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1.INTRODUCTION

The boundary integral equation method (BIEM) is well-known in the context of tirne-
harmonic acoustic scattering [1-8) in two and three dimensions, The method has been
applied to the propagation, in two dimensions, of acoustic waves over a plane of ho-
mogeneous impedance [3], a plane perturbed by a discontinuity of inhomogeneous
impedance [4-5], or over a cutting [6] or roadside noise barrier [7-8]. In these two-
dimensional approximations cartesian axes Oxyz are adopted, with the x- and y-axes
horizontal; the source is assumed to be a coherent isotropic line source, paralle] to
the y-axis, and there is no variation in any of the significant physical variables in the
y-direction. This two-dimensional situation with a coherent line source does not of
course directly model any actually occurring outdoor sound propagation problem; a
traffic noise stream, for example, is correctly modelled by an incoherent line source
or by a line of incoherent point sources, Nevertheless the two-dimensional predictions
have been related to experimental measurements with a point source with some con-
siderable success [4,8]. In this paper with a view to obtaining a more exact model of
tke performance of outdoor noise barriers, though with more computational cost, the
full three-dimensional problem of propagation from a point source over an infinitely
long noise barrier is addressed. '

Below, this problem is formulated mathematically, first as an impedance boundary
value problem for the Helmholtz equation, then reformulated as a boundary integral
equation for the unknown pressure on the boundary. The numerical solution, using
a simple boundary element method (BEM), of this integral cquation .is discussed.
Results are presented comparing predictions of barrier insertion loss with this mode]
with those from a two-dimensional prediction using s coherent line-source. . .

2. FORMULATION OF EQUATIONS
THE BOUNDARY VALUE PROBLEM

Attention is restricted throughout to time harmonic propagation (e=™' time de-
pendence), in a homogeneous medium, which is at rest in the absence of sound wave,
and is characterised by the wavenumber k = 27/A > 0. Cartesian axes Oxyz are
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adopted, thh the x- and y-axes honzonta.l The source is assumed to be a monopole
point source and there is no variation in the barriers cross-section along its length.in-
the y-direction. Figure 1.illustrates a typical situation. D s the region of propagation
and 8D, the boundary, consisting of ground and barrier surfaces, is assumed locally
reacung The surface of the barrier is denoted by I'. The acoustic pressure p(r}) at
receiver point r = (x,Y,2) due to the source at ro = (Xo, 0, o) satisfies the following
BVP: :

: (V2 +k)p(r) = 6(r-ro), rED
the impedance boundary condition :
dp(r)
. on

and Sommerfeld radiation conditions. The normal is assumed to point out of the
region of propagation, that is, into the barrier. We assume that 8, the normalised '
surface admittance satisfies ﬂ(r) = 0 or ReB(r} > 0 at each point r € 3D. We
assume that the admittance is constant, 3= 3, everywhere except on the barrier I,

ik3(r)p(r), rESD

THE BOUNDARY INTEGRAL EQUATION

Let Gy, (r,ro) be the solution to the same problem but in the absence of the noise
barrier, i.e. Ga,(r,ro) is the pressure at r when the source is at ro and propagauon
is over a homogeneous plane with constant admittance, 3, .The Thomasson approxi-
mation for G, (r,To) [10] is evaluated accurately as a series expansion with a suitable
number of terms taken according to the distance |t — ro|. By applying Greens second
theorem [9] to the two functions p(r) and G (r,ro} an integral equation is obtmned
over the whole domain D.

G (r,rs)

an(r,) P(rs) = ik3(re)Gac(r.7e))ds, r'.E D

(e)pr) = Gaelrore) + |,
where e(r)=1forr€ S and 1 forr €.

A difficulty in the numerical solution of this integral equation is that the kernel
function, %. tends to infinity as r tends to r,. This difficulty is resolved by
applying the modification of Burton [12]. The modified integral equation on the
barrier is given below where the barrier surface is denoted by I'.

; a G*(r,ry
1pir) = Gatrira) + f 2GalEm) ) - TR piryas
- i [ BGarmptedds-+ pir) [, S5 EINgs
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The function G*(r,1,) = -+ (ir —r|" 1+ - r’,]") is the principal singul-arity of
Gj,(rrs). From Gauss’ theorem, the last integral can be integrated exactly, giving

3G (r,ry) , 1
r oa(r) =73
forr € I'. Thus
Gy (r,rq) G (r,r.)

p(r) = Gg.(r,ro) + fr—m—z’(h} - -—aﬁ-(-lTp(r)ds
- ik .[r 3(rs)Gisc (1, Fa)plrs)ds.

