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Abstract

An ARMA spectral estimation technique based on the modified Yule-Walker
equations is presented. Two recursive lattice algorithms are proposed for
estimating the AR and MA spectral parameters. These computationally efficient
algorithms provide spectral estimates of different orders.

1. Introduction

High resolution spectral estimation techniques based on autoregressive (AR}
and autoregressive moving-average (ARMA) models have become increasingly popular
in recent years. Efficient techniques for estimating the parameters of AR models
_have been developed by many authors [1],[2]. The estimation of ARMA parameters
1s considerably more difficult. Exact maximum 1ikelthood methods provide,
perhaps, the best estimates. However, the computational complexity of these
techniques s quite high [3]. Practical ARMA modeling programs are based on
suboptimal versions of the maximum 1ikelihood method ?45,[5] or on the modified
Yule-Walker method [6]1,[7]. In this paper we present an efficient algorithm for
estimating ARMA parameters using the latter method.

We start by a brief descriptfon of an ARMA technfque based on the modified
Yule-Walker equation. This algorithm {s a modification of some previously
proposed ARMA estimatfon techniques [61,[7]. The motivation for this approach
and an analysis of its performance are given in [8]. The objective tn this paper
is toipresent a particular way for carrying out the computations involved in this
technique. '

Let y, be an ARMA process of order (M,N), {.e.,

M . .
Yo = =Ly MY *231"1;-1 Ve o A (1)
i=1 1=1

where vy is a white noise process. It is straightforward to show that the AR
parameters obey the recursion

N ‘ .
Ry +ZAiRk-i =0 k>N " ' (2)

1=l '
" where {Ry} are the true correlation coefficients of the process. Writing this in
matrix form for k = M1,...,K we get

This work was supported by the Office of Naval Research under Contract Number |
N00014-81-C-0300. :

7.1



Proceedings of the Institute of Acou_stics ‘Spectral Analysis and its Use in
Underwater Acoustics’: Underwater Acoustics Group Conference, Imperial
College, London, 29-30 April 1982

M e Y
Ry oo R ][
: N B
TRy -+ Ree

This equation often appears in the literature on stochastic realization (some-
times called the modified Yule-Walker equation), usually with K = 2N. When the

correlatfon coefficients {Ry} are replaced by their estimates Ry = 1/T-1Zyt t-
(autocorrelation method), Eq. (3) holds only approximately and has to be solve

(3)

in a least-squares sense.
the resulting estimates can be increased by choosing K > 2N.
been shown that overestimating the model order {i.e. choosing N larger than the
true order of the AR model) is essential for obtaining good results at Tow
signal-to-noise ratios [71,08]. This technique is closely related to the
Instrumental Variable method of parameter estimation [9]. Various least-squares
techniques such as Singular Value Decomposition (SYD) can be used to solve for
the AR parameters. In Section 2 we present a recursive lattice algorithm for
performing these computations.

The MA part of the spectrum is estimated next. Let C{z) be defined as the
numerator polynomial related to the causal part of the covariance sequence

| R (z) = A'l{z) ¢lz) , R.(2) & R1z"1
' j=1

. \ (4)

A{z)

1+ Alz' + ...t ANz'

cl(z2) (:lz‘1 LT v 5
Denote the impulse response of the fnverse AR filter by H{z),

Hz) = A~1(z) - (5)
Writing the relationship R.(z) = H(2) C{z) in matrix form we get

It has been noted that the {statistical) efficiency of
Furthermore, 1t has

as Fees

" -1
ho. 1] [ ‘
m-1-"ho | LC : (6)
WISEERL R

This equation can be so
Section 3 we present a recurs

parameters. The spectrum of

lved using any least-squares technique {e.g. SVD). In
ive lattice algorithm for computing the {Cy}
the ARMA process can finally be evaluated by

sl = A1) c(ed®) + Ry + ¢ (e AT(e ) -

= AHed®) [ored?) A (eI o et moat (e 4 (7
+ Al credo] ATiend) |
The MA part B{z) can be computed by performing spectral factorization
8(2) B(z"1) = Clz) A'(z™) + Alz) RA'(zh) + Al2) C'(z (8
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Note, however, that B(z) 1; not needed for computing the ARMA spectrum, since
only the product B(z) B(z™*) is required. One potentfal difficulty with the MA
estimation procedure discussed above is that the right hand side of Eq. (8) is
not quaranteed to be positive real, leading to possible negative values for the
spectrum S{w). Increasing the zero-lag correlation coefficient Rp and windowing
the data or the correlation coefficients are practical methods of ensuring
positive realness [13]. See [8] for a more detailed discussion of this point.

