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1. INTRODUCTION

A passive sonar system aims to detect and analyse weak sounds emanating from
a distant source. However, the sonar is situated in a relatively noisy
environment. When the vessel is in motion, the unsteady pressures generated
by its turbulent boundary layer are a major source of noise, which is usually
referred to as ‘flow noise'.

Sound from a distant source arrives at the sonar array in the form of a plane
wave travelling with the sound speed. For a general incidence angle this wave
produces disturbances which travel supersonically over the sonar surface. The
surface wave speed may be determined from a wavenumber-frequency
decomposition of the pressures measured by the array, thus determining the
direction of the source. It is therefore particularly inconvenient if the flow noise
pressure spectrum has any strong peaks with supersonic phase velocities, since
these can be interpreted falsely as an incoming signal.

In Section 2 we review some classical results. Figure 1 shows the typical form of
Pg (ky, k2, w), the wavenumber-frequency decompuosition of flow noise on a rigid
surface with normal in the 3-direction. There are two main peaks. The
maximum occurs in the convective regime, which for a turbulent boundary-
layer flow in the 1-direction means k; of order -w/U, and k, small. U, denotes a
typical eddy convection velocity. The second peak is in the vicinity of the
acoustic wavenumber where k, the modulus of the vector k = (k, k,), is equal to
©/cg. For highly supersonic modes with very low values of k, the surface
pressure spectrum becomes 'wavenumber white', that is almost independent of
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Figure ]| The wavenumber-frequency decomposition of flow noise on a rigid surface

The convective region has been considered by Corcos (1963), and is discussed in
detail by Willmarth (1975) in a review article. In underwater problems, where
flow Mach numbers are so small, the convective speciral components have a low
subsonic surface phase speed and are essentially incompressible. The level of the
pressure spectrum in the convective regime is typically some 40dB larger than
that near k = 0. However, we will see in §3 that the amplitude of perturbations
with low, subsonic phase speeds is reduced very effectively by placing a 'dome’
over the surface. The spectral elements in the acoustic regime are not attenuated
in this way and there is a need to predict their level and to investigate how they
might be reduced. These modes have phase speeds faster than the speed of
sound and their behaviour is dominated by compressible effects (Ffowcs
-Williams 1965).

In §4, the compressible theory is extended to include the effects of the mean-flow
profile in the turbulent boundary layer. It is found that this is particularly
important when there is a dome present. The peak in the acoustic regime is
enhanced for downstream propagating modes (-ki/w negative), but reduced for
upstream propagating modes (positive k;/w), by the presence of the mean flow.

The wavelengths associated with spectral elements with supersonic phase speeds
are so long that fluid loading can be important even on quite massive surfaces.
The effects of finite surface impedance are considered in §5. Surface compliance
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is found to introduce new peaks into the surface pressure spectrum. The
effectiveness of surface damping and coating treatments at controlling these
peaks will be discussed. Finally in §6, the effect of finite surface size is
investigated. The boundaries of a flexible surface provide an inhomogeneity at
which scattering from the convective peak into low wavenumbers could take
place.

2. THE HARD WALL PRESSURE SPECTRUM

turbulent boundary layer

2050

3

72,

Figure2 A turbulent boundary layer over a hard wall

hard wall

Consider the geometry illustrated in Figure 2. The hard surface, x3= 0, has a
-turbulent boundary-layer flow over it, and we want to obtain predictions for the
unsteady surface pressures. The spectral elements with supersonic surface phase
velocities are of particular interest. These are essentially sound waves generated
by turbulence within the boundary layer, and their strength can be determined by
solving Lighthill's equation (Lighthill 1952):

R 2, Py ,

This equation is just a way of rewriting the Navier-Stokes equation, which

emphasizes the réle of nonlinear fluctuations as a source of sound. ¢ denotes
the density perturbation and c¢; is the speed of sound. In a high Reynolds
number flow where viscous stresses are negligible, Lighthill's quadrupole source,
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Ty is equal to pv;vj+ (p' - c4p’) 8;; where v is the particle velocity, p is the density
and p’ denotes pressure perturbations. In a low Mach number isentropic flow, p'
is equal to §p" and the source term reduces to the Reynolds stresses pvivj. If we

neglect, for now, the mean boundary-layer flow (this point is addressed in §4)
pvvjis only non-zero in regions of turbulent activity and vanishes outside the

boundary layer.

We are particularly interested in the spectra of the fluctuations and so it is
natural to introduce Fourier transforms,

plxak o) =Jp e tye*eriet gk da, 22)

where @ is summed over 1 and 2. In terms of the transformed coordinates,
equation (2.1) becomes

826 i = o Ty PTa
o =L (ke kp Tap + 2ikg ——-——]. (2.3)

ﬂj (x3 k, ®) is the Fourier transform of T;;(x t) and a, p are to be summed over 1

and 2. y=(0%/¢- k32 with the sign of the square-root chosen such that when y |
is real it has the same sign as @ and when ¥ is purely imaginary Imy is positive.

The hard wall boundary conditicn is

—

% _gonxs=0. 2.4)
ox3

It is a straightforward matter to solve the ordinary differential equation (2.3)
subject to the boundary condition (2.4) and the radiation condition at infinity. In
particular, for x3 = 0 we obtain

—~ ~— dld' ~ .
POk w = pl k w) = -F’I Tjj (ys k, w) eWady; (2.5)
0

whered, =k, fora=1or2,andd; =1
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The power spectral density of the surface pressure, ﬁg(k, w), is the Fourier
transform of the autocorrelation: '

Prlk, o) =P (xy, %5 0,8) P {Xy + Ay, X3+ Ag, 0, t + 1) el kefa+iut d’k dw, (2.6)

where the overbar denotes an ensemble average. If the turbulence is statistically

stationary and homogeneous in the 1 and 2 directions, Prik, o) is related simply
to P(0, k, w) (see Dowling and Ffowcs Williams, 1983, Chapter 10) by

Prik, 0) = (—21;5 [0,k wp Ok, o) dk do' @7
R

The star denotes a complex conjugate. Substitution for $(0, k, w) from equation
(2.5) gives

Prik, o) = d(i 4 d“d_’ ITioak o Ty k, @) @ dpaas (28)
Y

27)%"

By making use of the homogeneity of the turbulence again, we can write

'ﬁ' yak o Ty 3 K. @) = QP8 - k) S(w-0) T s ya k@), (29)

where 'ﬂm(ya. ¥3 k @) is the cross-power spectral density of the quadrupole source
strengths,

T ays ko o) = [ Ty (y, ) Tia (y1 + Ay y2+ Ay ya t + 1) el¥elati0T 424 go

(2.10)
When equation (2.9} is used in (2.8) we obtain
Pr (k ) = MI Tixi (2 ya k, ) W1 ay,dy; 2.11)

b

This result relates the wall-pressure spectrum to the Reynolds stresses in the
turbulent boundary layer, and was first derived by Ffowes Williams (1965).
Equation (2.11) is in a useful form because, although very little is known about
the structure of the turbulent source terms Ty it is possible to make some
reasonable assumptions about the behaviour of their spectral functions, ‘i:',-ﬂd. As
argued by Bergeron (1973), who uses a matching argument, we expect the source
functions T'i]u to have a Taylor series about k = 0. Hence, in order to investigate
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the surface pressure in the low wavenumber regime, we can replace
Taelys ya k o} in (211) by Thalys y5 O, @) This is equivalent to usual assumption
in the Lighthill theory, that the source functions can be determined by
considering an incompressible flow.

