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Abstract

An ARMA spectral estimation technique based on the modified Yule-Walker

equations is presented. Two recursive lattice algorithms are proposed for

estimating the AR and MA spectral parameters. These computationally efficient

algorithms provide spectral estimates of different'orders.

1. Introduction

High resolution spectral estimation techniques based on autoregressive (AR)

and autoregressive moving-average (ARMA) models have become increasingly popular

in recent years. Efficient techniques for estimating the parameters of AR models

. have been developed by many authors [11.[2]. The estimation of ARMA parameters

is considerably more difficult. Exact maximum likelihood methods provide,

perhaps, the best estimates. However, the computational complexity of these

techniques is quite high [3]. Practical ARMA modelin rograms are based on

suboptimal versions of the maximum likelihood method €4E,[5] or on the modified

Yule-Walker method [61,[7]. In this paper we present an efficient algorithm for

estimating ARMA parameters using the latter method.

He start by abrief description of an ARMA technique based on the modified

Yule-walker equation. This algorithm is a modification of some previously

proposed ARMA estimation techniques [61,[7]. The motivation for this approach

and an analysis of its performance are given in [8]. The objective in this paper

is toipresent a particular way for carrying out the computations involved in this

techn que.

Let yt be an ARMA process of order (M,N). i.e..

N M

’t ’ '2 “Wt-1 +ZBivt-i " Vt ' g (1)
1:1 i=1

where vt is a white noise process. it is straightforward to show thatthe AR

parameters obey the recursion

N .
Rk +2A1Rk4 = o k > N ' ' (2)

1:1 ‘
where {R1} are the true correlation coefficients of the process. Hriting this in

matrix fonn for k = N+1.....K we get
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N ... R1 A1
R ... R :n+1 2 .
. . = (3)

: : Au
/ RK_1 ... RK_

 

This equation often appears in the literature on stochastic realization (some-

times called the modified Yule-Walker equation), usually with K = 2N. When the

correlation coefficients {Ril are replaced by their estimates R‘ = 1/T-ithy§_

(autocorrelation method). Eq. (3) holds only approximately and has to be solve

in a least-squares sense. It has been noted that the (statistical) efficiency of

the resulting estimates can be increased by choosing K > 2N. Furthermore, it has

been shown that overestimating the model order (i.e. choosing N larger than the

true order of the AR model) is essential for obtaining good results at low

signal-to-noise ratios [71.[8]. This technique is closely related to the

Instrumental Variable method of parameter estimation [9]. Various least-squares

techniques such as Singular Value Decomposition (SVD) can be used to solve for

the AR parameters. In Section 2 we present a recursive lattice algorithm for

performing these computations.

The MA part of the spectrum is estimated next. Let C(z) be defined as the

numerator polynomial related to the causal part of the covariance sequence

R+(z) = A‘lu) c(z_) . R+(z) 92 Riz'i

  

i=1 ( )
4

Alz) = 1+ Alz‘1 + + ANz'N

c(z)_= 612'1 + + CMz'M

Denote the impulse response of the inverse AR filter by H(z).

H(z) ='A'1(z) (5)

Writing the relationship R+(z) = H(z) C(z) in matrix form we get

ho. 0 c1 \

hM-1""‘o c = (6)

 

...i
L-1 L—

Thls equation can be solved using any least-squares technique (e.g. SVD). In

Section 3 we present a recursive lattice algorithm for computing the (C1)

parameters. The spectrum of the ARMA process can finally be evaluated by

5(a)) = A‘1(e3‘”) c(e5“’) q+ R0 + we'd”) A‘Tte'J”) =

A'1(ejw) [c(e5“’) A'(e'J°’) + Med”) Ron-(e'i'w) + (1) '

+ Mei”) c'ic'an A'Tie-J‘”)

The MA part B(z) can be computed by performing spectral factorization

3(2) 3(2'1) = cu) A'(z'1) + Alz) ROA'(2'1) + ((2) c'(z'1) (a)
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Note, however. that B(z) if not needed for computing the ARMA spectrum, since
only the product Biz) B(z' ) is required. One potential difficulty with the MA
estimation procedure discussed above is that the right hand side of Eq. (8) is
not guaranteed to be positive real, leading to possible negative values for the
spectrum S(m). Increasing the zero-lag correlation coefficient R0 and windowing
the data or the correlation coefficients are practical methods of ensuring
positive realness [13]. See [8] for a more detailed discussion of this point.