2. AR Estimation Algorithm

Consider the problem of estimating the parameters of the optimal predictor for
a time-series z4:

N -
i=1

where e 1s the prediction error. The predictor coefficients that minimize the
sum of squared prediction errors ] eyes (summed from t=N+1 to K) are given as the

solutfon of the so-called normal equatfons

: z" IOIZI ) ZN+1
L2 S - (10)
217" K-y &

This particular problem formulation appears in speech processing applications
under the name of the covarfance method. A recursive lattice algorithm was
developed in [10] for computing the {aj} coefficients in (10}. This algorithm {is
recursive both in predictor order N ana in time t, and {s computationally
efficient. Note that Eqs. (3) and (10) are identical {with Ry replaced by z; and
Ay by a ). Thus the lattice algorithm developed for solving lhe Tinear
predict]on problem can be used to solve the modified Yule-Walker equations.

The computations preceed in two steps: A set of lattice parameters are
computed from the given covariance sequence {R;}, as summarized in Table 1.
These parameters are then used to form the 1at11ce prediction filter A{zZ). By
computing the impulse response of this filter we obtain the AR coefficients A;,
Es ;u?ma;ized in Table 2. For a more detailed explanation of this algorithm see

10]1,{111]. : ‘

The recursive algorithm generates a sequence of solutfons of all orders and
times up to K,N. This makes 1t possible to choose the optima! order and to pick
up the corresponding solution without additional computations. Using other
least-squares methods will generally require re-solving Eq. (3) for different
orders and different sizes of the covariance matrix. We have used the Akaike
Information Criterion to determine the “optimal” order N [8]. This criterion can
be computed in a trivial way from the lattice parameters. The4max1mum tlge 1ag
1s determined by comparing the correlation coefficient Ry to o /K where is the
measurement nofise variance.

The computationgl requirements of these lattice algor{ithms are proportional to
NK (Table 1) and N© (Table 2) operations. For comparison consfder a least-
squares method in which qu (3) 13 solved by computing a pseudo-inverse, which
requires fn the order of N°K + operations. For high orders N the lattice
method will require less computations. - '
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The prediction filter A(z) can be rewired to form the inverse filter
H(z) = A~*(z) which is needed in the MA estimation part. The algorithm in Table
2 will be modified as follows:

Initialize: Eb,i = tb,i = Ub’1 = 0

Set Iﬁ,i = A\L0 for 1f0 and Ih'1 = 0 fori>0.

Do for p=N-1,...,0
y _ a1
R G (Ib+1,1’
~ _ B
Ale =6 (Awij'

Koot = 8Rut 40 Tpm1e Sl

Update Bh i T 1] ; as in Table 2, for p=0,...,N-1.

Bp,1-10 Kprr!

B, i-17 9pe1!

P,i
p,i* “p
set hy = s1/2xy

In other words, the sequence {h;} 1s computed as the impulse response of the
inverse of the prediction filter.

3. MA Estimation Algorithm

Consider the problem of estimating the parameters of the optimal predictor for
a time-series x4 from measurements of a related time serles z4:

M
— ) X :
X¢ “-Z bjzyy + £ : (11)
i=1

where e% is tﬁe prediction error. The predictor coefficients that minimize the
sum of squared prediction errors are given as the solution of the normal
equations

&0. 0 b1 xl
Zy.1e+iZg | Lo = |3 (12)
_ZL"l LI ZL'M_ _XL—

The assumption that 0 = z_y = z_p = ... is implicit in this equation, 1.e., the
data are "pre-windowed". i recursive lattice algorithm for solving Eq. (12) for
the predictor parameters {b;} was derived in [12] under the name of the foint-
process lattice form, Comparison of Eqs. (12) and (6} reveals the similarity of
the MA estimation problem and the problem of “predicting” {R;} from past values
of {hy}. The lattice algorithm {s' summarized in Tables 3 an 4, For a :
derivation and more detailed description of this algorithm see [11],[12]. Note
that the lattice algorithm provide estimates of the MA spectral parameters for
all orders up to M. This makes it possible to choose the "best" order without
repeating the computatfons.

