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1.INTRODUCTION

The boundary integal equation method (BIEM) is well-an in the context of time-
harmonic acoustic scattering [1-8] in two andthree dimensions. The method has been
applied to the propagation. in two dimensions, of acoustic waves over a plane of [to-
mogeneous impedance[3], a. plane perturbed by adiscontinuity of inhomogeneous
impedance [4—5]. or over a cutting [6] or roadside noise barrier [7-8]. In those two-
ditnensional approximations cartesian axes Oxyz are adopted, with the x- and y-axes
horizontal; the source is asumed to be a coherent isotropic line source. parallel to
the y-axis. and there is no variation in any of the significant physical variables in the
y-direction. This two-dimensional situation with a coherent line source does not of

course directly model any actually occurring outdoor sound propagation problem; a

traffic noise stream. for example. is correctly modelled by anincoherent line source

or by a line of incoherent point sources. Nevertheless the two-dimensional predictions
have been related to uperimental measurements with a point source with some con-
siderable success [4,8]. In this paper with a view to obtaining a more exact model of
the performance of outdoor noise barriers, though with more computational cost. the
full three-dimensional problem of propagation from a point source over an infinitely
long noise barrier is add'rssed. I

Below. this problem is formulated mathematically. first as an impedance boundary

value problem for the Helmholtz equation. then reformulated as a boundary integral

equation for the unknown pressute on the boundary. The numerical solution, using

a simple boundary element. method (HEM). of this integral cquationis diseased.
Results are presented comparing pfldictions of barrier insertion loss with this model
with those from a two-dimensional prediction using 5 coherent linesouree. ., .

2. FORMULATION OF EQUATIONS

THE BOUNDARY VALUE PROBLEM

Attention is restricted throughout to time harmonic propagation (e"““ time de-
pendence). in a homogeneous medium. which is at rest in the absence of sound wave.

and is characterised by the wavenunrber k = 27/) > 0. Cartesian axes Oxyz are
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adopted, with the x- and y-axes horizontal. The source is assumed to be a monopole

point source and there is no variation in the harriers'cross—section along its length-in

the )'-direction. Figure 1 illustrates a typical situation. D is the region of propagation

and aD,_the boundary, consisting of ground and barrier surfac, is mumed locally

reacting. The surface of the barrier is denoted by l". The acoustic pmre p(r) at

receiver point r = (x, y, 2) due to the source at In = (xo,0, so) satisfies the following

BVP: ' -

r (V’ + k’mr) = 6(r - to). r E 1?
the impedance boundary condition -

690')
an

and Sonunerfeld radiation conditions. The neutral is assumed to point out of the

region of propagation. that is, into the barrier. We assume that B, the normalised V

surface admittance satisfies 6(r) = 0 or lie/30') > 0 at each point r E 6D; We

mume that the admittance is constant. 5 = fie everywhere except on the barrier i‘.

ammo). r e an

 

THE BOUNDARY INTEGRAL EQUATION

Let G§‘(r,ro) be the solution to the same problem but in the absence of the noise
barrier, i.e. 054nm) is the prasure at 1- when the source is at to and propagation

is over a homogeneous plane with constant admittance, B;.Tbe Thomasson approxi-

mation for Gg‘(r, re) [10] is evaluated accurately as a series expansion with a suitable

number of terms taken according to the distance Ir - rol. By applying Greens second

theorem [9] to the two functions p(r) and Gp‘(l',fo) an integral equation is obtained

over the Whole domain 5. I

3G,:(r. r.)
c(r)p(r) = Guc("'°)'+ Ir an(r.) P('-) - ikflrg)Gp¢(r,r.))dS. r 6 5

where £(r) = 1 forre S and % forr E I‘.

A difieulty in the numerical solution of this integral equation is that the kernel

function, W. tends to infinity as r tends to r.. This difliculty is resolved by

applying the modification of Burton [12]. The modified integral equation on the

barrier is given below where the barrier surface is denoted by I‘.

36:41.11) 3G'(r,r.)
r 6n(r.) p(r')_ 8n(r.)

