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1 . INTRODUCTION

A passive sonar system aims to detect and analyse weak sounds emanating from
a distant source. However, the sonar is situated in a relatively noisy
environment. When the vessel is in motion, the unsteady pressures generated
by its turbulent boundary layer are a major source of noise, which is usually
referred to as ‘flow noise'.

Sound from a distant source arrives at the sonar array in the form of a plane
wave travelling with the sound speed. For a general incidence angle this wave
produces disturbances which travel supersonically over the sonar surface. The
surface wave speed may be determined from a wavenumber-frequency
decomposition of the pressures measured by the array, thus determining the
direction of the source. It is therefore particularly inconvenient if the flow noise
pressure spectrum has any strong peaks with supersonic phase velocities, since
these can be interpreted falsely as an incoming signal.

In Section 2 we review some classical results. Figure 1 shows the typical form of
FR (k1, kg, m), the wavenumber-frequency decomposition of flow noise on a rigid
surface with normal in the 3-direction. There are two main peaks. The
maximum occurs in the convective regime, which for a turbulent boundary-
layer flow in the ‘l-direction means k1 of order -to/Uc and k2 small. Uc denotes a
typical eddy convection velocity. The second peak is in the vicinity of the
acoustic wavenumber where k, the modulus of the vector 15 = (khkz), is equal to

w/Co. For highly supersonic modes with very low values of k, the surface
pressure spectrum becomes 'wavenumber white', that is almost independent of
k.
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Figure 1 The wavcnumbcr-frequcncy decomposition of flow noise on a rigid surface

The convective region has been considered by Corcos (1963), and is discussed in
detail by Willmarth (1975) in a review article. In underwater problems, where
flow Mach numbers are so small, the convective spectral components have a low
subsonic surface phase speed and are essentially incompressible. The level of the
pressure spectrum in the convective regime is typically some 40dB larger than
that near 5 = g. However, we will see in 53 that the amplitude of perturbations
with low, subsonic phase speeds is reduced very effectively by placing a ‘dome'
over the surface. The spectral elements in the acoustic regime are not attenuated
in this way and there is a need to predict their level and to investigate how they
might be reduced. These modes have phase speeds faster than the speed of
sound and their behaviour is dominated by compressible effects (Ffowcs
Williams 1965),

In 54, the compressible theory is extended to include the effects of the mean-flow
profile in the turbulent boundary layer. It is found that this is particularly
important when there is a dome present. The peak in the acoustic regime is
enhanced for downstream propagating modes (~k1/u) negative), but reduced for
upstream propagating modes (positive kllm), by the presence of the mean flow.

The wavelengths associated with spectral elements with supersonic phase speeds
are so long that fluid loading can be important even on quite massive surfaces.
The effects of finite surface impedance are considered in §5. Surface compliance
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is found to introduce new peaks into the surface pressure spectrum. The
effectiveness of surface damping and coating treatments at controlling these
peaks will be discussed. Finally in §6, the effect of finite surface size is
investigated. The boundaries of a flexible surface provide an inhomogeneity at
which scattering from the convective peak into low wavenumbers could take
place.

2. THE HARD WALL PRESSURE SPECTRUM

   

   

  

turbulent boundary layer

9(3000

A turbulent boundary layer over a hard wall

Consider the geometry illustrated in Figure 2. The hard surface, xg=0, has a
turbulent boundary-layer flow over it, and we want to obtain predictions for the
unsteady surface pressures. The spectral elements with supersonic surface phase
velocities are of particular interest. These are essentially sound waves generated
by turbulence within the boundary layer, and their strength can be determined by
solving Lighthill's equation (Lighthill 1952):

 

3’P'_ 2._ 33THW c3Vp _aXiaxj. (2.1)

This equation is just a way of rewriting the Navier-Stokes equation, which
emphasizes the role of nonlinear fluctuations as a source of sound. p' denotes
the density perturbation and co is the speed of sound. in a high Reynolds
number flow where viscous stresses are negligible, Lighthiil's quadrupole source,
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Tii, is equal to pvivj + (p' - cgp') Sij where 1 is the particle velocity, p is the density

and p' denotes pressure perturbations. In a low Mach number isentropic flow, p'

is equal to cfip' and the source term reduces to the Reynolds stresses pvivi. If we

neglect, for now, the mean boundary-layer flow (this point is addressed in §4)

pvivj is only non-zero in regions of turbulent activity and vanishes outside the

boundary layer.

We are particularly interested in the spectra of the fluctuations and so it is

natural to introduce'Fourier transforms,

. 5(xglsw)=lp(z,t)e"“*mdzkdm, (2.2)

where a is summed over 1 and 2. In terms of the transformed coordinates,

equation (2.1) becomes

32‘; ~ 1- " . 3?“; fig;

— = k T!l 21 —-—. 2.3Managing“ he“ ax; <>

iii (Xylg, m) is the Fourier transform of Tii (5, t) and a, B are to be summed over 1

and 2. y: (of/fi - 1:2)”2 with the sign of the square-root chosen such that when 7

is real it has the same sign as a) and when 1 is purely imaginary [my is positive.

The hard wall boundary condition is

3—P=oonx,=o. (2.4)
3X3

It is a straightforward matter to solve the ordinary differential equation (2.3)

subject to the boundary condition (2.4) and the radiation condition at infinity. in

particular, for x;, = 0 we obtain

~ did' ~ .
5(0. is. w) = 63 NO, is. (.0) = T1103, k, 0)) e'W’ dya (25)

o

where clll = kg, for a. = 1 or 2, and d3 = y.
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The power spectral density of the surface pressure, 5,10; 0)), is the Fourier
transform of the autocorrelation:

 

flag, to) =lp' (x1, x2, 0, t) p' (x, + A1, x2+ A; o, t + I) aim-“m all; day, (2.6)

where the overbar denotes an ensemble average. It the turbulence is statistically
stationary and homogeneous in the l and 2 directions, Ends, (0) is related simply
to raw, is, «9) (see Dowling and Ffowcs Williams, 1933, Chapter 10) by

Rug 0)) = 31—5 limits to) 13 (o, 15', (0') deg du)’ (27)
(n)

The star denotes a complex conjugate. Substitution for flak, m) from equation
(2.5) gives

  

Fads 0» =M d‘id.‘ I Ta} (ya ls m) in (y; ls', an em '7'” dyady'a (2.8)(22% 1
By making use of the homogeneity of the turbulence again, we can write

fii (Y3 E (9) “Tu (y'a ls'. 0') = (270’ 50; ~15) 5(0) -0)') mi (y; y; 1:, m), (2.9)

where Timmy y', k, m) is the cross-power spectral density of the quadrupole source
strengths,

 

leld (YSY-avkllll) =lT1j(x,l)Tn (y1+A1,yz+Az,y:-,t+1)e“"’°"”mdfld1.
(2.10)

When equation (2.9) is used in (2.8) we obtain

FR 05, 0)) =Mlfifld (ya )5 k, w) 2“”5‘7'Y’Myadyi (2.11)
hf

This result relates the wall-pressure spectrum to the Reynolds stresses in the
turbulent bound layer, and was first derived by Ffowcs Williams (1965).
Equation (2.11) is in a useful form because, although very little is known about
the structure of the turbulent source terms Ti), it is possible to make some
reasonable assumptions about the behaviour of their spectral functions, In)“. As
argued by Bergeron (1973), who uses a matching argument, we expect the source
functions Ti,“ to have a Taylor series about 3 = 9. Hence, in order to investigate
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the surface pressure in the low wavenumber regime, we can replace

Il'mdy; ygbm) in (2.11) by Til-“(ya y', 0. (n). This is equivalent to usual assumption

in the Lighthill theory, that the source functions can be determined by

considering an incompressible flow.

