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SCANNING SONAR RECEIVER BY A. R. FRA'I'I‘ '

1. Introduction

Modulation type sector scanning sonar receivers require the use of a

series of local oscillators whose frequencies are arithmetically related.

The techniques employed to achieve the necessary performance requirement

frequently result in complicated electronic circuits with many, ofter inter-

dependent, adjustments. A simpler system using digital techniques was

proposed in a recent paper (ref.l) which required onlya few adjustments.

In this paper, we study the limitations of this scheme particularly with

respect to the generation of unwanted local oscillator sidebands.

2. Sector Scanning Preliminaries

First consider the (2n+l) linear array of point acoustic sensors of

figure 1 connected in'a beam steering arrangement;.The use of phase shifting

circuits rather than time delays restricts use to narrow-band operation which

is a satisfactory mode for most applications. The angular sensitivity of the

beam—former is

V(6) = P E ax exp (j{wot-r¢-and(sin 6)/A}). 2.l

r=-n

The angular frequency of the incident acoustic radiation is we, ar is the

sensitivity of sensor r and p is the peak pressure of the acoustic wave.

When the hydrophones are of equal sensitivity, the summation of equation 2.1

can be easily performed, giving the envelope sensitivity of the beamformer:

|v(9)I = pa sin((2n+l}{nd(sin6)/A + 2/2)) . 2.2.

sin {nd(sine)/A + ¢/2} '

The_maximum value of IV(8)| is (2n+l)pa and is attained for those values of

0 satisfying the equations:

sin(ei) = (2i - o/n) A/Zd , |sin 81 s l . 2.3.

The angles corresponding to maximum sensitivity may‘he variedby chaqflng the

phase taper parameter, ¢. A sector-scanning sonar receiver results when ¢

varies cyclically.” Modulation—type sector-scanners have ¢ varying as a linear
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function of time:

.9 = “St = 211556; . 2.4

The angles of maximum sensitivity also vary cyclically:

sin (6i) (i - fst) A/d. 2.5

with this restriction on the time-variant behaviour of ¢, each phase shifter

has the effect of introducing a change in-frequency. This may be demonstrated

by considering the output of the phase shifter in the rth channel:

VI = par exp (j(w°t — rust - 21rd(sin 8)/A}). 2.6

The change in frequency is easily identified as the (-rmst) term in equation

2.6. It is thus possible to realise a sector-scanning receiver by implementing

the Zn phase—coherent frequency changes using n local oscillators with

arithmetically related frequencies. Techniques have been reported (see for

example. ref. 2) by which the number of local oscillators can be reduced for

high resolution systaus having a large number of sensors.

3. Digital Generation of Local Oscillator Signals-

A block diagram of the system proposed in reference 1 for the

generation of phase coherent sinusoids with arithmetically related frequencies

is illustrated in figure 2. Each read—only memory.(ROM) contains quantised

sample values from an integral number(P) of cycles of a sine wave.

Successive time.samples of the sine wave are stored in successive address

locations in the memory. A counter and clock are arranged to address

successively each memory location. The output of the reed—only memory is fed

to a Digital-to—Analogue converter (DAC) which thus produces a quantised sine

wave output. The output waveform is smoothed by passage through a bandpass

filter which attenuates all unwanted output signals. A convenient hardware

realisation results when the counter is an m-stage binary one and the read—

only memory'was 2m locations of k data bits each. I The sine wave output from

the digital to analogue converter has frequency fp:

116

 



   

      

   

    

  

  

      

   

   
          

Proceedings of The Institute of Aooustlcs

f =fCP. 3.19 Tu -
2

A set of sinusoids whose frequencies are in arithmetic progression may thus

be generated by incrementing P from one read-only memory to the next; The phases '
of the output signals may becontrolled digitally through presstting a start

address into the address counter when a synchronising signal occurs. Figure 2

illustrates the control of the relative phases of two groups of sine wave

generators.

4. calculation of the Relative Intensity of the Output Noise

output at frequencies other than the wanted one from the system

of figure 2 result from the quantisation inherent in using a digital store.