2. AR Estimation Algorithm

Consider the problem of estimating the parameters of the optimal predictor for
a time-series zt:

zt = -E aizb1 + at (9),

where ct is the prediction error. The predictor coefficients that minimize the
sum of squared prediction errors 2 see (summed from t=N+1 to K) are given as the
solution of the so-called normal equat ons

 

- I" “.21 ZMI

fu+1"°’2 = _ 5 (1o)

zK-l"'zK—N 2K
This particular problem formulation appears in speech processing applications
under the name of the covariance method. A recursive lattice algorithm was
developed in [10] for computing the (a } coefficients in (10). This algorithm is
recursive both in predictor order N and in time t, and is computationally
efficient. Note that Eqs. (3) and (10) are identical (with R replaced by z‘ and
A1 by a ). Thus the lattice algorithm developed for solving he linear
prediction problem can be used to solve the modified Yule-Walker equations.

The computations proceed in two steps: A set of lattice parameters are
computed from the given covariance sequence (R l. as summarized in Table 1.
These parameters are then used to fonn the latiice prediction filter A(z). By
computing the impulse response of this filter we obtain the AR coefficients A1,
as summarized in Table 2. For a more detailed explanation of this algorithm see
[101.[11].

The recursive algorithm generates a sequence of solutions of all orders and
times up to K,N. This makes it possible to choose the optimal order and to pick
up the corresponding solution without additional computations. Using other
least-squares methods will generally require re-solving Eq. (3) for different
orders and different sizes of the covariance matrix. We have used the Akaike
Information Criterion to determine the "optimal" order N [8]. This criterion can
be computed in a trivial way from the lattice parameters. The4maximum tlge lag
is determined by comparing the correlation coefficient RK to a /K where is the
measurement noise variance.

The computational requirements of these lattice algorithms are proportional to
NK (Table 1) and N (Table 2) operations. For comparison consider a least-
squares method in which Eq2 (3) 13 solved by computing a pseudo-inverse, which
requires in the order of N K + operations. For high orders N the lattice
method will require less computations.
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The prediction filter Aiz) can be rewired to form the inverse filter

H(z) = A‘ (2) which is needed in the MA estimation part. The algorithm in Table
2 will be modified as follows:

Initialize: Eb'1 = Cbli = Ub,1 =

Set Ih’i = 1h,0 for iao and Ih'1 a 0 for i > 0 .

0

Do for p=N-1,...,O

_ -1
Ap+1,1 ' G “my FpJ—l’ Km)
~I _ -1 "

"p+1,1 ' G (Aw1,i'fip,i-1’ dp+1)
'A' = GUT Cpn p+l.1' p.1-1' Ep+1’

Update Eb,1, Ch 1, Dpi.I as in Table 2, for p=0,...,N-l.

Set hi = 51/210,.

In other words, the sequence {hi} is computed as the impulse response of the

inverse of the prediction filter.

3. MA Estimation Algorithm

Consider the problem of estimating the parameters of the optimal predictor for

a time-series xt from measurements of a related time series zt:

M
_ X

.

"t *2 bizt-i + Et (11)
i=1

where 5% is the prediction error. The predictor coefficients'that minimize the

sum of squared prediction errors are given as the solution of the normal

equations

Po. 0 b1 x1

zn.1--’zo b = 3_ (12)

zL_1...zL_ x

The assumption that 0 = z_ = z_2 = ... is implicit in this equation, i.e.. the

data are "pre-windowed“. k recursive lattice algorithm for solving Eq. (12) for
the predictor parameters (b1) was derived in [12] under the name of the Joint-

process lattice form. Comparison of Eqs. (12) and (6) reveals the similarity of
the MA estimation problem and the problem of "predicting" {R } from past values
of (h1). The lattice algorithm is summarized in Tables 3 an 4. For a

derivation and more detailed description of this algorithm see [111.[12]. Note
that the lattice algorithm provide estimates of the MA spectral parameters for .
all orders up to M. This makes it possible to choose the "best" order without
repeating the computations.

4. Simulation Results

The computational experience with the lattice algorithms presented in this
paper is fairly limited. in this section we present some preliminary simulation
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results to illustrate the behavior of the algorithm. Four test cases are
presented, involving two sinusoids in noise.

Case 1 ‘

 

A time series was generated by

yt = JET! sin (0.4nt) + IZU sin (0.6nt) + nt .(13)

with ntbeing a unit variance white noise process. The signal-to-noise ratio was
5 dB and 10 dB respectively for the two sinusoids. An ARMA (10,10) model was
estimated based on 100 data points. The resulting spectrum in depicted on Fig.
1; see [13] for comparison. I

Case 2

yt = If sin (0.4nt) + I? sin (0.6nt) + nt (14)

 

The signal-to-noise ratio of both sinusoids was 0 dB. An ARMA (10,10) model was
estimated. based on 100 data points. The spectral estimate is depicted in Fig.2; see [13] for comparison.