For spectral elements with very low subsonic phase speeds, y is purely imaginary
with a large positive imaginary part. Equation (2.11) then shows that, in this
regime, the effect of sources away from the boundary decays exponentially with
their distance from the boundary. If, however, the boundary-layer thickness, §, is
small in comparison with |yl-1, the exponential terms in the integral in (2.11) are
approximately unity, and it is convenient to cast the source terms into non-
dimensional form.

The Reynolds stresses, Tj; are proportional to the square of the velocity
perturbations, which in turn scale on the friction velocity u,. We will non-
dimensionalise lengths on the boundary-layer displ‘acement thickness, 8, and
time on & /U.., where U, is the free-stream velocity. Hence

p’u%ﬁls
UH

| Tija (ya vy k ) dysdys = Sijxt (mﬁ—) (2.12)

U

where S;; is a non-dimensional function of coﬁ'/U., only. Equation (2.11)
becomes

- 4 & didy pluls’ :
B A9 © o [wd 2.13

Rk ) h2 U.. i V. @13
This result can be used to comment on the limiting forms of the power spectrum
of the wall pressure.

For spectral elements with subsonic phase speeds, i.e. for spectral components
with ol /gp<< k<< 57,

v~ik : . (2.14)

and

5 didf ddr p2ul8” o 18
Pg (, w) 2 O, Siﬂd U , (2.15)
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For these wavenumbers, all the components of d depend only on k and the
power spectral density is proportional to k2, '

For spectral elements with highly supersonic surface phase speeds, k << |wl /¢

v~ w/cg. (2.16)

The predicted surface pressure spectrum simplifies to

=~ 2ud8™M2 (5 :
Ppk, w0} ~ P_u-.L_I:__ ("If:) 53333(%%) (2.17)

where M is the free-stream Mach number U/ ‘In this limit the wall pressure
spectrum becomes independent of wavenumber.

Sevik (1986) collects together experimental data for this highly supersonic
regime. He shows that results obtained on a buoyant body in water agree closely
with wind-tunnel measurements on both smooth and rough walls, when
expressed in the non-dimensional form in (2.17). He fits the curve

o "3 (2 45
B P

i u. (218

to the experimental data in the frequency range 3 < @8 /U.. <30. This is entirely
compatible with the theoretical form in (2.17) and a comparison of the two
expressions tells us that

533258 7UL) = 5.6 (08 /U5 (2.19)

Since measured pressure spectra are observed to be "wavenumber white", that is
practically independent of k_, for spectral elements with supersonic phase
velocities, we might (after an inspection of (2.13)) expect the other components of

St (8 /U..) to be of the same order.

Chase (1987) obtains predictions for hard wall surface pressure spectra. He
develops his model from the Lighthill theory by making specific assumptions
about the source spectra. Chase's model agrees well with data in the convective
and subsonic regime (Blake 1986, figure 8.15). In the supersonic regime his
expressions simplify considerably and lead to :
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— dnq2 573 2 »d
Pr(0 0)=12x107 puiM’d (“‘z ] %5') ' (2.20)
. U.. wf :

" for @8 /U.>01. It is immediately str'iking that this prediction has quite a
different dependence on frequency from the experimental fit in (2.18). If

(following Blake 1986, page 505) we assume that § /8= 3.6 uy/U., equation (2.20)
reduces to

- a2 g 011
Pr (0, @) =9.1x 107 i“—‘UEi— (%i) , (2.21)
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Figure 3 Variation of flow noise with non-dimensional f:ruiucncy.
Sevik's empirical fit; - - - Chase's model.

The experimental data is from Sevik (1986), 0 buoyant body;
¢ smooth, O medium rough (k guy'v = 50),4 fully rough (k qu /v = 1000,
wind-tunnel data of Geib & Farabee
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and we can obtain a numerical comparison between Chase's predictions and the
experimental data. This is shown in Figure 3. Equation (2.21) tends to

underestimate the experimental results by about 20dB near 8 /U.=3, and
overestimate them by some 14dB near w8 /U.. = 30,

Both the theoretical prediction (2.13) and the experimental result (2.18) are
proportional to the fourth power of the friction velocity. This is a reminder that
the source strength depends strongly on the amplitude of velocity fluctuations.
Any device that reduces turbulent velocities is likely to reduce the contribution

of the turbulent quadrupoles to flow noise. This opens up exciting new
possibilities.

Recent research on drag reduction has lead to the development of large-eddy
breakup devices’ or LEBUs. See Nguyen et al (1984), Bandyopadhyay (1986} or
Wilkinson et al (1987) for reviews of this work. LEBUs are thin splitter plates
about a boundary-layer thickness in length, which are positioned at a height
between 0.43 and (.88 above the wall. Such devices have been shown to lead to
local skin-friction reductions of between 15 and 40%, with some reduction in

skin-friction persisting over a downstream distance of 1005 - 1505, This is
accompanied by a corresponding decrease in turbulence intensity, turbulent
Reynolds stress and integral lengthscale (Westphal 1986; Bonnet, Delville &
Lemay 1987; Coustols, Cousteix & Belanger 1987).

It is apparent from equation (2.11) that it is these fluctuating velocities that
generate sound in a turbulent boundary layer over a plane wall, and we might

~ hope that an array of LEBUs producing a global reduction in turbulence intensity
might lead to a corresponding reduction in noise. Such an argument is clearly
an over-simplification. Although the introduction of a LEBU might reduce the
strength of the quadrupole sources, the LEBU exerts unsteady forces on the fluid
and leads to new dipole sources. These dipoles produce centred waves travelling
from the LEBU over the surface with the speed of sound. The installation of
LEBUs therefore introduces no additional pressure fluctuations with supersonic
surface phase speeds and, for these spectral components, we can expect a
reduction in flow noise due to the decrease in the strength of the quadrupole
sources, T;. Encouraging experimental results have been reported by Beeler
(1986) and Moller & Leehey (1989). They measured pressure spectra downstream
of a LEBU in a turbulent boundary layer and found that the presence of the
manipulator reduced the unsteady pressures.

The installation of the LEBU increases the surface pressure spectrum for spectral
elements with sonic phase speeds. However there is significant flow noise at
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these acoustic wavenumbers even without LEBUs. The increase due to the
LEBU is not significant at frequencies higher than about ¢;/308 (Dowling 1989).

The simple theoretical prediction in (2.13) has a non-integrable singularity for
spectral elements with sonic phase speeds, for which k =|w/gand y=0. This
singularity was investigated by Bergeron (1973} and Ffowcs Williams (1982). It
arises due to a two-dimensional form of Olbers' paradox, because the turbulent
source region is considered to be of infinite extent and the sound field from each
source element does not decrease rapidly enough with distance for the integrated
effect to be finite. We will use the methods of Ffowes Williams (1982) to
investigate this scale effect.