In order that the integral equation above can be solved numerically the region
over which we integrate must be truncated for some finite value of y. Thus we replace
the infinite barrier surface I’ in equation (1} by a truncated surface of length 24,
Fa={r=(xy2) €l :|y] £ A}. We denote the solution of equation (1) with I"
replaced by T'4 as p4. Thus p4 satisfies the equation:

paR) = Galrre) + [ @a':;g—:)"’m(r.)— %‘&;‘;ﬂm(r)ds
- ik [,Aﬁ(r-)Gh(r,rs)pA(r-)ﬁ- @)

We now describe the numerical method (boundary element method) for solving the
truncated integral equation over the barrier. Once this BIE has been solved, by a
numerical method, to give the pressure distribution on the boundary, the pressure at
the point r in D can be found by numerical integration of (2},

3. NUMERICAL METHOD FOR SOLVING BIE’S

Let I'4 be divided into Al « N elements, I'y.j = 1,..., M N, by putting a rectilinear
mesh mesh generated with M sub-divisions in the y-direction and N sub-divisions in
the x-z plane. Let ry denote the mid-point and A; the area of an element j. The
elements are numbered in figure 2, To obtain accurate results the sides of each element
must be £ 0.2 wavelengths

The boundary integral equation (2) is solved by a product mid-point rule approx-
imation [13], it follows that :

MN
Pa(ty) = Gaglrpre) + 3 Iy (3)
l=1
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for j = 1(1)M N, where rj is the midpoint of element [, and:

_ dG (r,ry) _8G(r,ra)
Iﬂ = Tu Bn(r.) PA (rl) an(r.) PA{r)ds
—ik fn B(rs) G (r,rs)pA (a)ds. (4)

For j # 1, the appreximation can be made that

how (2, SR, () f Ly,

tde 1
"’kﬁ("l)Gﬂe(l’hl'j)PA(rl)r]IJA ~ds )
where r = |1 - rj), and forj' =1
T = -ikﬂ(rl)rGh(rl,rj)pA(rl) jpl ;ds. . . (6)
A

These approximately satisfied set of N linear equations for the values of p at the
midpoiats of the boundary elements can be written in standard form for j = 1(1)MN,

Z a;p(n) = Gﬁc(ro, rj) (N
=1 A

where the elements of the matrix [a;;) are given by equations (5) and (6). The integrals
in equations (5) and (6) can be evaluated exactly [12). _

The matrix [a;;] is block Toeplitz of order Af » N, with block-entries of order N.
The computational cost of using Gaussian-Elimination for this method is O(M2N?) to
set up the governing equations and 1/33* A3 manipulations to solve the set of linear
equations. With algorithms that use the block Toeplitz structure [14,13], équations
(7) can be solved using O(4Af2N) storage with O(6A£°N'?) multiplications.

RESULTS

Results calculated using the above methods are shown in figure 3 in which insertion

loss defined is by /L = —20log E‘%o) The source is located 5.6m from the centre

of the barrier. The barrier is rigid and has square cross-section (in the x-z plane), 1m
high and 1m thick. The two-dimensional model discretises this cross-section, whereas
the three-dimensional model must take the length of the barrier into account. The
insertion loss calculated by the two-dimensional model at a receiver position 50m from
the centre of the barrier, at 100 Hz, is 3.54B. For the three-dimensional mode] the
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number of subdivisions in the x-z plane were the same as the two-dimensional model.
The subdivisions in the y-direction were constant 0.1m lengths. The insertion loss was
underestimated for a small number of sub-divisions, due to sound waves diffracting
around the sides of the barrier. Thus comparable results are only produced when the
barrier is of considerable length relative to the height and width of the barrier. This
results in very large systemns of equations to be solved directly.
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FIGURE 1 TYPICAL SITUATION MODELLED.

AGURE 2 NUMBERING OF THE ELEMENTS

FIGURE 3 Comparison of threa-dimensional model
with two-dimonsional model at 100 Hx
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