The 1th sample value of the sinusoid which is stored is derived from '

 

spa) = sin (2"""1 1Tpi) 4.1

and_has P complete cycles contained in 2m‘samples. The process of quantisation

produces a digital equivalent sp(i) and a quantisation error e(i):

:(1)=s(1)-S(1)L 4.2
P P P

The quantisation error pattern repeats at least as often as the counter cycles

through all memory locations and therefore has a spectrum with non-zero

components not closer than fc/Zm. In fact, it can be shown that when P is

odd, the only.£inite spectral components in the output occur at odd harmonics

'of fc/Zm. Ihis is due to the half wave symmetry of 89(1) and §p(i) :

m—l
i = - 2 ,Sp( ) Sp(i + )

- . . m_1
d S l = - S (1+2 . 4.3an _ I P( ) p )

when P is even, it may befactorised into an odd number and a power of 2:

p = a.2b . 4.4}
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The repetition interval of 53(1) and San) for this case is 2“1 b and the

quantisation error spectrum contains only odd harmonics of fc/Zm-b.

By using statistical techniques, reference 1 deduces‘the'ratio between the

spectral levels of the wanted and unwanted components (SNR);

SN'R = 3 x 22km-b_3 . 4-5

An alternative method of analysis, which we pursue in this paper, .is a direct

technique using the Discrete Fourier' Transform (DPT) to find the amplitude

15’ (k) of the various components of S (i):
» P N_]_ P

k1 ‘ m
k = E W i N = 2 4.6Pp( ) Sp( ) 1

i=0 w = exp {j 211/N}

Computer programs are widely available for the calculation of F.(k) in the case

(as here) when N is a power of 2.

5. Cyclic relationships in S (i) and F (k)
__________L_.—P_—

In this section, we study the various cyclic relationships which

exist in Fp(k) through those in épd) . We will find that the various numbers

P can he formed into groups depending on their decomposition through equation

4.4. The spectral levels of gm) are invariant for changes of P within a

group, only the order of the non-zero components of Fp(k) being changed.

It is therefore only necessary to compute the spectrum, Fp(k) , for one P

value in each group. The rearrangent of the components of this spectrum

may be easily determined from the inverses of the two P values modulo 2‘“.

First of all, group the values of P so that each group has the

same value of b in'the factorisation of equation 4.4. For m=4, these

groups are as follows:

group 0: 'b=o : 2 = 1,'3, 5, 7, 9, 11, 13, 15 ;'

1 : 13:1 1: = 2, 6, 10,14}

2 : =2 ,: P = 4 12;

3 : b=3 : P = a. 5.1
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The sample values which are stored in the read-only memory may be

simply derived from the sequence 51(1) by decimation:

59(1) .= 51(1') , 1' =Pi : Mod“ . 5.2

For values. of P in group 0, every value of elm appears in épm since P is

relatively prime to N. For values of P in other groups only a subset of the

£10.) appears, of length Zia—b and is repeated 213 times in ED“) . In these

cases, several sequences are possible depending on the starting value, SP(O) .

These correspond to reconstructed sine waves having- different phase relation-

ships to the reconstructed version of £1“) . The in—phase version of gfiu)

results if its starting value is 51(0) .

Next, we consider the relationship between the various spectral

components of Fpflc) for changes in P. Recalling the definition of Fpflc) ,

we have, for values of P in group O:

N-l

:4 (k) = z w“ s (1)
9 i=0 9

N—l . A
:2: 'wkisl(r) ,r=Pi,mod.N,

i=0

. N-l - ‘ ‘ t= z wk-pgsl(r) , ? = 1 mean,

r=O

= F ‘.1(3P)

:11”) j = kpl k=jP, modN. 5.3

1315 known as the inverse of B, modN. Values of i for N = 16,

group 0 are as follows:

P 1. 3n 5.’ 7, 9, 11, 13, 15

1, 11, 13, 7. 9, 3,‘ 5, 15.5

we conclude fromthe manipulation of equation 5.3, that the spectral components
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of E‘P'Uc) are just found by decimating those. of F1 (3); P at a time — i.e.

k = 11’, modN. The spectrum of SP(k) is not therefore unique - it shares

its spectral levels with all the other spectra with P in group 0.

