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1. INTRODUCTION

Recentlly the boundary integral equation (BIE) method has been applied to predict the
performance of outdoor noise barriers on a homogeneous rigid or impedance plane [1-6].
In this method &n integral equation is solved pumerically, by a boundary element method,
to determine the acoustic pressure on the barrier surface. Once the integral equation has
been solved, the wave-field al apy other point in the domain can be determined by a pu-
merical integration over the barrier cross-section. The advantages of the method are that
the Helmholtz equation governing the acoustic pressure field is solved accurately, provided
the boundary elements used are small enough, and that an arbitrary cross-section and aur-
face treatment for the barrier are allowed. This makes the method very powerful for the
investigation of novel barrier designs [4-6]. The disadvantages of the method are that the
computational cost increases with frequency since the cross-section must be divided into
elements no longer than 1/5 wavelength for accurate results and a system of N simultaneous
equations solved, where N is the number of elements at the particular frequency.

In this paper we extend the BIE metbod to calculate sound propagation out of a cutting
of arbitrary cross-section and surface impedance onto surrounding flat rigid or absorbing
bomogeneous ground. The model developed is two-dimensional; it is assumed that the cut-
ting is straight and infinitely long and that its cross-section and surface treatment do not
vary along its length. The source is assumed to be a monofrequency coberent line source.
This latter assumption is unrealistic but, on the basis of previous comparisons of boundary
element calculations for noise barriers with experimental measurements [3,4], the model
is-expected to give accurate predictions of attepuation in excess of (ree-field propagation
for the more realistic case of a point source of sound. Alternative BIE formulations of this
problem but assuming ap entirely rigid boundary are given in Willers [7] and, in the context
of predicting water-wave climates in barbours, in Shaw [8].

2. THE BOUXNDARY VALUE PROBLEM

The geometry is shown in Figure 1. The regicn of propagation D, in which the medium is
assumed homogeneous and at rest, consists of the cutting labelled §, with boucdary 385,
situated below the half-space U:={(z,y) : ¥ > 0). To define the ather notation in Figure 1,
the boundary 8D of D is compased of 71, the boundary of the cutting, and 73 := 8D — 7a.
7z is the interface between § and U and 8U = {{z,y) : y = 0}. It is intended to deter-
mine the complex acoustic pressure p(r,rg) at poiots r = (r,y) € D ;= DUSD given a
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monofrequency point source rg = (£p, w0} € D. The pressure p(r.ro} is assumed to satisfy
the following boundary value problem in which, for brevity, we write p(r) for p(r, rg):

(VE4+i%p(r) = é8(r-rg), teD, (1)

the impedance boundary condition

8p(r)
on

and Sommerfeld’s radiation condition io D. We assume that 3, the normalised surface
admittance, satisfies B(r) = 0 or ReB(r) > 0 at each point r € D, azd that 3{r) = 3., &
copstant, for r € v3. Throughout the normal, n, on §D is directed out of D. The normal
on 7z is directed out of U and into S.

= ikfr)p(r), redD, (2)

3. REFORMULATION AS AN INTEGRAL EQUATION

To formulate the integral equation, the solutions G r{r,ro) and G5 {r,ro) to the following
simpler prablems are required. The free-field Green's function Gy(r,rp) := —i/dHc(,”(k]r -
ro|) satisfies equation (1) for all r and ry. We denote by Gg (r,rp) the solution to the above
boundary value problem in the absence of the cutting; i.e. G5, (r,ro) denotes the pressure at

t when propagation is above a plane of homogeneous admittance 5., Where ry = (2o, —wo)
is the image in the boundary line 87 of ry,

Gy (r.rg} = Gylr,rg) + Gy(r,xp) + Pyr.rp) (3)
where
0, if g.=0,
o 12 S, R0, (0

and 0 < arg{(1 - 8%)/?} < /2, Efficient and accurate methods for calculating Py, (r, ro)
are described in [9].

Ps (r.rp) := {

To obtain an integral equation. the region V) comsisting of that part of U contaiged in
a large circle of radius R. excluding small circles of radius n about points rg € D, r € U
is considered. Applying Green's second theorem to the functions p(.) and G3.(..r) in the

region V| and then letting R ~ x and 7 — 0, and making use of the boundary condition
(2}, the following integral equation is obtained:

wr) = [ Gatrroiksepe) - Eante,) + nro)Catrr), reT, (5)
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wherenirg) = 1 forrp € U, O forrp € 5.

To obtain an integral equation in §, we apply Green's second theorem to the functiops
p{.) and Gy{..rp) in § obtaining the boundary integral equation on 7y and 2,

e(r)pir) = [’ G}(t.r.)a’;;') _9Gy(r, r‘}p(r,)ds(r,)

an(r,)
+ [ pe TR ). s st

+ (1-n(r))Gy(r,ro), re¥F (6)

where ¢(r} =1 for r € § and 1/2 for r € v, U2, The equations (5) and (6) are a coupled
pair of BIE's in which the unknowns are p on 11 and 1 and dp/n on ya. It can be shown
that the BIE' (5) and {6} have a unique solution, so that this formulation of the problem is
equivalent to the boundary value problem. Ouce this BIE has been solved, by a numerical
method, to give the pressure distribution on the boundary, the pressure at & poiot r in D
caa be found by numerical integration of (5) and (6).