If we write q{x, t) = azrii/ ox; dxj equation (2.1) becomes
% -GV =q, - (2.22)

and the solution to this equation satisfying the hard surface boundary condition
is:

| ‘%‘-’- dy. e

In interpreting the singularities it is sufficient to concentrate on pylx, t), the
contribution to p(x, t) from distant sources, since the singularities arise due to
the integrated effect of these distant sources. As the effect of nearby sources is to
be neglected, it will not be possible to deduce the full structure of the pressure
distribution as was done in equation (2.11), but instead the origin of the
singularities can be highlighted. For the distant sources within the turbulent

wall region 6,= (y2 + y})'2, is much greater than Ix! and

l!'}i=°-£c',5 . 2.24)

Hence:
P (xy, %2, 0,t) = L (x,t--q+x—'§]sli- (2.25)
d ’ am i q @ oy © '-

Similarly a simple change of variable gives

42 Proc.l.0.A. Vol 12 Part 1 (1890)




v
. Proceedings of the Institute of Acoustics

FLOW NOISE

: ' : : d% dy:
pq(x1+A1,x;+A1.,0,t+t)=ilu-] q y1+§by2+§g,y3t+1-%+5¥c—o(x+é-£))¥
' (2.26)

The autospectrum of the surface pressure, Pgy(A, 1), can be obtained from the
mean value of the product of equations (2.25) and (2.26):

y@-p |dEdy,ddy (2.27)
acp o?

rys&t+

=1
Pra(A ) 4#[ Q

where Qy, Y3 E D=qyqly1+& y2+ &2 yy t + 1) is the autocorrelation of q

The origin of the singularity is now apparent. If the turbulence is homogeneous
so that Q is independent of y; and y,, the y;, y; integral in equation (2.27) is
unbounded. However, when we insist that there is a patch of homogeneous

turbulence of large but finite extent L, so that Q is independent of y;, y, fora < L
and vanishes for o > L,

T

PRd(AﬂF;b] [ alpneetR) e

og
oD =)
) n l @ i)
In(wL/c ( : ya- ) .
=T dysdy;d€ d 2.28
) I Qlysya &+ o yadys 25 ¢ (2.28)
$=0

The lower limit on ¢ has been set as ¢y/@ (Howe 1987) as the far-field
approximation in (2.25) will only be valid for large o.

The wall pressure spectrum due_to these extensive acoustic sources is given by
_ the Fourler transform of (2.28).

Pra (@) = [Pra (4, 1) ee4e i g%
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n
= In{wL/q ﬁ(ya,y'; uv_/qﬂ,m)atk-wx/cm) dysdysdé (2.29)

¢=0

where Qlys yyk, @)= IQ(y; ¥y & 1) explikyba + i) clzg dt is the power spectral
density of q. One of the 8-functions can be used to evaluate the ¢-integral to give:

Pra(k @ = 2In(oL /e 502~ 0¥/d) I Qlys v3 k ) dyadys (2.30)

This shows that there is a §-function singularity for spectral elements with sonic
surface wave speed. The peak is now integrable. For a small-scale experimental
facility, its integrated effect may not be large because it depends on the logarithm
of the extent of the turbulent source region. Dhanak (1988) shows that surface
curvature makes the hard wall pressure spectrum integrable in a similar way.

To summarize, we expect the integrated pressure spectrum level near the sonic
condition to depend on the geometry or source size for a hard surface. Sevik
{(1986) reports that experimentally measured levels at k = ©/cy are higher than at
supersonic wavenumbers, with "most of the energy arriving at grazing incidence
from an upstream direction". There is no such anisotropy in equation (2.30), but
it will emerge when we consider mean flow effects in §4.

3. A DOMED SONAR SYSTEM

A sonar dome consists of a light surface over a flooded cavity as shown in Figure
4. If the covering surface is sufficiently light it has little effect on pressure
perturbations passing through it and the main effect of the dome arrangement is
to ensure that the turbulent sources are held away from the hard surface on
which the pressure spectrum is measured.

We saw in §2 that the surface pressure spectrum for spectral elements with
subsonic phase speeds decays exponentially with the vertical distance between
the surface and the sources. The amplitudes of the elements with supersonic
phase speeds are not reduced in this way. The domed sonar system can therefore
be used to discriminate against the subsonic modes. It dramatically reduces the
convective peak in the surface pressure spectrum without a significant change to
propagating acoustic waves, thereby increasing the signal-to-noise ratio.
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Figure4 A sonar dome

We can use equation (2.11) as it stands to analyse the performance of a simple
dome. We chose our coordinate system so that x3 = 0 is again the hard surface on
which the Fressure spectrum is measured. If the covering surface is so light that

the only effect of a dome of height h is to cause the turbulence to stand off a
distance h from the surface x, = 0, then,

T 63 %3 ko 0 = T 3= b, x3- b, k, @), (3.1)

where the superscript D denotes the cross-spectral density of the turbulent
sources with the dome and ‘?'TM is their value in the absence of a sonar dome.
11)

Substitution into equation (2.11) gives the pressure spectrum on x3 = 0 under a
dome of height h as:

~ didjd . v o7 :
el )= _1_;\{‘—@ f Tika (73 Y5 k @) eW579) gy gy (32)

h h

After using equation (3.1) and changing the integration variables we see that this
can be rewritten as:
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Pk, ©) = % o I I Dy (23, 2y k, @) € P2 dzydzy = P P, )
0

[=]

(3.3

where Pg(k, ) is the surface pressure spectrum in the absence of the dome. Itis
apparent from equation (3.3) that the surface pressure spectrum for spectral

elements with supersonic phase speeds, for which ¥ is real, is unaffected by the

dome. However the subsonic phase elements, for which y=i (k2- /@), are
attenuated by a factor:

LUK oD

For highly subsonic modes, k >> |wl/¢cg, and reasondble dome heights this is a
considerable reduction. Hence, on a dome-covered surface, flow noise has most
effect on the spectral elements of the pressure spectrum with slightly subsonic or
supersonic surface wave speeds.

We have considered a very simple model of a dome. This illustrates clearly the
very significant attenuation of subsonic elements. However for a more complete
analysis of the filtering action of the dome, the mass and stiffness of the covering
plate ought to be included. The surface impedance on x3 = h of the plate and
flooded cavity can be calculated in a straightforward way (Maidanik 1968). The
flow noise can then be predicted by using the results developed in §5 for general
flexible surfaces.

4, MEAN FLOW EFFECTS

So far we have discussed the boundary-layer flow as if it just consisted of
turbulence. In practice there is also a mean flow U = (U(x;}, 0, 0) parallel to the
surface. To account for this it is appropriate to set up Lighthill's equation in such
a way that convected derivatives appear in the wave operator and the
quadrupole sources Tj; involve pv; vi . where ¥' is the difference between the
fluid velocity and the mean flow U. That has been done by Lilley (1971). We
follow Chase & Noiseux (1982) who show that the equations of mass and
momentum conservation can be combined into the form
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_Qz_(p +Taa/<z§)+ P +T33/Q _ 1 Jkakp Tap +PTa mkai( Top Jl_ @1
axg o + Uk, o + Uk, cs w + Uk; aJ_(3CI)+IJk1’

In this expression Ty = pv, v+ (p'- c§p?) 3ij ot and B are to be summed over 1 and
2 and the tilde again denotes a Fourier transform.