When P is not relatively prime with respect to 2‘“, it does not

directly have an inverse and the necessary spectral relationships are a little

more complicated. we note that _P.2-b=a has an inverse modulo Zm-b.

Consider the spectrum of a sequence with P in group b :

N-l ,
5 (k) = 2 wk1 5 (1)
9 i=0 9

m-b 'b
2 -1 . , 2 —1 m—b

= 2 Nkls m 2 w2 kn 5.4

1: P =o

The last step can be made because SP repeats 2b times. The final summation

in equation 5.4 takes the values 0 or 2b depending on whether k is not or is

a multiple of 2b respectively:

m-b

2 -1 b2 .
F (9.) = z (w )"i s (1) 2b . k= 2";
p i: - p

m—b b 9.3: .
= 2 E (W2 )' S b(1:) 2b 1‘ = ai mod 2“1 b

1:0 2 as. = 1 mod Zm-b

= pzb (13) j = 3.3 mod 2""b

= F2}: (3') F. = ja mod 2m-b
5.5

Equation 5.5. demonstrates that the spectra PPM.) permute within

their group as the sample values SP(i) are permuted by decimation. Next,

we relate the spectrum Fp(k) for composite P = Zba to the spectrum F100 .

Consider the sequence of_ samples:

51(1) 2 (W2 ) i“ ' 5'6
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'I‘he summation is zero except when i is a multiple of 2b. This is just the

sequence of sample values appropriate to a p value in group b. The spectrum

of these samples is:

m I b m b2 —1 2 -1 m—b. 2 -1 2 —1 m-b. _ . 2
2 51(1) w“. 2 (wz )‘n= 2 51(1) 2 wig” ")

14) n=0 i=0 n=O

zb-l m-b= 2 :1 (m2 n). 5.7
n=0

The last step was made by avalid reversal of the order of the summations and

shows that the spectrum of a subset of 51(1) obtained by decimation is the sum

of sane of the spectral values of iii-(k). We can relate equations 5.5 and 5.7

by using the fact that the sequence of sample values in 5.6 is non-zero only

for i= 2b r, where r is some integer :

22-1 2221? b zz'1( 2”"?2bzn. 2b”
1 WF ““b =1(k+2 n) r S (2 r) n_

n=O

= F' (k) 5.8

Thus,the spectra for composite _1’ may be simply determined by operating on

the spectrum of 51(1) with a shift and add routine.‘

6. Results and'Discussion

Computer programs have been written to calculate the spectra of

sample values drawn from each of the p—value groups.The Fourier Transform

routine used was a standard FE'r package. Average levels of unwanted spectral

components have been found together with the highest and lowest levelsof

these components. These results are tabulated below for m=8 and k=4 - that is

for a Read-only memory of 256 storage locations of .4 bits capacity each.

Tahulated along. with these results are calculations resulting fran the

statistical theory of reference 1'.
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It should be noted that the statistical theory rests on the assumption that

the quantisation errors are independent from sample to sample and that this

normally requires at least 6 bits capacity in each memory locations

Lowe st
Leve l

  

  

    
- Unwanted Spectral Component Levels,dB

Direct Fourier Method Statistical Method
P group
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The two methods of calculation give results in fairly' close

agreement. In practice, the differences are likely to be insignificant in

comparison to the errors introduced by the inexact switching instances of the

address counter and the read—only memory, and by a crude implementation of

the Digital to Analogue converter. The main choice for a potential user of

this scheme is of the size of the read—only memory and its use. For the table,

it may be observed that the best average unwanted levels are available when the

harmonic number, P, of the desired output signal is relatively prime to the

number of address locations used. One way of ensuring that this condition is

met for all P values is to make the number of address locations used N, a

prime number. Although such a procedure keeps the average levels of unwanted

signals law, the table also indicates that the highest levels only decrease

by 6&3 in going from a relatively prime P-value to a highly composite one with

b=5. On a worst case design basis it is probably a better compromise to use

output sine waves of frequencies with highly canposite P-values since the

unwanted spectral components are much further removed in frequency than those

associated with relatively prime P—values. In this case, it is possible to

achieve more effective filtering of the unwanted components.
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