— ik frmr.)ca.(r,r.)p(r.)ds+pm jr

p(r)ds

0G'(r. r.)

ani'l)

%p(r) = Chm ro) +

ds. (1)
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The function G'(r.r.) = —‘i' ([r — i'.|’l + Ir -— rfil'l) is the principal singularity of
GgJI', r.). Rom Gauss' theorem, the last integral can be integrated exactly, giving

BG‘(r,r.) __ 1

r -8n(r.) “'“E
for r E 1‘. Thus

pm = chemo) + jr%pm — 9%:+”p<r)ds
- ik/r/3(r.)G3¢(r,r.)p(r.)ds.

In order that the inteyal equation above can be solved numerically the region
over which we integrate must be truncated for some finite valueof y. Thus we replace
the infinite barrier surface 1" in equation (1) by a truncated surface of length 214,
I“ = {r = (x,y,z) e I‘ : M s A). We denote the solution of equation (1) with F
replaced by FA as p4. Thus p4 satisfies the equation:

pitr)=cp.(r.ro) + u %P4(hl— fifit’mrids
— I'k/r‘fi(r-)Gac(|'J-)PA(I'-)ds- (2)

We now describe the numerical method (boundary element method) for solving the
truncated integral equation over the barrier. Once this BIE has been solved, by a
numerical method, to give the pressure distribution on the boundary, the pressure at
the point r in D can be found by numerical integration of (2).

3. NUMERICAL METHOD FOR SOLVING BIE’S

Let I“ be divided into M a N elements. F’AJ = 1. ....MN. by putting a rectilinear
mesh mesh generated with M sub-divisions in the y-direction and N subdivisions in
the x-z plane. Let r] denote the mid-point and A; the area of an element j. The
elements are numbered in figure 2. To obtain accurate results the sides of each element
must be S 0.2 wavelengths

The boundary integral equation (2) is solved by a product mid-point rule approx-
imation [13], it follows that :

MN
PAW) = Gkifjfl’ol + I: Ijl (3)

=1
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for j = 1(1)MN, where r, is the midpoint of element Pi; and:

_ UGer, r.) _ 5G-(l‘vrl)
1,1 — “ —an(r.)PAlrI) —an(rl)PAuldB

—ik j“ B(r.)Ga.(r.r-)PA(I'-)d8~ (4)

For j at I, the approximation can be made that

1]., ;; (.aggfilflluul) — gig—(Eflpl‘mo r/r’ éda

. I 1
—zka(r.)ca.(r..q)pr(n)r j“IA ;ds (5)

where r = In — r1], for} =1

1,. z -ikl3(r|)rG5,(r|,rl)pA(rl) [1" ids, , . (6)
A

These approximately satisfied set of N linear equations for the values of p at the
midpoints of the boundary elements can be written in standard form for j = 1(1)MN,

MN

2 WIN“) = Gecko, r1) (7)
In)

where the elements of the matrix [oil] are given by equations (5) and (6). The integrals
in equations (5) and (6) can be evaluated exactly [12]. _

The matrix [0,1] is block Toeplitz of order M It N, with block-entries of order N. '
The computational cost of using Gaussian-Elimination {or thismethod is 0(M2N1) to
set up the governing equations and 1 /33131” manipulations to solve the set of linear
equations. \Vith algorithms that use theblock Toeplitz structure [l4.15]. equations
(7) can be solved using OHM’N) storage with 0(6M’N’) multiplications.

RESULTS

Results calculated using the above methods are shown in figure 3 in which insertion
loss defined is by [L = —20103 15%. The source is located 5.6m from the centre

of the barrier. The barrier is rigid and has square cross-section (in the x-z plane). 1m
high and 1m thick. The two-dimensional model discretises this cross-section. whereas
the three-dimensional model must take the length of the barrier into account. The
insertion loss calculated by the two-dimensional model at a. receiwr position 50m from
the centre of the barrier, at 100 Hz, is 3.5118. For the threedimensional model the
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number of subdivisions in the x-z plane were the same as the two-dimensional model.
The subdivisions in the y-direction were constant 0.1m lengths. The insertion loss was
understimated {or a small number of sub-divisions, due to sound waves diflracting
around the sides of the barrier. Thus comparable results are only produced when the
barrier is of considerable length relative to the height and width of the barrier. This
mults in very large systems of equations to be solved directly.
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