4. SOLUTION OF THE INTEGRAL EQUATIONS

In this section we describe how the equations (5) and (6} can be solved for the complex
acoustic pressure by a simple boundary element method. Firstly p and 8p/8n on 12 and
p on 7 are determined at regularly spaced points on 71 and 72 by sclving a set of linear
simultanecus equations. Once these three quantities are calculated, the value of p(r) at any
other poiut in D can be determined by applying numerical integration to equation (5) if
r € U or to equation (6) if r € §.

Let p1 == ply,,  p2 :=ply, sad g := ikBepy — Op/8n|,, and define g; and G; on 7o,
G1 on 71 by g5,(r) = Cs,(r, ro), Galr) = Gy(r,10), T € 72, G1(r) = Gy(r,r0), ¢ € 7. Then
we may write (5) and (6) on v, and ¥, as

p(r) = SZe(r) +n(ro)gs, () rem, (7)

FE) = Kuapi(e) = kSizl6p)e) + ikB.Seapate) ~ Seaa(e)
+ (1 -n(r))Galr), €9, (8)
2pl1) = Kupi() — kS (Bp)(r) + iHBeSrpa(e) ~ Smglr)  Knupale)
© 4 (-alre))Gi(r), rem. (9)
The integral operators in (7), (8) and (9) are defined by
Sio() = [ Grlre)ole)daie), reni=1.2,5=12 (10)
8G(r. 1, . e
Kil¢(r) = . _a{%';_)¢(rljds(rl)s r€y,i= ]:2v y=1, 23 (11)
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and
She(r) = jj G, (r.1,)d(r,)ds(r,), €7 (12)

To salve the above system of integral eqautions numerically we first divide 4; and v; into
boundary elementa We suppose that +; is polygonal and divide v, into Ny straight-line
elements 41,47, . Ca T M Forn = 1,2,..., N1 let r} denote the mid-point and A7 the length
of 4], and let h1 = ma::h" Similarly dmde the straight line interface v, into Ny elements
.9, '12 ? and let r} a.nd hJ denote the mid-point and length of 7§ and hky := mazh.
Let &k := mazx (hy, ha}.

Havmg made the above subdivision we approximate the integral operators 5;;, Ki; and
522 as follows:

Seln) ~ z j Gy, r)ds(r)g(e]),  (13)

m=1
Kob) = 5° j —Md P, (14)
m=l

Sho(r) = j Ga.(rr)ds(c)$(T).  (15)

m=l

These approximations are accurate if ¢ is approximately constant within each boundary

element. Mnking these approximations in equations (7)-(9) and then collocating at the

mid-point of each boundary element we obtain » system of N = 2Na + Ny simultaneous

equations for the unknown values of pp and q at the mid-point of each element of vz and py

at the mid-point of each element of 1. These equations can be written in matrix form as
Ap = g | (19

where

0 1 s
A= 1£S12B ~ K2 %I — kB .Se; 522 (17)
31+ ikSB-K); Ky -ik3.Spn Sxu

P = (alr]), .. (e)). paled), . pa(0), g(Ed). . gl ™)),

B - diog(A(rl), ... BIT)),

g = (n(ro)gs,(ri).....n(ro)gs, (r7), (1 = niro))Galrd), ... (1 — niro))Ga(r3?),
(1 = plro)}Gr(r}),.... (1 = n{re))Ga(e™ )T

where the elements of the sub-matrices §;;. K;j, s;’.:, are given by

[Sijlim = j’_ Gylrj.r.)a(r,),
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j aGf(l‘S.r,)
1“

Kilm Fn(ry)

dsr(l:a)-

Seilm = [ Galehru)ds)

In the results shown below the elements of Sy Kij, Sf; are evaluated approximately using
the product mid-point rule [10).

3. RESULTS .

Two graphs of results are shown. Figure 3 compares the program (CUTIE) implementing
the boundary element method of the previous section with the boundary element program
for noise barriers o flat ground (BARIE) described in [3.4]. The geometry is as indicated in
Figure 2 and for both programs the frequency is 100 Hz, the step-length h=0.1 wavelengths.
In Figure 3 the curves denoted A are for recejver positions 10 cm above ground level, those
labelled B for receiver pasitions 10 cm below ground level in the cutting, as shown in F igure
2. The two bouadary element programs agree a{ each receiver position to within 1dB.

Boundery element predictions of propagation from a cutting across rigid grovad or grassland
are shown in Figure 5, The geometry as shown in Figure 4 and the frequency is 100Hz.
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Figure 1. The geometry of the cutting.
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Figure 2. The geometry for comparison of the BARIE and CUTIE programs.
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Figure 3. Comparison of the new boundary element program {CUTIE) with the bound-
ary element program for noise barriers (BARIE). For the results from program CUTIE
the cross-section is the polygon FCBAGHIL iu Figure 2. For the program BARIE this
cross-section is approximated by the polygon EDCBAGHIJK.
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Figure 4. The geometry for the boundary element calculations in Figure 5.
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Figure 5. Boundary element prediction of propagation from a cutting across rigid ground
or grassland. The geometry is as indicated in .Fig'l.ll‘e 4 and the frequency is 100Hz.
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