Case 3 V .

yt = J20 sin [0.4nt) + I! sin (0.426nt) + nt (15)

 

The signal-to-noise ratios were 10 dB and 0 dB. An ARMA (15,15) model was
estimated based on 1024 data points. The spectrmn is depicted in Fig. 3; see [7]
for comparison.

Case 4

yt = I! sin (0.32812nt) + I? sin (0.5nt) + n

 

t (16)

The signal-to-noise ratio of both sinusoids was 0 dB. An ARMA (5,5) model was
-estimated. based on 64 data points. The resulting spectrum is depicted in Fig.
4; see [7] for comparison. '

5. .Conclusions

Two types of lattice algorithms were proposed for solving the linear equations
arising in the problem of estimating ARMA spectra. The modular structure of
these lattice forms has some advantages when spectral estimation algorithms need
to be implemented in special purpose hardware. when spectral estimation is
performed using a general purpose computer it is possible to use any robust
least-squares technique for solving these equations. The potential advantage of
the lattice approach in this case is one of computational efficiency. especially
when it is desired to look at spectra of different orders.
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Table 1: The (Growing Pemory) Covariance Lattice Form

for Computing Reflection Coefficients

   
  
      
       

   
   
      
     
  
  
  
  
  

 

Initialize:

n . —1/2
d1.1 (R1Rll R1

  

For t - 1.....K do:

5t ‘ 5H ‘ RtR‘t

 

‘o.t ‘ “0,: '
For p-O....,M-1 do:

- F'lta

 

)

)

po:.t~1-

1
1

m
l

i.=—1' ‘p.t
- F'llK "

' FKEPJ. fip’bl. dpfllt)

“ “am-1' ‘u.t' $1.:

ptl,t-1’ p.t-1' ‘m

l

:- Ft?‘ )pm: m' rPJ-‘l' ‘wm
~ *4 1

"mm ' “Hm-1' Emt' Kym)
  

  
   

    

  

riu.v,m 9 n . w'l'l’z [u - win . VV'l'T/Z

r‘1(u.v.w) 9 [l - w'lm utl - WI”Z + w

  
The prediction filter parameters (Table 2) are given by
K = x , c - s , 4 - a , s a s“ .
W1 P’LK 9’1 DJ W1 FLK

  

Table 3: The Joint-Process lPre-Hindoued) Lattice Form
for Computing Reflection Coefficients

   

  
    

  

  

  

 

  

    

      
  

For p-O.....M-l

xv,” = F'1(K

‘ “3pm Flu-1' Kpm:
- Fleltd. EM. K5,”

Kg.” - F'lixg‘llm, “Eh, Eat)

E“ 1.: - F(Z;'t, rp't. K:+1,t) '

The prediction filter parameters (Table dl~are given by
. X. X . x x a

"p "p,L- “a "Mm ‘rl ‘n.L- ‘n ‘ Emu 5 5L

amt-1' 'Em-l' ‘m’
l
)

$01,:

"pom

 

   

  

    

    
  
   

     

    

  

  

  

Table 2: The (Growing Memory) Covariance Lattice
Prediction Filter 1

For i=0.....N do:

. . ‘Uz . a .‘03 1{0,0 5 170,0 15o,o ° ‘ o
IO,i “ uIo.1‘ r0,1" l70.1‘ ° " °

For p=0,....N-1 do:

a -1
G (Ivd' c“mi-1' ‘mi‘

u with“? I”. 4"“

a cam". ohm. aw)

atom“. KM”. 4"“)

Ipilfl ‘ G”p~1.1-‘fp.I-1' "pu’

FpHJ ‘ “(Fm-1' “pom- Wm)

)

u u ‘1To unnormalize. Auiz) Ih'o Tull)

aiu.v.u) 9E1 - w'l‘m [u - w]
s"(u,v.u) 9L1 - W11” u ow

fi“(u.v,u) 9 [x - W‘1T/z u o [x _ “1"”
m _ “11/: v

Note: in the scalar case E'l(U,V,H) - G'1(U,V,H)

 

Table 4: ‘The Joint-Process (Pre-Hindoned) Lattice

Prediction Filter

For 1-0....m uni/2 -

7"0,0 ' B'o,o ‘ 5 Co,o ' ° 13,0

- -[x-x’{x’f']'”2 K’l‘s'm. i=0

I0,1"ion“":o.1""3,1"°- "°
For one.....M-l do:

IrlJ ‘
I u

rpm! ‘ r (Um-1' In.“ " ‘
“ GilIptld phi-‘pJ-i'

“sum ' G‘Fpn-i- ‘pum poll
-1 x

‘6 (Wt-twin" ‘
I l

16M” = 5(KM'1.FV1J. KM) -

Finally set 6"! - Ifii1 for 1-0....,H-1

-1
5 “m- th-i' ‘wl’

 

       

  

 

    

  
    

    


