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THE PERFORMANCE LIMITg;pr DIGITAL LOCAL OSCILLATORS FOR A SECTOR
SCANNING SONAR RECEIVER BY A. R. PRATT

1. Introduction

Modulation type sector scénning sonar receivers require the use of a
series of local oscillators whose freguencles are arithmeticaliy related.
The techniques employed to achieve the necessary performance requirement
frequently result in complicated electronic circuits with many, ofter inter-
dependent, adjustments. A simpler system using digital techniques was
proposed in a recent paper (ref.l) which required only a few adjustments.

In this paper, we study the limitations of this scheme particularly with
respect to the generation of unwanted local oscillator sidebands,

2. Sector Scanning Preliminaries

First considef the (2n+l) linear array of peint accustic sensors of
figure 1 connected in ‘a beam steering arrangement.. The use pf phase shifting
circuits rather than time delays restricts use to narrow-band operation which
is a satisfactory mode for most applications. The angular sensitivity of the
beam-former is

v(8) =P L a_ exp (j{wot-r¢-2wrd(sin'B)/A}). 2.1
r=-n
The angular frequency of the incidént acoustic radiation is W, ar is the
sensitivity of sensor r and p is the peak pressure of the acoustic wave.
When the hydrophones are of equal sensitivity, the summation of equation 2.1
can be easily performed, giving the envelope sensitivity of the beamformer:

|viey] = pa sin{{2n+1}{nd(sind)/} + $/2}). 2.2.
sin {nd(sinB)/: + ¢/2} ' '

The maximum value of |V{6)| is (2n+l)pa and is attained for those values of
9 satisfying the equations:
sin(Bi) = (2% - ¢/m) A/fz2d : |8in ei £ 1. 2.3.

The angles corresponding to maximm sensitivity may ‘be varied by chaming the
phase taper parameter, ¢. A sector-scanning sconar receiver results when ¢

varies cyclically.  Modulation-type sector-scanners have ¢ varying as a linear
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function of time:
$ = wt=2mF t . 2.4
s s
The angles of maximum sensitivity also vary cyclically:

sin (Bi) = {i - fst) Ald. 2.5

With this restriction on the time-variant behaviour of ¢, each phase shifter
has the effect of intrcoducing a change in-frequency. This may be demonstrated
by considering the output of the phase shifter in the r'™" channel:

v

. = Pa_  exp (j{mot - rut - 2nrd(sin 8)/Ah. 2.6

The change in frequency is easily identified as the (-rmst) term in equation
2.6, It is thus possible to realise a sector-scanning receiver by implementing
the 2n phase-coherent freguency changes using n local osecillators with
arithmetically related freguencies. Techniques have been reported (see for
example, ref. 2) by which the number of local oscillators can be reduced for

high resolution systems having a large number of sensors.

3. Digital Generation of Local Oscillator Signals’

A block diagram of the system proposed in reference 1 for the
generation of phase coherent sinusolds with arithmetlically related frequencies
is illustrated in figure 2. Each read-only memory. (ROM} contains quantised
sample values from an integral number(P) of cycles of a sine wave.

Successive time. samples of the sine wave are stored in successive address
locations in the memory. A counter and clock are arranged to address
successively each memory location. The output of the read-only memory is fed
to a Digital-to-Anélogue éonverter {DAC) which thus produces a quantised sine
wave output. The output waveform is smoothed by passage through a bandpass
filter which attenuates all unwanted output signals. A convenlent hardware
realisation results when the counter is an m-stage binary one and the read-
only memory was 2® locations of k data bits each. . The sine wave output from

the digital to analogue converter has frequency fp:
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fp =:£f‘P . _ 3.1
2m
A set of sinusoids whose frequencies are in arithmetic progression may thus
be generated by incrementing P from one read-only memory to the next. The phases
of the output signals may be controlled digitally through presetting a start
address into the address counter when a synchronising signal occurs. Figure 2
1llustrates the control of the felative phagses of two groups of sine wave

generators,

4. cCalculation of the Relative Intensity of the Qutput Noise

Output at frequencies other than the wanted one from the system
of figure 2 result from the quantisation inherent in using a digital store.
The ith'sample value of the sinusoid which is stored is derived from