For spectral elements with very low subsonic phase speeds, y is purely imaginary

with a large positive imaginary part. Equation (21]) then shows that, in this

regime, the effect of sources away from the boundary decays exponentially with

their distance from the boundary. If, however, the boundary-layer thickness, 6, is

small in comparison with lyl '1, the exponential terms in the integral in (2.11) are

approximately unity, and it is convenient to cast the source terms into non-

dimensional form.

The Re nolds stresses, T, are ro ortional to the s uare of the velocit
Y n; P F q i Y

perturbations, which in turn scale on the friction velocity or We Will non-

dimensionalise lengths on the boundary-layer displacement thickness, 5', and

time on 5 /U., where U... is the free-stream velocity. Hence

 

4 -s .

iii,“ (ya. y‘, e m) dygdy‘a = “if s,” (2.12)

where Si“ is a non-dimensional function of tog/U. only. Equation (2‘11)

becomes

 

~ ' 4 '5 .

weak? 9:“ 5,,“ (2.13)

This result can be used to comment on the limiting forms of the power spectrum

of the wall pressure.

For spectral elements with subsonic phase speeds, i.e. for spectral components

with ImI/q,<< k << 5",
1 ~ n: (2.14)

and

 

, z 4 '5 I -
433 p “15 s,,,,,(mi) (2.15)
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For these wavenumbers, all the components of d depend only on 5 and the
power spectral density is proportional to k2. ‘

For spectral elements with highly supersonic surface phase speeds, k << lo) I log,

y~ w/co. (2.16)

The predicted surface pressure spectrum simplifies to

2 i "3 2 - 2 -'“ P "1 5 M M. 195.p .. __ . 7ROM”) U; (U- 533” U... (21 )
where M is the free-stream Mach number U../q; in this limit the wall pressure
spectrum becomes independent of wavenumber.

Sevik (1986) collects together experimental data for this highly supersonic
regime. He shows that results obtained on a buoyant body in water agree closely
with wind-tunnel measurements on both smooth and rough walls, when
expressed in the non—dimensional form in (2.17). He fits the curve

- 45
59.6.
U.

to the experimental data in the frequency range 3 < w5'/U_ < 30. This is entirely
compatible with the theoretical form in (2.17) and a comparison of the two
expressions tells us that

.'., 4'3 2
‘ PR(Q,0))'5.622U‘5~M‘ U” (2.18)

swims/u.) = 5.6 (m5'/U..)‘5 (2.19)
Since measured pressure spectra are observed to be "wavenumber white", that is
practically independent of k_, for spectral elements with supersonic phase
velocities, we might (after an inspection of (2.13)) expect the other components of
Sim (tog/U.) to be of the same order.

Chase (1987) obtains predictions for hard wall surface pressure spectra. He
develops his model from the Lighthill theory by making specific assumptions
about the source spectra. Chase‘s model agrees well with data in the convective
and subsonic regime (Blake 1986, figure 8.15). In the supersonic regime his
expressions simplify considerably and lead to
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~ 4 2 '3 1 -—1
Pg&m)=1.2x10'z fi—ilbia— ‘95-) , (2.20)

. - 0.5

for (1)5./U..>0.1. It is immediately striking that this prediction has quite a
different dependence on frequency from the experimental fit in (2.18). If

(following Blake 1986, page 505) we assume that 575 = 3.6 u,/U., equation (2.20)
reduces to

~ 4 2 '3 --'l
PMQ,m)=9.1x10" gig—5- , (2.21)

 

0-5 1-0 5 10 50 100

«mm,

Em}, Variation of flow noise with non-dimensional Intimacy.
Sevik's empirical fit; - - - Chase's mod .

The experimental data is from Sevik (1986). 0 buoyant bod .
O smooth, (:1 medium rough (k Sui/v = 50).A fully rough su 1Iv = 1000),
wind-tunnel data of Geib 8: Fanbee
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and we can obtain a numerical comparison between Chase's predictions and the
experimental data. This is shown in Figure 3. Equation (2.21) tends to
underestimate the experimental results by about ZOdB near w5./U =3, and
overestimate them by some 14dB near tog/U. = 30.

Both the theoretical prediction (2.13) and the experimental result (2.18) are
proportional to the fourth power of the friction velocity. This is a reminder that
the source strength depends strongly on the amplitude of velocity fluctuations.
Any device that reduces turbulent velocities is likely to reduce the contribution
of the turbulent quadrupoles to flow noise. This opens up exciting new
possibilities.

Recent research on drag reduction has lead to the development of 'large—eddy
breakup devices' or LEBUs. See Nguyen et al (1984), Bandyopadhyay (1986) orWilkinson et al (1987) for reviews of this work. LEBUs are thin splitter plates
about a boundary-layer thickness in length, which are positioned at a height
between 0.48 and 0.86 above the wall. Such devices have beenshown to lead to
local skin-friction reductions of between 15 and 40%, with some reduction in
skin—friction persisting over a downstream distance of 1006 - 1506. This is
accompanied by a corresponding decrease in turbulence intensity, turbulentReynolds stress and integral lengthscale (Westphal 1986; Bonnet, Delville &
Lemay 1987; Coustols, Cousteix & Belanger 1987).

It is apparent from equation (2.11) that it is these fluctuating velocities that
generate sound in a turbulent boundary layer over a plane wall, and we might' hope that an array of LEBUs producing a global reduction in turbulence intensity
might lead to a corresponding reduction in noise. Such an argument is clearly
an over-simplification. Although the introduction of a LEBU might reduce the
strength of the quadrupole sources, the LEBU exerts unsteady forces on the fluid
and leads to new dipole sources. These dipoles produce centred waves travelling
from the LEBU over the surface with the speed of sound. The installation of
LEBUs therefore introduces no additional pressure fluctuations with supersonic
surface phase speeds and, for these spectral components, we can expect a
reduction in flow noise due to the decrease in the strength of the quadrupole
sources, T”. Encouraging experimental results have been reported by Beeler
(1986) and Moller & Leehey (1989). They measured pressure spectra downstream
of a LEBU in a turbulent boundary layer and found that the presence of the
manipulator reduced the unsteady pressures.

The installation of the LEBU increases the surface pressure spectrum for spectral
elements with sonic phase speeds. However there is significant flow noise at
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these acoustic wavenumbers even without LEBUs. The increase due to the

LEBU is not signifith at frequencies higher than about co/305 (Dowling 1989).

The simple theoretical prediction in (2.13) has a non-integrable singularity for
spectral elements with sonic phase speeds, for which k =[fli/mand1=0. This

singularity was investigated by Bergeron (1973) and Ffowcs Williams (1982). It
arises due to a two-dimensional form of Olbers' paradox, because the turbulent
source region is considered to be of infinite extent and the sound field from each
source element does not decrease rapidly enough with distance for the integrated
effect to be finite. We will use the methods of Ffowcs Williams (1982) to
investigate this scale effect.