St Ul o o dy ki jaup
fixa k ©) = = K} 1<3+dx3 z(dxa)z 42)

@ + Uk (@ + Uky)?
and y= ({w + Ukl)zfcﬁ - k"‘)uz, with the sign of the square-root chosen so that ¥ has

the same sign as @ when v is real and Imy is positive when y is purely imaginary.
In the case of no mean flow equation (4.1} reduces to (2.3).

Outside the boundary layer the fluid is only linearly. disturbed from the free
stream velocity (U, 0, 0) and Ty = 0. Since disturbances must either decay at large
x3 or be outward propagating sound waves,

ng = iy.p for large positive x;. 4.3)
%3

Yo = ([0 + Uy, kﬂzlcﬁ - kz)llz' is the limit of y as x, tends to infinity. The hard wall
boundary condition gives

~—

E_p_ =0onx3=0. (4.4)
ox3

The ordinary. differential equation (4.1) is to be solved subject to the boundary
conditions (4.3) and (4.4). Standard Green function techniques make it easy to
determine the solution. It is convenient to introduce a function E(xs), which

satisfies the homogeneous equation

9E , g-
dx;+ﬂ:‘. 0, | (4.5)

together with the boundary conditions

& =iy Easx;— o (4.6)
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and
E=1onx3=0 4.7}

In terms of E the solution to (4.1) is

kpT T kT
. ® . kakgTap + ¥'Taa_3E 2iksTasl 4 p @8
E'(®) + U'(0)k1/w ® + Uk dysw + Uk

(See Chase & Noiseux (1982) or Dowling (1986) for the derivation of this
relationship.)

P,k w) =

The function E(x;) can be evaluated for a particular mean-flow profile by a
numerical solution of (4.5). The results in Figure 5 were obtained for a tanh-
velocity profile U(xy = U tanh (xa/A), where A is a measure of the boundary-
layer height. But in fact the dominant flow effect does not depend on the details
of the boundary-layer profile. That can be seen from an asymptotic solution for
E(x3), valid for low values of the flow Mach number M =U../¢cy and low

wavenumbers i.e. k ~ lwl /¢

We seek an expansion for E as a power series in the powers of the Mach number
M. To lowest order E(xy = exp(iy.x. More algebra is required to obtain the o)

term, but it can be shown (Dowling 1986) that

E0) = iy (1 + MB) - U'(O)ky/e- 2kioM$ /ey, (4.9)

5 is the boundary-layer displacement thickness, defined by 5= ]:(1 - Ulxg}/Us)dx3

B is an order one function. It is evaluated in Dowling (1986), but its precise form
does not concern us here.

Substitution for E(x;) in the representation (4.8) gives

did;

POk O =m0 Tiok/e

I Ty (ya ko) e dy, (4.10),

dy = kg fora=1or 2 and d; = ¥... The terms in the numerator cannot all vanish
simultaneously and so we have only kept the lowest order terms there. But in
the denominator the leading order term can vanish and so terms of order M
must be retained.
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- The wall pressure spectrum, 'ﬁM(ls, ®), can be derived from the Fourier transform

of the surface pressure in the way outlined in §2, and is given by

d; dj did;
|E (0) + U0/

In the low Mach number limit, equation (4.9) shows that:

mek, I T 3 ys k o) elws-7ys) dysdy;. (411)

E0) + U(0)ky/0 = iy.. (1 + MB) - 20k M/c. (4.12)

If we neglect terms of order w8 /g in (4.12), the right-hand side reduces to iy., the
uniform mean flow result (Haj Hariri & Akylas 1985). This vanishes for spectral
elements with sonic phase speeds. A uniform mean flow has no effect other
than to produce a Doppler shift in frequency. The variation in mean-flow
velocity leads to the additional terms in (4.12). The profile has most effect on the

pressure spectrum near ¥,,, where the leading order term vanishes. Then iy MB
is negligible since both y,, and M are small, and the dominant effect of the mean-
flow profile is contained in the term -2mk18'M/co This is independent of the
details T the boundary layer, depending only on its integrated effect through the

flow Mach number U./q and the displacement thickness, 5'. Reutov and
Rybushkina (1986) reach the same conclusion from a matching argument.

Whenlthe effect of the rr;gan-ﬂow profile is included, the denominator in (4.11)
is small near ., = 0, but i can only vanish when v,,is purely imaginary. Then the
first term on the right-hand side of (4.12) is real and negative, and we see from
equation (4.12) that E'(0) + U'(0)k;/@ can vanish only if @ and k, have opposite
signs, i.e. for downstream propagating modes. For upstream propagating modes
"E'(0) + U'(0)k,/@ is always non-zero, having a minimum modulus of
20% M/ at 7. = 0.

. The pressure spectrum therefore has.a double pole near y..=0 for downstream

propagating spectral elements, but it is always finite for upstream propagating
. elements. ;l'us was venf:ed by numerical calculations for a tanh-velocity profile,

‘ {,U..tanh(xJA), and the'Tesults are shown In Flgure5 The plot clearly
dernonstrqtes that the predicted pressure spectrum is larger for downstream
propagating modés with sonic phase speeds than it is for upstream propagating

| modes. Iniegranon shost that for the tanh-velocity profile 5= Alog?, and the

(S ‘
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height of the peak for upstream propagating modes in Figure5 agrees with

-ZUIOglo(Zmﬁ'M/m), the level predicted from the low Mach number asymptotic
theory.

50+
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- X : ’ t o keyw
RN

- ayfc) . .
Eigure3 Plotof Y =20logy £ + U0k/@ versus non-dimensional wavenumber
for flow over a rigid wall with M = 0.01, wd/c, =1,k,=0

Sevik (1986) noted that measurements of pressure spectral elements with sonic
phase speeds indicate that most of the energy is propagating downstream in
agreement with our predictions. .

In Section 2 we found that when the mean-flow profile is neglected, the pressure
spectrum has a simple pole for spectral elements with sonic phase speeds. It was
possible to interpret the occurrence of these singularities as due to a form of
Olbers' paradox: the turbulent source region had been assumed to be of infinite
extent and the sound from distant sources did not decay sufficiently rapidly with
distance for their integrated effect to be finite. A mean-flow profile enhances the
singularity for downstream propagating modes, but eliminates it for upstream
propagating modes. Again, this has simple physical interpretation.

When there is a mean-flow profile, there are downstream propagating free
modes of the system in which the waves propagate supersonically (i.e. faster than
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local sound waves would propagate) within the slowly moving fluid in the
boundary layer, but subsonically within the moving fluid outside it. The energy
in these modes therefore remains 'trapped’ near the wall and conservation of
energy then suggests that downstream of a source the pressure disturbance will
only decay with the inverse square-root of the distance. Upstream of a source,
pressure fluctuations decay much more rapidly. The downstream propagating
modes decay more slowly with distance from the source than those in a uniform
stream and account for the stronger singularity in the pressure spectrum under
an infinite region of turbulence.