5,(4) = sin (27 o) 4.1

and:has P complete cycles cpntained in Zm‘samples. The process of quantisation

produces a digital equivalent Sp(i) and a quantisation error e(i):
(i) =S (1) - S (1) . 4.2
P P P

The quantisation error pattern‘reéeats at least as often as the counter cycles

through all memory locations and therefore has a spectrum with non-zero

components nop closer than fc/Em. In fact, it can be shown that when P is

odd, the only finite spectral components in the ocutput occur at odd harmonics
" of fc/2m. This 18 due to the half wave symmetry of Sp(i) and ép(i) :

= - m-1
Sp(i) = SP(i + 2 )

and s (1) = - s i+ Yy 4.3
% P

When P is even, it may be factorised into an odd number and a power of 2:

P = a2’ . 4.4
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The repetition interval of Sa(i) and Sa(i) for this case is Em-b and the
guantisation error spectrum contains only odd harmonics of fc/2m_b.

By using statistical techniques, reference 1l deduces the ratic hetween the
spectral levels of the wanted and unwanted components (SNR);:

SNR = 3 x 22¢¥m-b-3 4.5

An alternative method of analysis, which we pursue in this paper, is a direct
technique using the Discrete Fourier Transform (DFT) to find the amplitude

F (k) of the variocus components of § (i): '

P R

%(k) - wrsw ., w=2" 4.6

. P
i~0 W= exp {j 2n/8}

Computer programs are widely available for the calculation of F.(k) in the case

(as here) when N is a power of 2.

5. Cyclic relationships in Sp(i) and Fptk)

In this section, we study the various cyclic relationships which
exist in Fﬁ(k) through those in épfi). We will find that the various numbers
P can be formed into groups depending on their decomposition through equation
4.4, The spectral levels of ﬁ;(k) are invariant for changes of P within a
group, only the order of the non-zero components of Eb(k) being changed.

It is therefore only necessary toc compute the spectrum, Eb(k), for one P
value in each group. The rearrangement of the ccmponents of this spectrum

may be easily determined from the inverses of the two P values modulo 2m.

First of all, group the values of P so that each group has the
same value of b in the factorisation of equation 4.4, For m=4, these

groups are as follows:

group O : b=0 : P=1,3,5, 7, 9,11, 13, 15 ;
1: b=l : P=2,6, 10,14;
2: b=2 : P =412
3: b=3 : P=8, 5.1
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The sample values which are stored in the read-only memory may be

simply derived from the sequence S, 1) by decimation:

Sp[i) .= Sl(r) s T=Pi : MoA N . 5.2

Por values of P in group O, every value of é (i) appears in é (1) since P is
relatively prime to N. For values of P in other groups only a subset of the
S (1) appears, of length = w-b and 1s repeated 2 times in s (i) . In these
cases, several sequences are possible depending on the starting value, & (0).
These correspond to reconstructed sine waves having different phase relation-
ships to the reconstructed version of S (1) The in-phase versicn of Sp(i)
results if its starting value is S Q).

Next, we consider the relationship between the various spectral
components of Fp(k) for changes in P. Recalling the definition of Ep(k).

we have, for values of P in group O:
F ) =E WS ()
P P

= I ‘Wki S1 (r} , T =Pl , modN,

JBrs 0, P -1 moan,

It
-

r=0 _
F (kP
.1(. )

xi(j) i =kp k=jP, mode 5.3

Y
513 known as the inverse of P, modN. Values of B for N = 16,
groﬁp O are as follows:

P= 1, 3, 5, 7, 9%, 11, 13, 15

p= 1, 11, 13, 7, 9, 3, 5, 15,

we conclude from the manipulatioh of equation 5.3,‘that the spectral ccmponents
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of F {k) are just found by decimating those. of Fl (31, P at a time - i.e.
kK = jP, modN. The spectrum of S (k) is not therefore unigque ~ it shares
its spectral levels with all the other spectra with P in group O.

when P is not relatively prime with respect to 2®, it does not

directly have an inverse and the necessary spectral relationships are a little

more complicated. We note that P.2 b—a has an inverse modulo 2" b
Consider the spectrum of a sequence with P in group b :