If we write g“, t) = azrii/ax, ij equation (21) becomes

B’p' 2 V_. v -= , - (2.22)at, c3 9 q

and the solution to this equation satisfying the hard surface boundary condition
is:

p' (xx, X2, 0, t) = l d&. I (2.23)

In interpreting the singularities it is sufficient to concentrate on 154;, t), the
contribution to p'(,:, t) from distant sources, since the singularities arise due to
the integrated effect of these distant sources. As the effect of nearby sources is to
be neglected, it will not be possible to deduce the full structure of the pressure
distribution as was done in equation (2.11), but instead the origin of the
singularities can be highlighted. For the distant sources within the turbulent

wall region6,: (yf + fl)”, is much greater than I; | and

B1”)? . (224)

Hence:

'(x‘x 0t)=_1_ ( 1-1+E1fl. (23)
pdbz" Zn-qx’coocoo '

Similarly a simple change of variable gives
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. ’ . . a d ‘pd(.vq+A1,x2+A7-,O,t+t)=il;;jq(yl+§«1,y2+§2,y3,t+1r-%+§C;(at+A-§)’2:0ya

' (2,26)

The autospectrum of the surface pressure, PRd(A,1), can be obtained from the
mean value of the product of equations (2.25) and (2.26):

Pnd(A.1)=;Jn-J Q(£y5§1+3%W (2.27)

Where 0 (X, y; S. 1) = q(y,t)q(y1+ £1, y; + {2, y}, t + t) is the autocorrelation of q.

The origin of the singularity is now apparent. If the turbulence is homogeneous
so that Q is independent of y1 and ya, the y], y; integral in equation (2.27) is
unbounded. However, when we insist that there is a patch of homogeneous
turbulence of large but finite extent L, so that Q is independent of y1, y2 for a < L
and vanishes for o > L,

_ - L‘A'i)mun—33;] OlysyaS'“ m,
Mod)

 

) dya dyng at: £13!

 

' , .(A- .=$J Q(y3 be! 1: + x 600:) ) dygdygdzgdo (2.2s)
¢=0

The lower'limit on a has been set as cola) (Howe 1987) as the far—field
approximation in (2.25) will only be valid for large a.

The wall pressure spectrum due_ to these extensive acoustic sources is given by
p the Fourier transform of (2.28).

fimmn[moment-“mam:

 Proc.l.O.A. Vol 12 Pan 1 (1990) as

é]



  
 

  Proceedings of the Institute of Acoustics

FLOW NOISE

Zr:

amuse! 6(ysy'3 ug/w.w)se-mx/qmdyadyid¢ (2.29)

¢=U

where 6(y3, y', 1;, (0) = l Q(y3 y} S. 1:) exp(ika§a + ion) dZS d: is the power spectral

density of q. One of the 5-functions can be used to evaluate the o-integral to give:

1?“ (g, m) = Zln(wL/ca) 508— mZ/cs) I 6 (y; y; 15 m) dyady'a (2.30)

This shows that there is a 6-function singularity for spectral elements with sonic

surface wave speed. The peak is now integrable. For a small-scale experimental
facility, its integrated effect may not be large because it depends on the logarithm
of the extent of the turbulent source region. Dhanak.(‘l988) shows that surface
curvature makes the hard wall pressure spectrum integrable in a similar way.

To summarize, we expect the integrated pressure spectrum level near the sonic
condition to depend on the geometry or source size for a hard surface. Sevik

(1986) reports that experimentally measured levels atk = m/co are higher than at
supersonic wavenumbers, with "mostof the energy arriving at grazing incidence
from an upstream direction". There is no such anisotropy in equation (2.30), but
it will emerge when we consider mean flow effects in 54.

3. A DOMED SONAR SYSTEM

A sonar dome consists of a light surface over a flooded cavity as shown in Figure
4. If the covering surface is sufficiently light it has little effect on pressure
perturbations passing through it and the main effect of the dome arrangement is
to ensure that the turbulent sources are held away from the hard surface on
which the pressure spectrum is measured.

We saw in 52 that the surface pressure spectrum for spectral elements with
subsonic phase speeds decays exponentially with the vertical distance between
the surface and the sources. The amplitudes of the elements with supersonic
phase speeds are not reduced in this way. The domed sonar system can therefore
be used to discriminate against the subsonic modes. It dramatically reduces the
convective peak in the surface pressure spectrum without a significant change to
propagating acoustic waves, thereby increasing the signal-to-noise ratio.

Froc.l.O.A; Vol 12 Part 1 (1990)   
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  flooded cavity

rigid surface on
which transducers
are mounted.     

mm A sonar dome

We can use equation (21]) as it stands to analyse the performance of a simpledome. We chose our coordinate system so that X3 = 0 is again the hard surface onwhich the ressure spectrum is measured. If the covering surface is so light thatthe only 2 fect of a dome of height h is to cause the turbulence to stand off adistance h from the surface X3 = 0, then,

my (szsbwfifim (Xa-h,X§-h.k,w). (31)
where the superscript D denotes the cross-spectral density of the turbulent
sources with the dome and is their value in the absence of a sonar dome.Substitution into equation (2??) gives the pressure spectrum on x3 = 0 under a
dome of height h as:

 

Mm) = d‘ diyffkd‘ I I Tl?“ (y; y'3 L 0)) ei‘wi'fl” dysdya (3.2)
h h

After using equation (3.1) and changing the integration variables we see that this
can be rewritten as:
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E1; m) = $efl1—flh I I If?“ (23 z-y L w) ems-1's) szdz'F eitfl'm PROS, w)

0 0

(3.3)

where fink, a!) is the surface pressure spectrum in the absence of the dome. It is

apparent from equation (3.3) that the surface pressure spectrum for spectral

elements with supersonic phase speeds, for which 7 is real, is unaffected by the

dome. However the subsonic phase elements, for which 1: i (kz-oyzl$)1/1, are
attenuated by a factor:

e-zoé wit/cow

For highly subsonic m‘odes, k >> le /co, and reasonable dome heights this is a

considerable reduction. Hence, on a dome-covered surface, flow noise has most
effect on the spectral elements of the pressure spectrum with slightly subsonic or

supersonic surface wave speeds.

We have considered a very simple model of a dome. This illustrates clearly the
very significant attenuation of subsonic elements. However for a more complete
analysis of the filtering action of the dome, the mass and stiffness of the covering
plate ought to be included. The surface impedance on x; = h of the plate and

flooded cavity can be calculated in a straightforward way (Maidanik 1968). The
flow noise can then be predicted by using the results developed in §5 for general
flexible surfaces.