In Section 3, we introduced a simple model of a sonar dome. The covering plate
was assumed to be so light that it was completely transparent to pressure waves.
The main effect of the dome was therefore to produce a stand-off distance, h,
between the turbulent sources and the rigid surface on which the pressure
spectrum was measured. We will now consider the effect of a mean flow over
“such a dome.

The effect of a low Mach number mean flow over a hard surface is described by
equations (4.11) and (4.12). The term & in (4.12) arises from the integrated effect

of the velodity defect J {1-U(x2/U.)dxs When there is a dome with a flooded

cavity of height h, there is an additional layer in which the mean flow velocity is
zero. Hence

I (1-Uxp/U)dxa=8 +h . (4.13)
0

‘The effect of the dome is to increase 5. in (4.12) to 8.+ h. It therefore decreases

the level of the pressure spectrum for modes travelling upstream with the speed
of sound. Indeed, the addition of a dome of non-dimensional height wh/cy =5 to
the case shown in Figure5 reduces the maximum for upstream propagating
elements to a level which is only about 20dB larger than the value for highly
supersonic modes. With a dome present we would expect the pressure spectrum
to be very much larger for downstream propagating modes with sonic phase
speeds than it is for upstream propagating modes. Roebuck and Richardson
(1981, private communication) have observed this in underwater experiments.
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5. FLEXIBLE SURFACES

We have determined the properties of the pressure spectrum induced bK
turbulence over a hard surface. However, the wavelengths associated wit
spectral elements with supersonic phase speeds are 5o long that fluid loading can
cause even quite massive surfaces to vibrate. In order to highlight the effects of
surface flexibility we will neglect the mean-flow profile and return to the
equations and notation of section 2.

The sound generation is described by equation (2.3):

‘$+ L |koks Top + 20
ary = Q! o ku
axg_ﬁqg Blap ™=

I

. 5.1
ox3  axg G

We want to selve this equation, subject to the radiation condition at infinity and
a surface boundary condition. We will assume that the turbulent sources, Tj;, are
uninfluenced by surface flexibility. The surfaces we have in mind are massive
(Scm-thick steel plates, for example). While long wavelength sound waves can

deform them (k ~ |w|/cy), they are effectively rigid to turbulence with its shorter
wavelengths (k ~ @/U,).

Let us suppose that the surface impedance is uniform over the whole surface
x3=0 and that the relationship between the surface pressure and the normal

displacement, &(x;,x3,t), can be conveniently expressed in terms of their Fourier
transforms,

B0, k, ) = Z(k, ©) G, ). (5.2)

Tensioned membranes, bending plates and more complicated multilayered
structures all fall into this category. If the flow near the surface is only linearly
disturbed from rest, the linearized momentum equation shows that
Op/dxz= pe®. Since p =P/c§, equation (5.2) can be rewritten to give a surface
condition for p.

ﬁ%%(o,k,m). (5.3)

1t is convenient to decompose the density fluctuations into those that occur near
a hard wall, with an additional term to account for surface flexibility. We write

PO,k o) =
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Pxa K, ©) = prixa k, @) + prixa k, @) . (5.4)

The rigid wall density fluctuation, pg (xs k ©), satisfies equation (5.1} together

with the hard wall boundary condition 8pr/9x=0 on x3 = 0. This is precisely the
problem solved in Section 2.

When the expansion (5.4) is substituted into (5.1), it shows that PF satisfies a
homogeneous equation

e
—_ =0, (5.5
| > TPF =
and the boundary condition (5.3) becomes’
_Z; %: Y + o . (5-6)
o s PE+ PR .
The problem for pg is straightforward and we find that
Lo~ prO, k, ©)
0k w=-LE220 5.7)
r 1-0Z/p?
This leads directly to the surface pressure fluctuation
PO,k o) = cf (Fr(0, k ©) + px0, k, o)) (5.8)
ir -
=———Pr{0, k, w). 59
iy - pot/Z P

The power spectral density of the surface pressure, P(k, ), can be calculated from
(5.9) in the way outlined in Section 2:

Pk, o) = Prik, @), (5.10)

ly - poc?/2ft

where Pg(k, ©) is the rigid-wall or 'blocked’ pressure spectrum. The multiplying
factor | Y% i -pw?/Zf evidently describes the difference between flexible and rigid
wall pressure spectra. After substitution for Pg(k, w) from (2.13) we obtain
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LI '5 .
. Big wp = 101 i phued s,pd(ﬁﬁ-) .11)
fy-potszf U- TAU-
This relates the wall pressure spectrum to source terms which depend on the
cross-correlation of the Reynolds stresses. The factor di di' dkdllﬁT'Pdﬁz/Zf
describes how the turbulent flow radiates sound within the boundary layer over
the flexible surface. The product di dj' did; describes the propagation of different
directional elements, but the main structure of the surface pressure spectrum

comes from the }i'f-pgmzle'z term. We will now investigate the form of the
surface pressure spectrum for different surfaces.

As an introductory example we will consider a bending plate backed by a void.
For such a surface

Z(k, ) = ma?- Bk¢, (5.12)

where m is the mass of the plate per unit area and B = Ed3/12(1-v2), E is Young's
modulus, v is Poisson's ratic and d is the plate thickness. In the absence of fluid
loading, flexural waves of frequency w propagate in the plate with a phase speed

V equal to (Bw2/m)3i/4, At the coinddence frequency ., V is equal to the sound
speed cp. At frequencies above coincidence V is supersonic and at lower
frequencies V is subsonic.

Equation (5.11) shows that the surface pressure spectrum under an infinite extent
of turbulence is given by:

- v B pz‘-lg 6.5 mﬁ:
Pk, ©) = d; dj did; [Fle o o S |2 (5.13)

where
4

—mae?-Bk!
po?- iy(me? - BkY

An investigation of the form of F(k, m} will determine the influence of the wall

impedance on the surface pressure spectrum. The structure of F(k, @) depends
on N, the Mach number of the in vacuo bending wave speed, V/¢g, and on the

Fk w)= (5.14)
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fluid loading factor pycy/ mw, which is essentially the ratio between the mass of
fluid within a wavelength of the surface and the mass of the plate. Plots of
F(k, ) are given in Figure 6 for positive .

The function F(k, ©) can also be investigated analytically. For heavy plates and

highly supersonic spectral elements F(k, ©) ~ icy/w. The pressure spectrum is
then identical to the hard surface result in (2.17). It is also apparent from

expression (5.14) that F(k, w) {and hence the pressure spectrum) vanishes for
spectral elements whose phase speeds are equal to V. The pressure spectrum has

a singularity at x{w), a zero of po?- iy (me? - Bk%. For heavy plates x(w) can be
determined iteratively by an expansion in powers of pp This shows that there is

a singularity in the pressure spectrum near k = /V for V < ¢; and near k = w/¢g if

V > ¢ (with the phase speed w/k just subsonic). These predictions for a heavy
plate are confirmed by the plots in Figure 6.
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Fimmre 6 Plotsof X = 20logo| wF(, w)/co| versus non-dimensional wavenumber for a
bending plate with a) ma/pyc, = 5, N = 0.8, b) mavp ey =10, N= 1.2

Figure 6 illustrates the variation of ZOIng]mF(k,m)/oo[ with non-dimensional
wavenumber kcy/w. The plate parameters used in these calculations correspond

to a Scm-thick steel plate in water at a frequency of (a) 3kHz and (b) 6kHz. In
Figure 6(a), V is subsonic and the singularity in the pressure spectrum occurs for

Proc.).0.A. Vol 12 Part 1 (1950)




Proceedings of the Institute of Acoustics

FLOW NOISE

spectral elements with phase speeds nearly equal to the bending wave speed in
vacuo. In Figure 6(b), V is supersonic and the singularity in the pressure
spectrum occurs for modes with nearly sonic phase speeds. These singularities
are double poles and are stronger than those found for sonic speciral elements on
a2 hard surface. Just as in the hard surface case they arise due to a scale effect,
because the source region has been assumed to be infinite.

