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1. INTRODUCTION

Recently the boundary integral equation (BIB) method has been applied to predict the
performance of outdoor noise barriers on a homogeneous rigid or impedance plane [1-6].
In this method an integral equation is solved numerically. by aboundary element method,
to determine the acoustic pressure on the barrier surfaces Once the integral equation has
been soIVed, the wave-field at any other point in the domain can be determined by a nu-
merical integration over the barrier cross-section. The advantages of the method are that
the Helmholtz equation governing the acoustic pressure field is solved accurately, provided
the boundary elements used are small enough. and that an arbitrary cross-section and sur-
face treatment for the barrier are allowed. This makes the method very powerful for the
investigation of novel barrier designs [4-6]. The disadvantages of the method are that the
computational cost increasa with frequency since the cross-section must be divided into
elements no longer than 1/5 wavelength for accurate ruulte and a system of N simultaneous
equations solved. where N is the number of elements at the particular frequency.

In this paper we extend the BIB method to calculate sound propagation out of a cutting
of arbitrary cross-section and surface impedance onto surrounding flat rigid or absorbing
homogeneous ground. The model developed is two-dimensional; it is assumed that the cut-
ting is straight and infinitely long and that its cross—section and surface treatment do not
vary along its length. The source is assumed to be a monofrequency coherent line source.
This latter assumption is unrealistic but, on the basis of previous comparisons of boundary
element calculations for noise barriers with experimental measurements [3.4]. the model
is expected to give accurate predictions of attenuation in excess of free-field propagation
for the more realistic case of a point source of sound. Alternative BlE formulations of this
problem but assuming an entirely rigid boundary are given in Willers [7] and. in the context
of predicting water-wave climates in harbours, in Shaw

2. THE BOUNDARY VALUE PROBLEM

The geometry is shown in Figure l. The region of propagation D, in which the medium is
assumed homogeneous and at rest. consists of the cutting labelled S. with boundary 85.
situated below the half-space U:=((z.y) : y > 0). To define the other notation in Figure l,
the boundary 80 of D is composed of 7.. the boundary of the cutting: and 1;. := 8D — 72.
1; is the interface between S and U and EU := ((z,y) : y = of It is intended to deter-
mine the complex acoustic pressure p(r.ro) at points r = (z,y) e 5 := D U 0D givu: a
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monofrequency point source ro = (£0,110) 6 D. The pressure p(r,ro) is assumed to satisfy
the following boundary value problem in which, for brevity, we write p(r) {or p(r,ro):

(V’H’Mr) = 6(F-I'o). r60. (1)

the impedance boundary condition

82:”) = “mum”, reaD, (2)

 

and Sommerfeld‘s radiation condition in D. We assume that B, the normalised surface
admittance, satisfies Mr) = 0 or Reflr) > 0 at each point r E D. and that fi(r) = 5:. a
constant. for r e 7;. Throughout the normal, in, on 6D is directed out of D. The normal
on 12 is directed out of U and into S.

3. REFORMULATION AS AN INTEGRAL EQUATION

To formulate the integral equation, the solutions 6'[(1', to) and G'g‘(l"ro) to the following
simpler problems are required. The free—field Green’s function G/(r,ro) := —i/4H.~(,”(k|r —
r0!) satisfies equation (1) for all r and r0. We denote by Gg‘u'fl'o) the solution to the above
boundary value problem in the absence of the cutting; i.e. G;( (r. n.) denotes the pressure at
r when propagation is above a plane of homogeneous admittance 13.. Where r3 = (to. -m)
is the image in the boundary line 3” of ro.

Golfers) = G/(I'Ja) + GIO’JE) + Pair-I'D) (3)

where

0y if fie = 0v,« - _ r in_ _

1%”: (Earl—ilfllliu—iti J17'_(:fl:)nmd" Rafi“ > 0' (4)

and 0 S orgfll — s2)'/"') 5 «[2. Efiicient and atcurate methods for calculating P5, (r,ra)
are described in [9].

P5‘(r.rg) := {

To obtain an integral equation. the region V1 consisting of that part of U contained in
a large circle of radius R. excluding small circles of radius 7] about points ro E D, r e U
is considered. Applying Green's second theorem to the functions p(.) and G;‘(..r) in the
region VI and then letting R —~ 3: and 7] —o O. and making use of the boundary condition
(2), the following integral equation is obtained:

nr1= c3.u,r,w.pu..—“Pg-hm.) +fllro)GJ,(f~ro), rev. (5)
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where mm) = 1 for ro E U, 0 for to E S.

To obtain an integral equation in S. we apply Green‘s second theorem to the functions
pt) and G/(.,ro) in S obtaining the boundary integral equation on 71 and 72,

t(r)p(rl = LG/(r.r.)§%)-—a—g$5‘)p(nlds(nl

+ " Man‘s—(3,11% — ikp(r.)c,(r. r.))de(r.)
+ (1- fl(rol)G/(r, rn). r e ‘5' (6)

where ¢(r) = 1 for r E S and 1/2 for r E 71U12. The equations (5) and (6) are a coupled
[Mir of BlE’s in which the unknowns are p on 71 and 12 and tap/6n on 72. It can be shown
that the BIE's (5) and (6) have a unique solution. so that this formulation of the problem is
equivalent to the boundary value problem. Once this BIE has been solved, by a numerical
method, to give the pressure distribution on the boundary, the pressure at a, point r in D
can be found by numerical integration of (5) and (6).