4, MEAN FLOW EFFECTS

So far we have discussed the boundary-layer flow as if it just consisted of

turbulence. In practice there is also a mean flow g = (U(X3), 0, 0) parallel to the

surface. To account for'this it is appropriate to set up Lighthill's equation in such
a way that convected derivatives appear in the Wave operator and the

quadrupole sources Tij involve pv; vi, where v' is the difference between the

fluid velocity and the mean flow g. That has been done by Lilley (1971). We
follow Chase 6: Noiseux (1982) who show that the equations of mass and
momentum conservation can be combined into the form

46 Proc.l.O.A. Vol 12 Part 1 (1390) 
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32 6+f33/cfi__1_ kukflfap+72733 . 3( flatsLax—Am “mug “Wk”— mmq 1‘ ‘4'”(A) + Uk] 3X3

In this expression Til- = mg v): + (p' - cfip‘) 5i}, (1and B are to be summed over 1 and2 and the tilde again denotes a Fourier transform.

(w+Uk1)2 431 k kfk, =_._.k .k _I_.2 £11]. 4.2“x3 m) c; f 5+dxgmunq (dxgr(w+Ukl)z ‘ )

 

and y: ((0) + Uk1)2/cfi - k2)'/2, with the sign of the square-th chosen so that 7 has
the same sign as a) when 1 is real and Imy is positive when 'y is purely imaginary.In the case of no mean flow equation (4.1) reduces to (2.3).

Outside the boundary layer the fluid is only linearly, disturbed from the freestream velodty (U.., 0, 0) and Tjj = 0. Since disturbances must either decay at largeX3 or be outward propagating sound waves,

= iyj for large positive X3. (4.3)

1., = ((0) + U. kfl2/tfi - k2)”, is the limit of y as X3 tends to infinity. The hard wallboundary condition gives

3—D = 0 on X3= 0. (4.4)3X3

The ordinary.dit’ferential equation (4.1) is to be solved subject to the boundaryconditions (4.3) and (4.4). Standard Green function techniques make it easy todetermine the solution It is convenient to introduce a function E(x_-,), whichsatisfies the homogeneous equation

51$ =“+115 0, (4.5)

together with the boundary conditions

$3 —)i1_,E as xg -—) on (46)
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and

E=1 onX3=0 (4.7)

In terms of E the solution to (4.1) is

~ kkf +72T~333E2‘ f
o, =__o__ fli—___l&e3 4‘

P( 1‘4 m) 9(0) + U'(O)k1/wJ {509 a) + Ukl ay30) + Uh d” ( a)

(See Chase 5: Noiseux (1982) or Dowling (1986) for the derivation of this

relationship.)

The function E(x3) can be evaluated for a particular mean-flow profile by a

numerical solution of (4.5). The results in Figure 5 were obtained for a tanh-

velocity profile U(X3) = U.. tanh (xa/A), where A is a measure of the boundary-

layer height. But in fact the dominant flow effect does not depend on the details

of the boundary-layer profile. That can be seen from an asymptotic solution for

E(x3), valid for low values of the flow Mach number M =U../co and low

wavenumbers i.e. k ~ lml /q,.

We seek an expansion for E as a power series in the powers of the Mach number

M. To lowest order 130:3) = exp(i-y_.xg). More algebra is required to obtain the 0(M)_

term, but it can be shown (Dowling 1986) that

13(0) = iy. (1 + MB) - U'(0)k1/u)- moi/157m, (4.9)

5. is the bOundary-layer displacement thickness, defined by 5. =]:(1 - U(Xa)/U.)dx;

B is an order one function. It is evaluated in Bowling (1986), but its precise form

does not concern us here.

Substitution for flag) in the representation (4.8) gives

didi

1’ (0’ 1“ m) = E'(0) + U'<o)k1/w
I fij (ya. is, (n) ew'y' dyg (4.10).

cl“I = kIx for a = 1 or 2 and d3 = 1,. The terms in the numerator cannot all vanish

simultaneously and so we have only kept the lowest order terms there. But in

the denominator the leading order term can vanish and so terms of order M

must be retained.  48 Proc.l.O.A. Vol 12 Part 1 (1990)
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The wall pressure spectrum, P3405, (0), can be derived from the Fourier transform
of the surface pressure in the way outlined in 52, and is given by

... did]- dkd; I . i( -I_- J .
P (k,o))=——— T ( mu) 1'1 7’ d d . (4.11)M IMO) +Ul(o)kl,dz 19:! BY: 9 Y3 Ya

_In the low Mach number limit, equation (4.9) shows that:

E‘(0) + U'(0)lq/w = iy. (1 + MB) - 2mk18.M/m. (4.12)

If we neglect terms of order (087m in (4.12), the right-hand side reduces to i1." the

uniform mean flow result (Haj Hariri k Akylas 1985). This vanishes for spectral
elements with sonic phase speeds. A uniform mean flow has no effect other
than to produce a Doppler shift in frequency. The variation in mean-flow
velocity leads to the additional terms in (4.12). The profile has most effect on the

pressure spectrum near 7., where the leading order term vanishes. Then i‘yflMB

is negligible since both 7.. and M are small, and the dominant effect of the mean—

flow profile is contained in the term -2mk18'M/q3 This is independent of the
details of the boundary layer, depending only on its integrated effect through the

flow M ch number U../q1, and the displacement thickness, 5. Reutov and

Rybushkina (1986) reach the same conclusion from a matching argument.

When‘the effect of the mean-flow profile is included, the denominator in (4.11)

is small near 1.. s 0, but it'can only vanish when 1.. is purely imaginary. Then the

first term on the right-hand side of (4.12) is real and negative, and we see from

equation (4.12) that E'(0) + U'(0)kI/m can vanish only if a) and k1 have opposite
signs, Le. for downstream propagating modes. For upstream propagating modes

'E‘(0) + U'(0)kI/u) is always non-zero, having a minimum modulus of

M'M/tfi at 1.. = o.
t

. The pressure spectrum therefore has .a double pole near ’1. = 0 for downstream

. propagatin spectral elements, but it is always finite for upstream propagating
elements. ‘s was verified by numerical calculations for a tanh—velocity profile,

V /,U_.tai\h(ngA),' a’hd the"}esults are shown in Figure 5. The plot clearly
3 demonstrates that the predicted pressure spectrum is larger for downstream
i “ propagatingmodes With sonic phase speeds than it is for upstream propagating

modeszudlntegrhtion shawls that for the tanh-velocity profile 8'= Aloge'z, and the

‘l' l
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height of the peak for upstream propagating modes in FigureS agrees with

~201031d2m8'M/q0, the level predicted from the low Mach number asymptotic
theory.

 

Emmi Plot of Y = 20loglo| We versus non-dimensional wavenumber—1__
E'(0) + U'(0)k1/t'n

for flow over a rigid wall with M = 0.01. toS/t:l = l. lt2 = 0

 

Sevik (1986) noted that measurements of pressure spectral elements with sonic
phase speeds indicate that most of the energy is propagating downstream in
agreement with our predictions.

In Section 2 we found that when the mean-flow profile is neglected, the pressnre
spectrum has a simple pole for spectral elements with sonic phase speeds. It was
possible to interpret the occurrence of these singularities as due to a form of
Olbers‘ paradox: the turbulent source region had been assumed to be of infinite
extent and the sound from distant sources did not decay sufficiently rapidly with
distance for their integrated effect to be finite. A mean-flow profile enhances the
singularity for downstream propagating modes, but eliminates it for upstream
propagating modes. Again, this has simple physical interpretation.