Since the peaks in the surface pressure spectrum are dominated by the influence
of distant sources, the first step in understanding them is to determine the

response far from a source adjacent to a bending plate. xi{w), the zeros of

pow? - i{maw?- BkY, are the wavenumbers of free modes of the plate-fluid system.
These modes are excited by a source near the surface and travel subsonically over
the plate. Since they have a subsonic surface speed they are evanescent in the
fluid. All the energy in these modes therefore remains "trapped’ within a disc
near the surface and energy conservation suggests that the pressure disturbances
associated with the modes should decay like r'1/2, where r is the distance from a
source near the surface. An asymptotic evaluation of the response due to a point
source shows this to be true. This decay rate is slower than that for sound near a
hard surface and this leads to stronger singularities in the pressure spectrum.
Using the same techniques as in Section 2 to investigate the effect of a finite

patch of turbulence shows that-there is a §-function singularity for spectral
elements with wavenumber x(w). The strength of the §-function grows linearly
with L, the extent of the turbulent source region. The details are given in
Dowling (1983).

Although consideration of a finite turbulent source region makes the peaks in
the surface pressure spectrum integrable, for reascnably sized source regions,
these singularities still have a considerable effect. The integrated pressure level
due to the singularities can be significantly larger than the levels elsewhere in
the spectrum. Therefore we look for other means of limiting the pressure field.

Howe (1979) investigated the influence of the fluid's viscosity on the pressure
spectrum on the hard surface, but found that it only had a small effect. For a
flexible surface the wall provides another source of dissipation. The damping in
the bending plate will be modelled by giving Young's modulus a small
imaginary part. Then Z(k, ©) = ma? - Bk4(1 - in), where the damping factor n has
the same sign as w. Plots of |F(k, @) | with this surface condition are given in
Figure7. As one might expect the damping has most effect on the pressure
spectrum for spectral elements whose phase speed is nearly equal to V, the speed
of bending waves in the unloaded plate. The pressure spectrum no longer
vanishes for spectral components with phase speeds equal to V as it did for the
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undamped plate. Also the singularity that occurred near V for frequencies below
coincidence is reduced to a reasonable level by dissipation in the plate. The
damping has very little effect on the singularity for nearly sonic elements at
frequencies above coincidence, essentially because little plate vibration is
involved in these glancing modes.

30 T 1 T T T —
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Eigure 7 Plots of X = 20logye{ WF(k, w)/cg| versus non-dimensional wavenumber for a
damped bending plate with 1 = 0.05 and a) mw/pecq =5, N=0.8, b} mw/pyey = 10,
N=1.2

There is some experimental evidence that certain surface coatings can also
reduce the surface pressure fluctuations due to flow noise. We will model such a
coating by a fluid layer of thickness T, with density p, and sound speed c,. A
sketch of the coating is given in Figure 8. The impedance of this composite
surface can be found in a straightforward way (Maidanik 1984) leading to Z(k, w).
Equation (5.11) then gives the pressure spectrum on the surface of the coating, In
fact the pressure spectrum on the bending plate, Pe(k, w), is of more practical
interest since it can be compared directly with the pressure on the uncoated plate.
The relationship between the pressure spectra on these two surfaces can easily be
determined and
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-— L] L] ‘ .5 *
Pp(k, w) = d; d; did [Falk, wf pT‘:} 8 Sijt (-(l‘jﬁ-) ' (5.15)

and | Fg(k, ®}| is shown in Figures 9 and 10.

- e ol =

Coating

Void Plate

Figure 8 The plate and coating

The coating can have a significant effect on the pressure spectrum for spectral
components with sonic phase speeds. If the coating is sufficiently thick and c, is
greater than ¢, it is possible for the coating to control the singularity that would
occur for sonic modes in an uncoated plate whenever V is supersonic. The
graphs in Figure 9 are for a 4cm-thick coating with ¢; = 1.5¢y and p, =1.5pyon a
5cm-thick steel plate at frequencies of (a) 3kHz and (b) 6kHz. A comparison of
Figures 6 and 9 shows that the coating can eliminate the singularity in the
spectrum for frequencies above coincidence, but that it has little effect at
frequencies below coincidence.

A low sound speed coating with ¢, < ¢g has an adverse effect on the pressure
spectrum generated by the turbulent flow. It can produce a singularity at
approximately sonic phase velocities for frequencies below coincidence, where
for an uncoated plate the pressure spectrum is not particularly large. Figure 10
shows plots of IFg(k, )| for a Sem-thick steel plate covered by a 4cm-thick

coating layer with ¢, = 0.75¢, and p, = 0.75py, again at frequencies of 3kHz and
6kHz. A comparison of Figures 6(a) and 10(a) shows that the low-speed coating
has introduced a new singularity not present in the uncoated plate.
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Eigure 9  Plots of X = 20log)o] @Fa(k. @)/co| versus non-dimensional wavenumber for a
coated plate with ¢, = 1.5¢c,, p, = 1.5p,, and a) muw/pye, =5, N=0.38,
b) m/pse, =10, N=1.2
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Eigure 10 Plots of X = 20log;o] wFg(k, w)/co| versus non-dimensional wavenumber for a
coated plate with ¢, = 0.75¢,, p, = 0.75p, and a) mw/pgcy =5, N=0.8,
b) mw/pyc, =10, N=1.2
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So far we have neglected the mean flow when evaluating the pressure spectrum
on a flexible surface. Both the mean flow and surface compliance are considered
in Dowling (1986). The effect of surface flexibility is to produce an extra term
-po?/Z (k, @) in the denominator of (4.11). The relative importance of the mean-
flow profile and the surface flexibility is described by the ratio of the two terms

2ak;5 M/ and pgw?/Z(k, w). For realistic boundary-layer thicknesses over
practical surfaces in water, the effect of the mean-flow profile is small in
comparison with the surface flexibility. However, we saw in §3, that a dome can
enhance the effect of the mean flow. For a dome of height h over a plate with

impedance iZ(k, }/w, we should compare 2mk1(6. + WM/ cowith pg?/Z(k, w). It
is then possible for the mean flow to have a significant influence.

