively. These relations are shown diagramatically in Figure 2. In the Jensen— Kupertjnan
ocean the phase of the reflection coefficients are

nlr‘tsinfiI-1 i
@uUi) — 11, 61(0) - 2ton [ “Fish” ]. noose -_n1coso‘ (3.4)

From (12) and (3.3) a recurrence relation for the spectrum can be found which can be solved
’ exactly. upto 2a periodic functions of 0. via the Euler- Maclaurin formula [8]. The field in

the lower medium is obtained by application of a transmission coefficient to the downward
spectrum and the correct planewave propagation. The Intrinsic Mode throughout the wedge is
then

2
E J etSq(0)e-Inkrcos(0:x)dol

a e X
+- C:

qu) - (3-5)

I etsq(a)[1 + Etol(9)]e-tn1krcos(a—x)d9_ z E x]
C.

with,

o

5;(0+2n) - g (0)», F: J o'(s)ds — 4% + e;(a,oq) (3.5)
0C

and.

szuz) - Sgta) - ¢|(0)

(3.5)

o'ta) - o1(e) + ¢u(0+o)

L MP 0 F R1 MES

The q=2 Intrinsic Mode for the wedge structure is indicative of how the guided field
varies slowly on a wavelength scale until it reaches a critical point. cut- on, wherein a rapid
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change from the guided regime to the radiative regime is encountered. it is this transition

region and its subsequent modelling by algorithms discussed in sections 2 and 3 which is of

interest here.

The J-K ocean of Figure 1 will support 3 dominant Intrinsic Mode fields. in the

following coparison each of these fields is to be launched upslope from a chosen cross- section

(ocean height = 200m) and propagated throughout the wedge environment using the four

different methods. The central difficulty is how to present the data. The use of contour

plots is limited because the resolution is insufficient to discern appreciable differences in the

solutions. If, however, the amplitudes of the fields along the interface between the ocean and

the ocean floor are compared, useful conclusions may be drawn. Figure 3 show the fields

along this interface as a function of local guide height for the {our methods with the 3

different intrinsic Modes launched from the cross- section with an ocean depth of 200m.

Modal cut- off is defined as the range at which the propagation constant of the local

normal mode, sq. equals the propagation constant of a plane wave in the lower medium. For

a given wavelength and refractive index change the cut- off of a mode is dependent only on

the height of the guiding channel. This cut— off height, hf,I is

hc _ (q 2 I )2?* (10.6)
k(n — n1 ) ~

The denominator is the transverse wave number In the guiding layer and calculation of

cut- off. through the evaluation of the transverse wave number. by the approximate schemes is

a measure of their performance. The AM, PEM and the lntrinic Mode have identical

transverse wave numbers at the appropriate cut- off point The BPM calculates the transverse

wave number at cut- off to be

kBPM- lt( bn(2n1—6n))5 (k7)

Table I below shows the discrepancy between cut— of! heights of the RPM and other schemes.

The cut—off heights observed in Figure 3 correspond to those of Table 1. As the AM

propagates upslope the energy density increases as the height decreases for no energy is

transfered to any other mode.

Table l Loggl gm— off height; [gr the J—K ogegn,

—
.-

At cut— off the AM has a constant evanescent field. which can only contian finite power if the

constant is zero. Consequently at cut— off the AM field is zero, a non- physical occurence.
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The PEM and BPM are continuous through cut-of! and demonstrate cut—off in their

predicted positions. The PEM and 3PM have osdflations which can be explained by an

intrinsic mode analysis. The FEM (3PM) satisfies particular paraxial equations. which will

possess particular FEM (8PM) intrinsic modes. Thus when the smture is excited with a

pure Intrinsic Mode all the PEM (3PM) intrinsic modes are excited. Pm (3PM) intrinsic

modes will have very similar properties to pure Intrinsic Modes and their cut- of! points will

be as predicted in table 1. These cut- off point: are clearly observed in Figure 3(c).
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Figure 3(3)
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Figure 3(c)
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The Intrinsic Mode in a wedge shaped ocean waveguide is compared numerically with

FEM, BPM and AM calculations, along the interface between the water and the sea bottom.

The phenomena of mode cut— off and radiation into the bottom are clearly visible, in the

progressive increase, then sudden decrease of the field values with distance along the interface.

Although the qualitative behaviour of the fields is the same for all methods, there are

discernable numerical differences between them. In particular the M agrees closely with AM

in the region where the AM is guided, but of course this agreement does not survive the

cut- off transition. Oscillations in the PEM and the BPM calculations do not appear in the

IM field. because the initial condition used to initiate the calculations exite only tie true ]M

of the Helmholtz equation, but excites several intrinsic modes of the PEM or BPM. which

mutually interfere. The cut— off of these PEM and BPM intrinsic modes can clearly be seen

in Figure 4(c). The 1M computation is much more efficient than either PEM or BPM for this

particular choice of field points, because the field values along the bottom interface can be

computed by one application of the FFI‘ to (3.5). Also the N is essentially an exac]I solution

of the wedge boundary-value problem, though it is approximated to make its computation

more tractable. We wish to acknowledge the contribution of Dr. J.'Grihble {or his analysis of
the BPM. and many useful discussions.
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