When there is a mean-flow profile, there are downstream propagating free
modes of the system in which the waves propagate supersonically (i.e. faster than

Froc.l.o.A. Vol 12 Part 1 (1590)
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local sound waves wouldpropagate) within the slowly moving fluid in the
boundary layer, but subsonically within the moving fluid outside it. The energy
in these modes therefore remains 'trapped‘ near the wall and conservation of
energy then suggests that downstream of a source the pressure disturbance will
only decay with the inverse square-root of the distance. Upstream of a source,
pressure fluctuations decay much more rapidly. The downstream propagating
modes decay more slowly with distance from the source than those in a uniform
stream and account for the stronger singularity in the pressure‘spectrum under
an infinite region of turbulence.

In Section 3, we introduced a simple model of a sonar dome. The covering plate
was assumed to be so light that it was completely transparent to pressure Waves.
The main effect of the dome was therefore to produce a stand-off distance, it,
between the turbulent sources and the rigid surface on which the pressure
spectrum was measured. We will now consider the effect of a mean flow over
such adome.

The effect of a low Mach number mean flow overa hard surface is described by

equations (4.11) and (4.12). The term 5 in (4.12) arises from the integrated effect

of the velodty defect I (1 -U(xa)/U..)dx5 When there is a dome with a flooded

cavity of height h, theie is an additional layer in which the mean flow velocity is
zero. Hence

I (1 - vow/u.) dxa = 5' + h . (4.13)

0

"The effect of the dome is to increase 5. in (4.12) to 5 + h. It therefore decreases
the level of the pressure spectrum for modes travelling upstream with the speed

of sound. Indeed, the addition of a dome of non-dimensional height mh/co = 5 to
the case shown in FigureS reduces the maximum for upstream propagating
elements to a level which is only about 20dB larger than the value for highly
supersonic modes. With a dome present we would expect the pressure spectrum
to be very much larger for downstream propagating modes with sonic phase
speeds than it is for upstream propagating modes. Roebuck and Richardson
(1981, private communication) have observed this in underwater experiments.
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5. FLEXIBLE SURFACES

We have determined the properties of the ressure spectrum induced b
turbulence over a hard surface. However, t e wavelengths associated wit
spectral elements with supersonic phase speeds are so long that fluid loading can
cause even quite massive surfaces to vibrate. In order to highlight the effects of
surface flexibility we will neglect the mean-flow profile and return to the
equations and notation of section 2.

The sound generation is described by equation (2.3):

~ . 3-? adgtfi=g kakgrug+2ii¢u3f-E;3 . (5.1)

We want to solve this equation, subject to the radiation condition at infinity and
a surface boundary condition. We will assume that the turbulent sources, T”, are

uninfluenced by surface flexibility. The surfaces we have in mind are massive
(Sm-thick steel plates, for example). While long wavelength sound waves can

deform them (k — lo) I /co), they are effectively rigid to turbulence with its shorter

wavelengths (k - til/U.)-

Let us suppose that the surface impedance is uniform over the whole surface
x; = 0 and that the relationship between the surface pressure and the normal

displacement, §(x1,xz,t), can be conveniently expressed in terms of their Fourier

transforms,

ism. is. w) = 20; m) Eu; 0)) . (5.2)

Tensioned membranes, bending plates and more complicated multilayered
structures all fall into this category. If the flow near the surface is only linearly
disturbed from rest, the linearized momentum equation shows that

eta/aye: pm. Since S:j§/cfi, equation (5.2) can be rewritten to give a surface
condition for

3:10.15. 0:) =fi 3—: (o, ls. m) . (5.3)

It is convenient to decompose the density fluctuations into those that occur near
a hard wall, with anadditional term to account for surface flexibility. We write

 52 Proc.l.O.A. Vol 12 Pan 1 (1990)
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30‘: k: m) = SR“: k. w) + 514x; k. a!) . (5.4)

The rigid wall density fluctuation, Ex (X3k, w), satisfies equation (5.1) together
with the hard wall boundary condition BER/3X3 = 0 on x, = 0. This is precisely the
problem solved in Section 2.

When the expansion (5.4) is substituted into (5.1), it shows that 3;: satisfies a
homogeneous equation

8%—+ = 0 , (55)3x3 7’5;

and the boundary condition (5.3) becomes'

.2. fl: * + " . (5.6)pom: an PE PR

The problem for E]: is straightforward and we find that

’ ~ HR“): k, to)
0, = - -———— . (5-7)PH 19m) “WI/W“:

This leads directly tothe surface pressure fluctuation

13(0,k,m)=c& (Snob in) diam») (5.8)

iy ..=— Rio, k, to) . (5.9)
iv- poof/z P

The power spectral density of the surface pressure, fig, 0)), can be calculated from
(5,9) in the way outlined in Section 2:

(5.10)

where 530;, co) is the rigid-wall or 'blocked' pressure spectrum. The multiplying
factor 1 711/1 iy-patfl/zrevidentiy describes the_difference between flexible and rigid
wall pressure spectra. After substitution for P305, 0)) from (2.13) we obtain
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s it'd; aka, pings" (Ptk, m)=——s mi. (5.11)
li‘i-Pmfizlz U“ W “-

This relates the wall pressure spectrum to source terms which depend on the

cross-correlation of the Reynolds stresses. The factor did; dkdi/liY'pomz/Zlz

describes how the turbulent flow radiates sound within the boundary layer over

the flexible surface. The product a; a; aka, describes the propagation of different
directional elements, but the main structure of the surface pressure spectrum

comes from the liy-panz/Zl'z term. We will now investigate the form of the
Surface pressure spectrum for different surfaces.

As an introductory example we will consider a bending plate backed by a void.
For such a surface

2(g, on) = moiz- Bk‘, ' (5.12)

where In is the mass of the plate per unit area and B = Ed3/12(1-v2), E is Young's

modulus, v is Poisson‘s ratio and d is the plate thickness. In the absence of fluid

leading, flexural waves of frequency 0) propagate in the plate with a phase speed

V equal to (Bail/th At the coincidence frequency arc, V is equal to the sound
speed co. At frequencies above coincidence V is supersonic and at lower
frequendes V is subsonic.

Equation (5.11) shows that the surface pressure spectrum under an infinite extent

  

of turbulence is given by:

_ 4 '5 .
P05, 0)) = d.‘ or;did; [me of. 92‘: 5 sip, (5.13)

where _

4mg m) = —mm‘—-Bk——— . (5.14)
pguz- i'fimm2 - Bk‘)

An investigation of the form of Ft; 0)) will determine the influence of the wall

Impedance on the surface pressure spectrum. The structure of Hit, (it) depends
on N, the Mach number of the in vacuo bending wave speed, V/co, and on the
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fluid loading factor pace/mu), which is essentially the ratio between the mass of
fluid within a wavelength of the surface and the mass of the plate. Plots of

F(l_<, m) are given in Figure 6 for positive mi

The function Mg, m) can also be investigated analytically. For heavy plates and

highly supersonic spectral elements Hg, to) ~ ico/u). The pressure spectrum is
then identical to the hard surface result in (2.17). It is also apparent from

expression (5.14) that F05, m) (and hence the pressure spectrum) vanishes for
spectral elements whose phase speeds are equal to V. The pressure spectrum has

a singularity at K(m), a zero of paoz- i1 (muyz— Bk‘). For heavy plates K(w) canbe
determined iteratively by an expansion in powers of po This shows that there is
a singularity in the pressure spectrum near k = to/V for V < co and near k = tar/co if