6. A FINITE PLATE

In this section we outline some current work on the effects of finite surface size.
The boundaries of the flexible surface provide an inhomogeneity at which
scattering from the convective peak into low wavenumbers can take place.
Indeed Crighton (1988) suggests that this wavenumber conversion is the
dominant mechanism in sound production by a turbulent boundary layer.

Howe (1988) investigates an infinite bending plate with two line supports a
distance a apart. For a steel plate in water with practical supports and wa/¢y >> 1,

he finds that the principal source of radiation is due to the excitation of flexural
modes of the panel by the low wavenumber components of the turbulent
sources and their diffraction at the supports. In almost all cases the diffraction of
the convective peak leads to terms which are very much smaller. The exception
is when the plate displacement is allowed to be discontinuous at the supports(!).
Howe found that this extreme boundary condition could produce significant
wavenumber conversion.

In Howe's geometry fluid loading enables much of the bending wave energy to
be transmitted across the supports. Indeed there is almost perfect transmission at
frequencies above coincidence (Howe 1986) and this limits the influence of the
finite length of panel. To highlight the effects of finite panel size we will
investigate flow noise on a bending plate inserted in an otherwise rigid baffle.

The geometry is illustrated in Figure 11. The plate has a streamwise length a and
infinite width, and is mounted in the plane wall x; = 0. The rest of the wall is
rigid. The plate boundaries at x; = 0 and x; = a are simply supported, so that
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E(xy, xp t)'= %(xl,xz, =0 atx;=0anda. (6.1)

The plate is excited by a turbulent boundary layer and we wish to find the power
spectral density of the surface pressures.

turbulent boundary layer

2 C o O
hardwall 3 govibte plate hard wall
! LJ\/\ﬁ /
.—-x1 a -]

Figure 11 A turbulent boundary layer over a plate of finite length
. Lighthill's equation (2.1),

92" -GV’ a’ra’q (6.2)

is to be solved subject to boundary conditions on x3 =0. The momentum
equation shows that

po %
—— =-22_2forall x; with x3=0, 6.3)
a ﬁ 1 3= .

while the equation of motion of the plate leads to
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2
'=-L-mi+B(i-k3) Efor0sx;$a,x3=0, (6.4)
‘ p Cﬁ'[ pers a7 1 3
and we have
- E=0 for xy2aorx<0. (6.5)

The problem is homogeneous in x; and t and it is natural to introduce two-
dimensional Fourier transforms:

E(x,, kg ) = I E(xy, Xg t) X2+ doy dt | (6.6)

Transforms of pressure and density can be defined similarly.

In a way analogous to (5.4) we again decompose density and pressure fluctuations
into those that occur near a hard wall with an additional term to account for
surface flexibility. We write

Py ka, x3 @) = PE(xy, kz, x5 @) + PROXy kg X3 @) 6.7)

The rigid wall density fluctuation, pg, satisfies Lighthill's equation together with

the hard wall boundary condition, 3pg/3x3 = 0 on x3 = 0, and was determined in
§2. When the expansion (6.7) is substituted into (6.2), it leads to

(i,, z
ot o
where B =(@%q-k3)2. The sign of the square-root is to be chosen such that,

when real, p has the same sign as ® and when purely imaginary Imp is positive.
It follows from (6.3) that

+ ﬂz) BF = 0 , (6.8)

%ixi- = i{'z—’zz for all x; with x3=0. ©9)

This problem can be readily rewritten to give PF explicitly in terms of the surface

displacement E The solution to {6.8) that satisfies the radiation condition and
the boundary condition (6.9} is
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e, ks xa @) = 2 [ Eys ko @ H (BR) dy; (6.10)

2ic

0

where R?= (x;- y1)? + x§. We need to use the remaining boundary condition (6.4)
to determine &.

The end conditions in (6.1) suggest that it is convenient to expand E(x,,k,,) in a
Fourier series and we write

Eba, kp )= T Apgsin(Mmx/a). (6.11)
M=1

The surface density fluctuations are given in terms of the coefficients Ay
through equation (6.10):

Pr(xy, ka, 0, @) = % 21 AM j 0 (8 x1- y1]} sin(Mny,/a) dy, (6.12)
M= .
0

When this is substituted into the Fourier transform of (6.4) it leads to
¥ Imo?-B(1-in) {M_Z_ﬁ + k}ﬂ Ay sin [M_n_xl) = Prixy, 0, ky, @)
Ml a2 a
a
] A M
+ % p) Auf Hé,n Blxy-yP sm( :)’1 dyr (6.13)
M=1 . -

0

for 0 x, Sa. The function Pr = fpr denotes the rigid wall pressure fluctuations.

A small amount of plate damping, 1, has been introduced in this equation.
When (6.13) is multiplied by sin(Nnx;/a} and integrated from 0 to a, we obtain an
infinite set of coupled equations for the coefficients Ay.
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mwz B(1-in) N.’J.L+kf Ay +---- }_‘, pmA“_Z Prixy, ka, 0, w) sin Nrx ch<1
a

0
(6.14)
where
a a
Prev=2 I j Y G-y sin (M) sin N D)4y, 615
00

The coupling coefficients p,y have been investigated analytically in the limit

lBla — o= by Leppington et al (1986) who consider the related problem of sound
radiation from an elastic panel excited by a force. They find that while the
diagonal terms in pyy can be large, the off-diagonal terms tend to zero as

|Bla— e
It is therefore natural to rewrite'(6.14) in the form

[me-B(l-in)(Na_zgf+k}’z+ES;-°f ] "‘:’2 T P An

M=1
MzN
- g} Prixy ka 0, @) sin (N2} dx (6.16)
0

The coupling terms can be expected to be significant for values of M near M,, the
resonance condition at which

mmz-B(Maszﬁ+ k})z+p—;fpm=o 617

Leppington et al (see their equation (B.9)} derive a solution to (6.16). In our
notation it is

64 Proe.l.0.A. Vol 12 Part 1 (19580)




-
Proceedings of the Institute of Acoustics

FLOW NOISE

a
AN = -1- gj ﬁn (X]_, ](3, 0, (D) sin {Nnx1 dX1 - paﬁ’mﬁr (6-18)
dn|2 ] va ) B + po®PS

The parameters in this ex

pression require some explanation. P is the limiting
form of p,g, as M and N tend to Mg with M 2N.

_| prwo for N # My
P""'“"{P for N = My

(6.19)
dy = me? - B(1 -in)(stﬂg+kfr+ p—:)—z(pNN-P), (6.20)
while
S= )'f di (6.21)
M=1
and
a .
Sf=n£1 —d%%] Prixy ka 0, w) sin(MTm‘l dx; , 6.22)
0

The main contributions to the sums § and S; will come from values of M near
the resonance condition M,.

