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INTRODUCTION

This paper outlines a theoretical method for the computation

of natural frequencies and mode shapes of a uniform circular ring

with any system of discrete masses attached to the surface.

Simplification is affected by neglecting shear teree and rotary
inertia effects and only flexural vibrations in the plane of the

ring are considered.

A uniform ring is considered to comprise a _finite number of

lumped masses connected by massless members of equal stiffness to

the segments they represent. Such a simplification may subsequently

e modified to obtain considerable improvement in accuracy,

RAUSCHER(1)] ‘ ' '

Since the ring is unconstrained, it is necessary to determine

the singular stiffness matrix and then the mass matrix. ior the ring

is modified to take account of the added masses. The eigenprnperty

solution of the resulting dynamic matrix yields natural frequencies

and modal patterns.

Comparisons with experimental results and. for a simple case,

with Classical theory [TIMOSHENKO(2)] , indicate good accuracy for

the method.

NOTATION

A Area of cross-section x,y 2.13 Cartesian co—ordinates

Young's modulus B Rotational co-ordinate

H ,V Forces in x- and y-

directions respectively
I Second moment of area

N Number of elements M Bending moment

R Mean radius [K] Stiffness matrix

R Radius of gyration [M] Mass matrix

p = nz/kz [8] Displacement matrix

9 Angle subtended by subscripts: Refer to locations 1

consecutive elements A,B,C (see Fig. l)

w Circular frequency

  



 

STIFFN'ESS MATRIX

Method of Derivation

Stiffness matrix coefficients may be determined conveniently

by the Displacement Method Each elemental mass must be allowed

three degrees of freedom, representing tangential, radial and

rotational displacements. Thus, for a typical element C (Fig.1),

the required coefficients are represented by the forces and bending

moments at A,B and C for each of three displacement cases, namely:-

oxss 1 xc=1, x,,a= O, HAAEO , emuzo ,....(i)

CASE 2 xfielc=o’3‘: o, 5‘13: 0, QNLL=0 .....(i.i)

CASE 3 xfl'alczolw‘le'czo, 9,. =1 , 9‘19 :0 .....(iii)

For a uniform ring, the stiffness of each element is

identical and the complete stiffness matrix may be derived by

computing six forces and three bending moments for each of the

above three cases of a built-in circular segmental-arch.

Segmental-Arc Cantilever ’lheory

Because of symmetry of arch AC8 (Fig,l), a segmental-arc

cantilever may be isolated as shown in Fig.2; deflections are given

in terms of the general force system by existing theory [A] :—

Ee‘ ' “is! - H=(¢'SI'"¢)-V;(1—cas¢)}‘e = ‘ V ..‘.(1)

x = —eR +£fi£fl4=THW+ Hc(2¢+sin2¢ -4sm¢)

-\/c(1—w52¢}+4‘§-E{Hc(2¢*5’"2¢)'wa‘u‘zfl} Wm

fifl‘cwsm+2Hc(1—cos¢)’+ V=(2¢—sv'~2¢)3
lad H=(1-C°$2¢) -Vc (2¢ — sr'n2¢)} ..(3)

Equations (1)-(3) are solved for Hc, Vc, Me for each of the

displacement conditions (i), (ii), (iii) above. Forces and moments

at A are determined by the equations of static equilibrium. The

right-hand—side of arch ACE may be considered in a similermanner to
the left-hand-side. After combining the two sides and resolving

forces in the radial and tangential directions, the nine influence

coefficients for each of Cases (l)'(3) are determined‘

L
:

H

By ignoring rotary inertia, the stiffness matrix is reduced

from order (3N x 3N) to order (2N x 2N).

MASS MATRIX

This is a diagonal matrix of order (2N x 2N) whose

coefficients are the mass values of ring elements, including any

attached masses, written out twice in orderr

THE EIGENVALUE PROBLEM

The mass and reduced stiffness matrices for the complete

assembly are now inserted in the standard eignevalue equation 5]:—

(m — wwfls} ....

     



  

Solving this for eigenvalues and eigenvectors yields the square of

circular vibration frequency and relative displacement amplitudes

respectively.

Since [K] is symmetric and [M] is both symmetric and positive
definitemse is made 01 Choleski decomposition to employ Jacobi

rotation solution of a reduced Dynamic matrix which is symmetric.

Standard ICL library subroutines enable simultaneous solution Of all

the eigenproperties relating to the original system. Computation

times vary from 40 seconds, using 16 elements, to about 1% minutes,

using 24 elements, on an ICL 1904A, 123K computing system

EXPERIMENTAL WORK

A 15.5 inch diameter steel ring, of 0.25 in (radial) x 0.30 in

rectangular section and or mass 1.035 1b., was supported

horizontally by three vertical slender needles at equal angular

spacing. Point excitation in the radial sense (and also one of'the

added masses!) was provided by an electro-dynamic excicer and

vibration measurement was by means of a proximity electrormagnetic

pick-up, with Cathode Ray oscilloscope instrumentation. Natural

frequencies and modal patterns were determined for the unloaded

ring and the procedure repeated for various added mass' configuration.

SAMPLE RESULTS

1. Uniform Ring (no added mass)

Na tural Frequencies : -

CLASSICAL
THEORY 16 ELEMENTS 24 ELEMENTS

    

  

n

EXPERIMENT

 

1 Note: Experimental results are generally low due to the

added mass effect of the exciter moving parts

Mode shapes:- In all cases tabulated above, the first two

modal patterns showed good correlation with

Fig.3(a) and (b) respectively.

2. Uniform Rin with Mass Addition as shown below (Fig. 4)

 

Natural Frequencies : -

EXPERIMENT
Megan“

 

rig. 4. Added mass system
for Example 2

Mode Shapesz- The 4 and 6 noded Modal patterns obtained both

experimentally and lhcrretically for the ring with we added

masses (+ exciter mass, Fig. 4) closely resemble the theoretical

modal patterns for a .niiorm ring (Fig,ll), obtained from

classical theory. The reference axes are, however, positively

locaLed by the added masses as shown in Fig. 4.
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Fig. 1. MATHEMATICAL MODEL Fig. 2‘ SEGMENTAL'ARC CANTILEV'ER
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(a) First Mode (1:) Second Mode

Fig. 3. FIRST NO NATURAL VIBRATION MODES OF A UNIFORM

CIRCULAR RING
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