V > co (with thephase speed m/k just subsonic). These predictions for a heavy
plate are confirmed by the plots in Figure 6,

 

.30
X

20

10

‘ ‘ l ‘

2 1 2
O ‘ kc,/w 0 kc./w

Em Plots of X = 2010gm| mF(k, (o)/co I versus non-dimensional wavcnumber for a

bending plate with a) mttilpoc0 = 5. N = 0.8, b) mtg/pooo = 10, N = 1.2

Figure 6 illustrates the variation of 20]ogwlmF(k,m)/m] with non-dimensional

wavenumber kcoltn. The plate parameters used in these calculations correspond
to a 5cm-thick steel plate in water at a frequency of (a) 3kHz and (b) 6kHz. In
Figure 6(a), V is subsonic and the singularity in the pressure spectrum occurs for
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spectral elements with phase speeds nearly equal to the bending wave speed in
vacuo. In Figure 6(b), V is supersonic and the singularity in the pressure
spectrum occius for modes with nearly sonic phase speeds. These singularities
are double poles and are stronger than those found for sonic spectral elements on
a hard surface. Just as in the hard surface case they arise due to a scale effect,
because the source regionhas been assumed to be infinite.

Since the peaks in the surface prasure spectrum are dominated by the influence
of distant sources, the first step in understanding them is to determine the

response far from a source adjacent to a bending plate. idol), the zeros of

pgan- ifimmz- Bk‘), are the wavenumbers of free modes of the plate-fluid system.
These modes are exdted by a source near the surface and travel subsonically over
the plate. Since they have a subsonic surface speed they are evanescent in the
fluid. All the energy in these modes therefore remains ‘trapped' within a disc
near the surface and energy conservation suggests that the pressure disturbances
associated with the modes should decay like H”, where r is the distance from a
source near the surface. An asymptotic evaluation of the response due to a point
source shows this to be true. This decay rate is slower than that for sound near a
hard surface and this leads to stronger singularities in the pressure spectrum.
Using the same techniques as in Section 2 to investigate the effect of a finite

patch of turbulence shows that-there is a 5-function singularity for spectral
elements with wavenumber x(o)). The strength of the 5-function grows linearly
with L, the extent of the turbulent source region. The details are given in
Bowling (1983).

Although consideration of a finite turbulent source region makes the peaks in
the surface pressure spectrum integrable, for reasonably sized source regions,
these singularities still have a considerable effect. The integrated pressure level
due to the singularities can be significantly larger than the levels elsewhere in
the spectrum. Therefore we look for other means of limiting the pressure field.

Howe (1979) investigated the influence of the fluids viscosity on the pressure
spectrum on the hard surface, but found that it only had a small effect. For a
flexible surface the wall provides another source of dissipation. The damping in
the bending plate will be modelled by giving Young's modulus a small
imaginary part. Then Z(k, (n) = mm2 - Bk4(l - in), where the damping factor n has
the same sign as (n. Plots of Him, tn)l with this surface condition are given in
Figure 7. As one might expect the damping has most effect on the pressure
spectrum for spectral elements whose phase speed is nearly equal to V, the speed
of bending waves in the unloaded plate. The pressure spectrum no longer
vanishes for spectral components with phase speeds equal to V as it did for the
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undamped plate. Also the singularity that occurred near V for frequencies below
coincidence is reduced to a reasonable level by dissipation in the plate. The
damping has very little effect on the singularity for nearly sonic elements at
frequencies above coincidence, essentially because little plate vibration is
involved in these glancing modes.

0 1 2
kca/w

 

kco/w

mum-J Plots of X = lologlol (nng w)/co[ versus non-dimensional wavenumber for a
damped bending plate with r] = 0.05 and a) min/pat:o = 5. N = 0.8. b)fl10)/poco = 10.
N = 1.2

There is some experimental evidence that certain surface coatings can also
reduce the surface pressure fluctuations due to flow noise. We will model such a
coating by a fluid layer of thickness T, with density p5 and sound speed cs. A
sketch of the coating is given in Figure 8. The impedance of this composite
surface can be found in a straightforward way (Maidanik 1984) leading to Z(i_<, 0)).
Equation (5.11) then gives the pressure spectrum on the surface of the coating. In
fact the pressure spectrum on the bending plate, PM; (D), is of more practical
interest since it can be compared directly with the pressure on the uncoated plate.
The relationship between the pressure spectra on these two surfaces can easily be
determined and

Proc.I.O.A. Vol 12 Pan 1 (1990)

 

57

  



 

   

  

  

  
   

   

    

      

   

' Proceedings of the Institute of Acoustics

FLOW NOISE

 

_ . ' 4 '5 -

P305. m) = at d; Clde has, «all2 p73 8 Sim (5.15)

and IFB(l_<, 0))I is shown in Figura 9 and 10.

 

Elam-J The plate and coating

The coating can have a significant effect on the pressure spectrum for spectral
components with sonic phase speeds. If the coating is sufficiently thick and (:I is
greater than co, it is possible for the coating to control the singularity that would
occur for sonic modes in an uncoated plate whenever V is supersonic. The

graphs in Figure 9 are for a Item-thick coating with cII = 1.51:0 and pI = 1.5po on a

San-thick steel plate at frequencies of (a) 3ld-Iz and (b) GkHz. A comparison of
Figures 6 and 9 shows that the coating can eliminate the singularity in the
spectrum for frequencies above coincidence, but that it has little effect at

{requendes below coincidence.

 
A low sound speed coating with cI < co has an adverse effect on the presSure

spectrum generated by the turbulent flow. It can produce a singularity at
approximately sonic phase velocities for frequencies below coincidence, where
for an uncoated plate the pressure spectrum is not particularly large. Figure 10

shows plots of IFBQl m)| for a San-thick steel plate covered by a 4cm-thick

coating layer with c, -= 0.75co and pI = 0.75pm again at frequencies of aid-{z and

6kHz. A comparison of Figures 6(a) and 10(a) shows that the low-speed coating
has introduced a new singularity not present in the unooated plate.  Pmc.l.0.A. Vol 12 Pan I (1990)
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£13312 Plots of X = ZOIoglolanflg. 0))lCol versus non-dimensional wavenumber for a
coated plate with cI = 1.5::0. pl = 1.5po and a) mwlpoco = 5. N = 0.8.
b) manageo =10, N = 1.2

   i 2
kca /w

W Plots of'X = 2010g1olmFa(k, (tn/col versus non-dimensional wavenumber for a
coated plate with c, = 0.75%. p, = 0.751;!o and a) mtD/poco = 5. N = 0.8,
b)mm/poco=10. N = 1.2
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So far we have neglected the mean flow when evaluating the pressure spectrum
on a flexible surface. Both the mean flow and surface compliance are considered
in Dowling (1986). The effect of surface flexibility is to produce an extra term

~pom2/Z(k,w) in the denominator of (4.11). The relative importance of the mean-
flow profile and the surface flexibility is described by the ratio of the two terms

Zuiklfi M/oo and powz/Z(l_<, m). For realistic boundary—layer thicknesses over

practical surfaces in water, the effect of the mean-flow profile is small in
comparison with the surface flexibility. However, we saw in §3, that a dome can

enhance the effect of the mean flow. For a dome of height h over a plate with

impedance iZ(L, who, we should compare 2ml<1(5.+ h)M/cowit.h pong/205, to). It

is then possible for the mean flow to have a significant influence.