4. SOLUTION OF THE lNTEGRAL EQUATIONS

In this section we describe how the equations (5) and (6) can be solved for the romplex
acoustic pressure by a simple boundary element method. Firstly p and 311/8" on 72 and
p on 71 are determined at regularly spaced points on 7] and 12 by solving a set of linear
simultaneous equations. Once thesa three quantities are calculated, the value oi'p(r) at any
other point in D can be determined by applying numerical integration to equation (5) if
r E U or to equation (6) ifr e 5.

m n == pl... n == p1,. ml 11 == imp: - rap/ant. and define as. and G: on ’72.
G1 on 71 by ga.(r) = Gs.(r.ro), 020') = G/(r.ro). r E n. 01(r) = G/(r.ro). r E 71. Thenwe may write (5) and (6) on 71 and 72 as

525nm + 71(I'o)93‘(l‘)a r S '72. (7)

Kurt (1') -ik312(fipi)(r) +I'kl3e522Pr(T) - 52290)
+ (1 - 7100))020’)‘ 1' G 72. (3)

gm”) = Kllplir)_“5511(5PIMI')+ik151521P2u)‘ $219M - Kzipzll')
_+ (1- nIro))Gi(r). r E 71- (9)

The integral operators in (1), (8) and (9) are defined by

Mr)

grim

swam = [Gi(r.r.)d>(r.)da(r.). r67..i=1.2.j=1.2, (10)
1i

'

aGIKI'Ja)1mm = ,.—o..(T,)—¢(r.)ds<r.), r67;,i¥l:2vj=l.2. (u)

PMJDA. Vol 13 Pan 2 (1991)

 

3‘5



  

Proceedings of the Institute of Acoustics

SOUND PROPAGATION FROM A CUTTING

Lad

Sizer) = [7Gatnr,r.)¢<r.)ds(r.);'re-n. (12)
To solve the above system of integral eqnutions numerically we first divide 71 and 72 into
boundary elements. We suppose that '11 is polygonal and divide 71 into M straight-line
elements 1L1}. . . . ,1?“ . For n = 1, 2V . . . .N; let r',‘ denote the mid-point and hf the length
of 7?. and let In := muzhi‘. Similarly divide the straight line interface 72 into N2 elements
74,1},uq'133 and let 1‘? and It; denote the mid-point and length of 75‘ and h: := mazhé‘.
Let h I: muz(h1th2).

Having made the above subdivision we approximate the integral operaton $.',',K.'j and

$51; as follows:

mm z 2: /7_G,(r.r.)da(r.)¢(r:"). (13)
ME) I'

Ni

Kmr) z mg] %ds(n)¢(r?). m)
N

555%) z 2’ L Gn.(|'vl'-)dl(h)¢(f5")> us)
m=l I

These approximations are accurate if d is approximately constant within each boundary
element. Making these approximations in equations (7)-(9) and then collacuting atthe
mid-point of each boundary element we obtain a system of N = 2N: + N1 simultaneous
equations for the unknown values of p: and q at the mid-point of each element of '12 and p)
at the mid-point of each element of 71. These equations can be written in matrix form as

Ap = g (16)

where

o 1 5;;
A = ikSuB — K12 ll 41:55,, 522 (17)

.31 + iksnn — Kn K21 “15.5,! Sn

p = (purl).A--Amflf'tmrl).-~-P2(r?").c(rl)-.---q(r2"))7.
B = diamri), . . . .1301“ n.

s = (nomad)...untroumrMu-n(rn))Gz(ré),....u—n<ro))Gz(r§").
(1 — 71(I'o))Gi(I'i).---~(1 — u<rol)Gz(r”'))’

where the elements of the submatricea Si}. K;,-, 5:; are given by

[st-11m = £_o,(rj.r.)d-(r.).
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aaw. .)[Kuhm = fiche».

Isaiah. = Lowrannson.

In the results shown below the elements of 53. Kg, 5;; are evaluated approximately usingthe product mid-point rule [10].

5, RESL'LTS .

Two graphs of results are shown. Figure 3 compares the program (CUTIE) implementingthe boundary element method of the previous section with the boundary element programfor noise barriers on flat ground (BARIE) described in [3,4]. The geometry is as indicated inFigure 2 and {or both programs the frequency is 100 Hz, the step-length h=0.l wavelengths.In Figure 3 the curves denoted A are for receiver positions 10 cm above ground level. thoselabelled B for receiver positions 10 cm below ground level in the cutting, as shown in Figure2. The two boundary element programs agree at each receiver position to within ldB.

Boundary element predictions of propagation from a cutting across rig-id ground or grasslandare shown in Figure 5. The geometry as shown in Figure 4 and the frequency is IOOHL
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Figure 2. The geometry for comparison of the BANE and CUTIE program.
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Figure 3. Comparison of the new boundary element program (CUTIE) with the bound-
ary element program for noise barrier! (BANE); For the results from program CUTIE
the crowseqtion is the polygon FCBAGHIL in Figure 2. For the program BANE this
cross-section is approximated by the polygon EDCBAGHIJK.
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Figure 4. The geometry for the boundary element calculations in Figure 5.
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Figure 5. Boundary element prediction of propagation from a cutting across rig-id pound
or grassland. The geometry is as indicated in Figure 4 and the frequency in main.

350 Proctl.0.A. Vol 13 Pan 2 (1091)

 