We will choose to write the solution to the matrix equation (6.16) in the form
. . '
An=-1_ ¥ GCwm ﬁn()(j, k3 0, @) sin [M_"..’El dx;.
mm%a M1 . a
0

Leppington et al's solution lets us write dow
coefficients C,,,. We have

(6.23)

n immediately the major

Proc.l.O.A. Vol 12 Pant 1 (1990)




Proceedings of the Instituter Acoustics

FLOW NOISE
2ma? when N is not near My
d
Can={ | (6.29)
ome?._ 2mpo®
dy  di (B + pow®S) for N near My
For M near M, the off-diagonal terms are
o= - 2P0 P N#M (6.25)
dndu (B + pgo? PS)

Cyu is, of course, symmetric because the coupling coefficients pyy in (6.15) are
symmetric. ‘

We will find later that we are particularly interested in off-diagonal terms Cy,,,
where M ~ aw/nU, and N < aw/nrc;. M describes a mode whose phase velocity is
close to the eddy convection velocity, U,, while the mode N has a supersonic
phase speed. It is evident from the definition (6.23) that C,,, describes surface
displacements with wavenumber Nn/a produced by driving from a pressure
field with wavenumber Mn/a. The coefficient py,, is small, and Cyy can be
determined by an iterative procedure in which the first order solutions in (6.18)
are substituted into the sum in equation (6.16) to determine an improved
estimate for A,,. This leads to

. M for N not near My
didnp
2mpgwt
- Pray
duvdn (B + poe®S) for N near My

Cun= (6.26)

After substituting the expansion for Ay in equation (6.23) into (6.12), we obtain
an expansion for the Fourier transform of the surface pressure in terms of the
hard wall pressure, Pr.
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Plxy k3, 0, ) = Pxy, ko, 0, @)

EMI
ZMs

Po - ) . (Maxy) . [Nmy
+m ) lejpg(xl,k_z,ﬁ,m)]{o (B{x;-}nl) sm(—al)sm[ a deld)ﬁ
[}

6.27)
Plxy, kz 0, w) is the pressure fluctuation on the finite flexible surface. We can use
(6.27) to determine the relationship between the power spectral density on the
finite plate and that on an infinite hard surface.

The problem is homogeneous in x; and t and so in a way analogous to (2.7)

j plxy xz 0, 1) plxy + Ay x2+ A3, 0, t + 1) e““‘}’”m‘dAzdt

= (_21? I P lxy, ka0, @) Blxy + Ay, k3, 0, ) dkade . (6.28)
T

The power spectral density of the surface pressure, P(xy, k, w), then follows from
the transform of this equation with respect to 4,,

Bl k 0) = (—2135 I B (xy, kg, 0, @) Plx1 + Ay Kz 0, @) €4 dA dka e (6.29)
b9

Substitution for fi from (6.27) into (6.29) leads to F(X],k, w) in terms of the rigid
- plate power spectral density Prlk, @). The rigid plate pressure field is
homogeneous. If we assume that the axial correlation length of the turbulence is
small in comparison with the plate length a, and that x, is not near the ends of
the plate, many of the integrals can be evaluated. That leads to

Plxy k, o) = Palk, @) + %e“‘""’“” T % ClaaPr(k 0)Suky) In

= ikilasz-xy) Y : ~ i
+B5 Iy 22 Cooa[Pr M, kg, pe™™/2. B (MR, ki, ) ™M) S(i)
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pzieih(afz -x1) . —~ ~ .
B $YFT ClneCoon| DuenPr ME, ky, ) + EvuPr (ME, ki, )] Snk)Ti
4m2'ra a a

{6.30)

where 7=(a)1/cﬁ-k%-kf)uz and the sums are to be evaluated over positive
integers.

[ inngsintkia + Nm)/2) o sin((kia - N)/2))
Snlk) {@ ka + Nn € kia-Nr | ©31)
and
a
. (NR)
In = f HY @xa-yiD sin (22 ay, 6.32)
-0
The coefficients Dy, and E,;,, are defined by
Dum =Eum=2a/4, (6.33)
while for M'# M
0 M'-Meven
Dwmm = -Eum = (6.34)
af_1 1} M-Modd

+
2iiM + M M - M/

The appearance of x; on the right-hand side of (6.30) indicates that the finite plate
surface pressure spectrum is not homogeneous. For large a the sine-functions in
Sw(k,) are highly oscillatory: the finite plate pressure spectrum varies rapidly
with wavenumber, unlike the infinite plate result in (5.10). Such rapid
varjations are common in problems with finite plates (see, for example, Crocker
(1969), Strawderman (1969) and Jacobs et al (1970)).

If we average P (xy, k, ©) over a wavenumber band Ak, where n/a << Ak << w/ey,

and then take the limit wa/qg—3 -, we recover the infinite plate pressure
spectrum. However, for large but finite wa/q equation (6.30) contains interesting
effects which are not apparent in the infinite plate results. There is the

possibility of wavenumber conversion with P(x, k ) being influenced by
Pr (K, ka, @) with K; = k.
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We will discuss the interaction between Fg (Ky k2 ©) near the convective peak
(K ~-0/U,) and elements of the finite plate pressure spectrum with supersonic

phase speeds (k, < ¢y/w). This interaction is described by the second and third
terms in (6.30) .

~ poieiki(afz- x1) -
Pr Gk, o) = - E25 - 5 20w Ba(ME, Ky, o) ™M™ /05(kp)
2my a
oZialkifa/2-x1) ) _ .
Po'e EEEZCRnCom Evn Pr(ME, kg ) Sullp T, (6.35)

4m¥a

We are interested in the contribution to, ﬁ (xy Kk, @) from summation over all
positive integers M', N' and N, but with M restricted so that the wavenumber
Mr/a is of the order of w/U,. It is evident that both terms in (6.35) involve Cy,,,
with M~ @a/(nU). Now an inspection of (6.24) and-(6.26) shows that C,,, is
proportional to mw?/dys For a 5em-thick steel plate in water with a frequency of
3kHz and a free-stream velocity of 15m/s, this factor is an incredibly small 4 x 10°
for M ~ wa/(rUy), representing an attenuation of 84dB.

The motivation for evaluating the modal interaction is that near the convective

peak Pr(k, w} is typically 40dB larger than its value for low wavenumbers.
However the factor Cy,, that appears in the interaction terms in (6.35) is so small
that scattering from the convective peak into low wavenumbers leads to a
contribution to the surface pressure spectrum which is lower than that produced
by low wavenumber sources.

The physical interpretation of this result is that the plate is effectively rigid at the
convective wavenumber /U, At this condition the wavelength is so short that
bending stiffness ensures negligible plate deflection. Since the pressure field near
the convective peak drives little plate vibration, little energy is scattered at the
junctions between the plate and the hard wall.

Equation (6.30) displays other effects which are currently under investigation.
An infinite plate has a nonintegrable singularity at wavenumbers, x(w), of free
modes of the plate-fluid system. That singularity is controlled by finite plate size
in a way that can be investigated through (6.30). This equation also displays the
interaction between these modes and elements with supersonic phase speeds.
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This work on finite plates is far from complete. However, we have seen that
edge effects do not cause convective turbulent fluctuations to generate a
significant contribution to the low wavenumber pressure spectrum.

7. CONCLUSIONS

Investigation of an infinite plate provides insight into many phenomena
associated with flow noise. In particular we have summarized the main effects
of ‘a sonar dome, a mean-flow profile and surface flexibility on the low
wavenumber surface pressure spectrum. Finite surface size introduces
considerable complexity. But for steel plates in water at reasonable frequencies,
wavenumber conversion from the convective peak does not appear to be a
significant.source of low wavenumber pressure fluctuations.
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