N-1 -

S =£  Ws (1)
m-l i
22 . Z2°-1 _m-b
= 1 Nkl S (1) I w2 kn 5.4
i= n=0

The last step can be made because Sprrepeats Zb times. The final summation
in equation 5.4 takes the values O or 2b depending on whether k is not or is
a multiple of 2b respectively:

m=b
2 =1 b
, ? ~
F =z watsw2® = 22
P ymo P
m-b b £ar -
=2 L (W2 3 (r) 2 r = ail mod v b
1=0 . 2 ’ 2a =1 mod 2m-b
= Eb (23) j = 23 mod 0
= Fp (1) _ 2 = ja mod Pl

5.5

Equation 5.5. demonstrates that the spectra F §3] permute within
their P group as the sample values S (1) are permuted by decimation. Next,
we relate the spectrum F (k) for oomposite P = 2 a to the spectrum F {k).

cOnsider the sequence of samples

Sl(i) I (W )
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The summation is zero except when 1 is a multiple of Zb. This is just the
sequence of sample values appropriate to ap value in group b. The spectrum

of these samples is:

m ‘b m b
2 -1 2 -1 m=h: 2 =1 27-1 m-b
" . T A 2
LS, () Wiz (wz )1“ =1 S, % ikt n)
i=0 n=0 i=0 n=0Q
2b-1 m=h

=L %}k+2 n). 5.7 |
n=0

The last step was made by a valid reversal of the order of the summations and
shows that the spectrum of a subset of gl(i) obtained by decimation is the sum
of some of the spectral valugs of %ﬁk). We can relate egquations 5.5 and 5.7
by using the fact that the sequence of sample values in 5.6 is non-zero only

for 1= 2b r, where r is some integer :

m-b b .
221 p ™y = E T4 (Pa 2g-1 (wzm"jzbm. ﬁzbk‘
1 =0 1 7Y on=l
n=0 m=b b
2y -lg RO 2b.(w2 )kr
r=0 2

= F. (k} 5.8

Thus,the spectra for composite P may be simply determined by operating on
the spectrum of sl(i) with a shift and add routine.:

6. Results and Discussion

Computer programs have been written to calculate the spectra of
sgmple values drawn from each of the p-value groups. The Fourier Transform
routine used was a standard FFT package. Average levels of unwanted spectfal
components have been found together with the highest and lowest levels of A
these components. Thése results are tabulated below for m=8B and k=4 - that is
for a Read-only memory of 256 storage locations of 4 bilts capacity each.
Tabulated along with these results are calculations resulting from the

statistical theory of reference l.
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It should be noted that the statistical theory rests on the assumption that
the quantisation errors are independent from sample to sample and that this

normally requires at least 6 bits capacity in each memory locaticn.

P - group - Unwanied Specﬁral éomponent Levels,dB i:g:TSt tz:z:t
b Direct Fourier Method Statistical Method
o - 45.8 - 43,9 - 34.4 - 60.1
1 - 41.9 : - 40.9 - 34,5 - 53,9
2 - 38.4 - 37.9 - 31.9 ) - as.0
3 - 35,7 . - 34.9 -31.7 | - 0.8
4 - 31.9 . - 29.6 - 27.5 - 33,5
5 - 28.8 - 28.2 - 28.5 - 28.5

The two methods of célculation give results in fairly close
agreement. In practice, the differences are likely to be insignificant in
comparison to the errors introduced by the inexact switching instances of the
address counter and ﬁhe read-only memory, ahd by a c¢crude implementation of
the Digital to Analogue converter. 1he main choice for a potential user of
this scheme is of the size of the read-only memory and its use. For the table,
it may be observed thaf the best average unwanted levels are 4vailable when the
harmonic number, P, of the desireéd output signal is relatively prime to the
nunber of address locations used. One way of ensuring that this conditicon is

. met for all P values is to make the number of address locations used N, a

prime number. Although such a procedure keeps the average levels of unwanted
signals low, the table also.indicates that the highest levels only decrease
by 6dB in going from a relatively prime P-value to a highly composité one with
b=5. On a worst case design basis it is probably a better'compromise to use
oﬁtpht sine waves of frequenéies with highly composite P-values siﬁce the
unwﬁnted spectral cbmponents are much further removed in frequency than those
associated witﬁ relatively ﬁrime P-values. In this case, 1t is possible to

achieve more effective filtering of the unwanted components.
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