6. A FINITE PLATE

In this section we outline some current work on the effects of finite surface size.
The boundaries of the flexible surface provide an inhomogeneity at which
scattering from the convective peak into low wavenumbers can take place.
Indeed Crighton (1988) suggests that this wavenumber conversion is the
dominant mechanism in sound production by a turbulent boundary layer.

Howe (1988) investigates an infinite bending plate with two line supports a

distance a apart. For a steel plate in water with practical supports and (na/co >> 1,

he finds that the principal source of radiation is due to the excitation of flexural
modes of the panel by the low wavenumber components of the turbulent
sources and their diffraction at the supports. In almost all cases the diffraction of
the convective peak leads to terms which are very much smaller. The exception
is when the plate displacement is allowed to be discontinuous at the supports(!).
Howe found that this extreme boundary condition could produce significant
wavenumber conversion.

In Howe's geometry fluid loading enables much of the bending wave energy to
be transmitted auoss the supports. Indeed there is almost perfect transmission at
frequencies above coincidence (Howe 1986) and this limits the influence of the

finite length of panel. To highlight the effects of finite panel size we will
investigate flow noise on a bending plate inserted in an otherwise rigid baffle.

The geometry is illustrated in Figure '11. The plate has a streamwise length a and
infinite width, and is mounted in the plane wall x3 =0. The rest of the wall is
rigid. The plate boundaries at x; = 0 and x, = a are simply supported, so that
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§(nyzt)=fi(x1,x2,t)=0 atx1=Oanda. (6.1)

9x?

The plate is excited by a turbulent boundary layer and we wish to find the power

spectral density of the surface pressures.

turbulent boundary layer

DPJO'

s

X

W“ W” 3 flexible plate

 

Emu; A turbulent boundary layer over a plate of finite length

_ Lighthill's equation (2.1),

‘2’: - qwzp' = , (6.2)
at: ax-

‘ is to be solved subject to boundary conditions on x, = 0. The momentum

equation shows that

al:—Efiforfllx1mfitxg=0, (6.3)
Male?

while the equation of motion of the plate leads to
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, 2
'=-L —mP:+B(i-ki) forOSx sa,x =0, (6.4)P QJ a? ax? E 1 a

andwehave

i=0 forx12aor‘xtso. (6.5)

The problem is homogeneous in x2 and t. and it is natural to introduce two-

dimensional Fourier transforms:

Em, k2, 0)) =1 §(x1, x; t) elk"*i°* dxz dt. (6.6)

Transforms of pressure and density can be defined similarly.

In a way analogous to (5.4) we again decompose density and pressure fluctuations

into those that occur near a hard wall with an additional term to account for

surface flexibility. We write

Em, k;, x; to) = 3m, k;, x, (o) + Sam, k2, X3, or) (5.7)

The rigid wall density fluctuation, pR, satisfies Lighthill's equation together with

the hard wall boundary condition, Bog/ax; = 0 on X3 = 0, and was determined in

52. When the expansion (6.7) is substituted into (6.2), it leads to

32 32 2A_
(ax—¥+a-x—3+B)pp—O, (6.8)

where B=(w2/c3-k§)”2. The sign of the square-root is to be chosen such that,

when real, [5 has the same sign as m and when purely imaginary Imfl is positive.

It follows from (6.3) that

fig = for all x1 with x3 = o. (6.9)

This problem can be readily rewritten to give 3]: explicitly in terms of the surface

displacement The solution to (6.8) that satisfies the radiation condition and

the boundary condition (6.9) is
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3pm k2 x3 cu) = I Em kg, m) Hf,” (BR) dy1 (6.10)

0

where R2= (x1- y1)1+ x}. We need to use the remaining boundary condition (6.4)

to determine g.

The end conditions in (6.1) suggest that it is convenient to expand §(x,,k2,w) in a
Fourier series and we write

§(XL k2, 0)) = E AM sin(M1m/a). (6.11)
M=1

The surface density fluctuations are given in terms of the coefficients AM
through equation (6.10): 1

Erin, kg, 0, w) = 2 AM Hg) (3| x1- y] [) sin(Mny1/a) dy1 (6.12)
21:3 M=1 ,

0

When this is substituted into the Fourier transform of (6.4) it leads to

E [mmz- B(1 — in) + AM si.n = figbq, 0, kg, m)MEI a2 a

+ AMI Hg) (ler-yi) sin (szlldyr (6.13)

 

O

for 0 S x, S a. The function fig =c361; denotes the rigid wall pressure fluctuations.
A small amount of plate damping, 11, has been introduced in this equation.
When (6.13) is multiplied by 5in(N1rx1/a) and integrated from 0 to a, we obtain an
infinite set of coupled equations for the coefficients AN.
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I

[me- 8041141333 4- fir] AN + ESE-"2 2, pm An =§I fight], 1:; 0, as) sin (L731 de
M=l

o
(6.14)

where

pm=‘—E- ” Hé"<mxrvi>sin(“%)sin(”
O 0

 

2"]dxidy1 (6.15)

The coupling coefficients pMN have been investigated analytically in the limit

lfila —) a: by Leppington et a1 (1986) who consider the related problem of sound
radiation from an elastic panel excited by a force. They find that while the
diagonal terms in pMN can be large, the off-diagonal terms tend to zero as

lflla—m
It is therefore natural to rewrite'(6.l4) in the form .. t »-

mufl-B(1-in)‘N-lf3+ki 3112p»: AME”: i pmAMa a n u=u
MsN

=4 54x1, k, 0,m)sin dxi. (6.16)
0

The coupling terms can be expected to be significant for values ofyM near M0, the
resonance condition at which

mmz- B (Mgzi4- fir + $19M = 0 (6.17)

Leppington et a] (see their equation (39)) derive a solution to (6.16). In our
notation it is
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E

A LL; "( k o,w)smNfl1dx-WJ (6.18)“$43!”be ‘3 lfl+p0m295

The parameters in this expression require some explanation. P is the limiting
{omofpm,asMandNtendtoMowithMaeN.

_ pm for N a: Mo
PM ‘l P for N = M0 (6'19)

d" = m! . B(1 . in) + kill + "—‘fi’i‘L’zq,NN - P), (6.20)

while

5 a E at. - (6.21)
M=l

and

a

s; = 2 L2 film, 1:), o, 0)) sin (M—“l ax] , (6.22)
M=l GM 3 a

0

The main contributions to the sums S and S; will come from values of M near
the resonance condition Mo.

We will choose to write the solution to the matrix equation (6.16) in the form

I V

AN =—L 2 cm! 3m, 1:; o, to) sin M. (5.23)
mafia M=1 ‘

0

Leppington et al‘s solution lets us write dow
coefficients CNM. We have

:1 immediately the major
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Zuni When N is not near Mo

d

CNN = N - (6.24)
Zuni . Zmpan‘i’

d” d3: ([3 + pmfl’S) for N near M

For M near M0 the off-diagonal terms are

=~—§EflfiflL— NsM ma)
deM (B + pgtanS)

CNM is, of course, symmetric because the coupling coefficients pNM in (6.15) are

symmetric.

We will find later that we are particularly interested in off—diagonal terms CHM,

where M ~ atm/nUc and N < am/nco. M describes a mode whose phase velocity is

close to the eddy convection velocity, Uc, while the mode N has a supersonic

phase speed. It is evident from the definition (6.23) that CNM describes surface

displacements with wavenumber Nn/a produced by driving from a pressure

field with wavenumber Mn/ a. The coefficient pNM is small, and CW can be

determined by an iterative procedure in which the first order solutions in (6.18)

are substituted into the sum in equation (6.16) to determine an improved

estimate for AM. This leads to

 

I. Pm for N not near Mo

CM" = N (6.26)
_ Impsn‘ PM"

dtdu (B + pmfl’S) for N near Mo

After substituting the expansion for AN in equation (6.7.3) into (6.12), we obtain

an expansion for the Fourier transform of the surface pressure in terms of the

hard wall pressure, i311.
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fix» k7, o, w) = 131x» k, 0, m)

N 
a I

CmIIfidxbkpo,w)Hg)(fixi-y1|)sin(@1)sin‘ yfldxidy]
i

0 D

e
r

fr
at+P_°

21m 1

(6.27)

130:1, k2, 0, cu) is the pressure fluctuation on the finite flexible surface. We can use
(627) to determine the relationship between the power spectral density on the
finite plate and that on an infinite hard surface.

The problem is homogeneous in X; and t and so in a way analogous to (2.7)

I p(XI,X2. 0,!)p0q +ALX2+A2 0,t+1)e“"f"“°"‘dA2dr

= J—I fi'oq, kg, 0, 0)) fix, + 4,, k}, 0, m') dk'zdm'. (6.28)
(21:)2

The power spectral density of the surface pressure, fix» 1;, m), then follows from

the transform of this equation with respect to A],

an L w) = (31? I 13?» kg, 0, m) 130:1 + A» k}, 0, co“) e‘m'“ dA: dk'zdco' (6.29)
It

Substitution for 13 from (6.27) into (6.29) leads to fink, to) in terms of the rigid

- plate power spectral density P305, to). The rigid plate pressure field is
homogeneous If we assume that the axial correlation length of the turbulence is
small in comparison with the plate length a, and that x, is not near the ends of
the plate, many of the integrals can be evaluated. That leads to

17mg, 0)) = 17.05, 0)) + fia‘kfi/HI’ z z Chufixdg with) I;

pdeikda/l-xr)

2"” E 2 CANE: (M31, 1‘» (OHM/a - fin (5%!“- , k2, m)e'iM’°“/'] Swan)+
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pzieikfia/l-xt) _ ~ ~ .
-i—— 2222 cmcm[DMM1=x(Mfi, k2, w) + Emmi (ME, k2, w)]SN(k1)IN-

4mzya a a

(6.30)

where *1=((nZ/¢fi-k¥-k§)1/2 and the sums are to be evaluated over positive
integers.

 

SN(k1) = [gm/2 sin((k1a + Nn)/2) _ ed”m sin((l<1a - N1!)/2) (6.31)
lqa + N1: k1a - N1:

and

a

. N I
IN = I Hg) (Bl x1- y1[) Sm ( :y1)dy1 (6.32)

o

The coefficients DMM and EM” are defined by

DMM = EMM = 3/4 , (6.33)

while for M' #M

0 M' - M even
DMM = 'EMM = (6.34)

_a_.._1_ _1__. v.
2m '+M+M'-M M M°dd

The appearance of x, on the right-hand side of (6.30) indicates that the finite plate
surface pressure spectrum is not homogeneous. For large a the sine-functions in
SN(k,) are highly oscillatory: the finite plate pressure spectrum varies rapidly
with wavenumber, unlike the infinite plate result in (5.10). Such rapid
variations are common in problems with finite plates (see, for example, Crocker
(l969), Strawderman (1969) and Jacobs et al (1970)).

If we average 5 (x;l k, 0)) over a wavenumber band Ak, where n/a << Ak << m/co,

and then take the limit bra/(new, we recover the infinite plate pressure
spectrum. However, for large but finite (ea/q; equation (6.30) contains interesting
effects which are not apparent in the infinite plate results. There is the

possibility of wavenumber conversion with FM, 190)) being influenced by

PR (K1, 1:), (1)) with K;a k].
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We will discuss the interaction between in (K1, lg, to) near the convective peak

(K1 ~ -u)/U¢) and elements of the finite plate pressure spectrum with supersonic

phase speeds (it1 < calm). This interaction is described by the second and third
terms in (630)

~ . iki(a/2- in) ~

Pl (xi is. co) = -E”—:mm Pt (i411, n. m) E'mn/‘Sfikfi
Zm‘y

_ 2- iluta/l- Kl) . ~ '
polisza-—XXXECN‘MCWEMMPR(:¥11kZJw)SN(kI) I». (6.35)

We are interested in the contribution to F|(x1,l§,a)) from‘ summation over all
positive integers M', N' and N, but withM restricted so that the wavenumber

Mn/a is of the order of ai/Uc. It is evident that both terms in (635) involve CNM,
with M- Ina/(nut). Now an inspection of (6.24) and'(6.26) shows that CNM is

proportional to mail/d“ For a Scot-thick steel plate in water with afrequency of

Sid-[z and a free-stream velocity of lSm/s, this factor is an incredibly small 4 x 10":
for M - ma/(uUc), representing an attenuation of 84dB.

The motivation for evaluating the modal interaction is that near the convective
peak P305, to) is typically 40dB larger than its value for low wavenumbers,
However the factor CNM that appears in the interaction terms in (6.35) is so small
that scattering from the convective peak into low wavenumbers leads to a
contribution to the surface pressure spectrum which is lower than that produced
by low wavenumber sources.

The physical interpretation of this result is that the plate is effectively rigid at the
convective wavenumber m/U, At this condition the wavelength is so short that
bending stiffness ensures negligible plate deflection. Since the pressure field near
the convective peak drives little plate vibration, little energy is scattered at the
junctions between the plate and the hard wall.

Equation (6.30) displays other effects which are currently under investigation.
An infinite plate has a nonintegrable singularity at wavenurnbers, K(to), of free
modes of the plate—fluid system. That singularity is controlled by finite plate size
in a way that can be investigated through (6.30). This equation also displays the
interaction between these modes and elements with supersonic phase speeds.

Proc.l.O.A. Vol 12 PM 1 (1990)



  
 

  Proceedirigs of the Institute of Acoustics

FLOW NOISE

This work on finite plates is far from complete. However, we have seen that
edge effects do not cause convective turbulent fluctuations to generate a
significant contribution to the low wavenumber pressure spectrum.

7. CONCLUSIONS

Investigation of an infinite plate provides insight into many phenomena
associated with flow noise. In particular we have summarized the main effects
of-a sonar dome, a mean-flow profile and surface flexibility on the low
wavenumber surface pressure spectrum. Finite surface size introduces
considerable complexity. But for steel plates in water at reasonable frequencies,
wavenumber conversion from the convective peak does not appear to be a
significantsource of low wavenumber pressure fluctuations.
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