4, Simulation Results

The computational experience with the lattice algorithms presented in this
paper is fairly limited. In this section we present some preliminary simulation
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results to 11lustrate the behavior of the algorithm. Four test cases are
presented, involving two sinusoids in noise.

Case 1 A
A time series was generated by
¥y = /6.3 sin (0.4xt) + /20 sin (0.6%t) + n, - (13)

with n, being & unit variance white noise process. The signal-to-noise ratio was
5 dB and 10 dB respectively for the two sinusoids. An ARMA (10,10) mode) was
estimated based on 100 data points. The resulting spectrum in depicted on Fig.
1; see [13] for comparison. '

Case 2
s = /Z stn (0.4nt) + /Z sin (0.6nt) + n, (14)

The signal-to-noise ratio of both sinusoids was O dB. An ARMA (10,10) model was
estimated, based on 100 data points. The spectral estimate is depicted in Fig.
2; see [13] for comparison.

Case 3

¥y = /20 sin (0.4xt) + /7 sin (0.426xt) + ny (15)

The signal-to-noise ratios were 10 d8 and 0 dB. An ARMA (15,15) model was
estimated based on 1024 data points. The spectrum 1s depicted 1n Fig. 3; see [7]
for comparison.

Case 4 7

y't = /Z sin {0.32812xt) + /7 sin (0.5nt) + ny (16)
fhe signal-to-noise ratfo of both sinusoids was 0 dB. An ARMA (5,5) mode) was
-estimated, based on 64 data points. The resulting spectrum is depicted in Fig.
4; see [7] for comparison,

5. .Conclusions

Two types of lattice algorfthms were proposed for solving the Tinear equations
arising 1n the problem of estimating ARMA spectra. The modular structure of
these Jattice forms has some advantages when spectral estimatfon algorithms need
to be implemented in special purpose hardware. When spectral estimation 1s
performed using a general purpose computer it is possible to use any robust
least-squares technique for solving these equations. The potential advantage of
the lattice approach fn this case is one of computational effictency, especially
when it is desired to look at spectra of different orders.
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Table 1: The (Growing Memory) Covariance Lattice Farm
for Computing Reflection Coefficfents

Table 2: The (Growing Memory) Covarfance Lattice
Prediction Filter .

Initfalize:
s n=1/2
dl'1 (R1R11 Ry
P
for t = 1,,,.,Kk do:

St St MRy

Fyg 20

1/2

©,6° Mot " St Rt

[For pe0,...,N-1 do:
F )

]

= ~I r
Iyt dov1,t-10 P 10 Spot
-1 - -
K1t * F (Kout ea10 Moot St
. TR ~
& F(Ep-t' apot‘l' dp‘*llt)

)
)

= 3 - '
p+1|t F(Bplt'l’ Eplt. dﬁ*lnf-

~ N R
1.t * Flo e Tl Rprge

- - “'1 1
[Foe1,t * PPy oatr Bp,10 Kot o)

Flu, v, 801 - w172 o oo - w2

eliuvan 8 0r - w12 gy - w2 W

The prediction filter parameters [Table 2} are given by
X = K  E =g ., 4d s d , S8 .
i miK Tprl p.k* Tl Tprl K

—
For 1=0,...,N do:
-3 E-J -1/2 -] a2 -3
BHo=Bo=S To0°Tpp=0 f=0

Ib,i = Bb.i =Ty, ° Db.i =0 i>0

For p=0,...,N-1 da:
LA MK L T
“ Cort, -1 o g0 6o
Awr,e SR 1 Op gope dpu)
Uh+1" 3 G(?h'1_1. X
LI G{kp"'l.‘l'.?p,i-l' Koe1)

, p,i-10 Tpr1]
i,
5
pet, 10 dperl
EZRRRRE TSR Y

-
To unnormalize: A (2} = Ih:é Ihlz)

atu,v,W) 8 I1 - w1 Y2 [y - )
6 lou,v i) 80 - w12 g e

v 0 801 - w12 e r - w2

Mote: {n the scalar case &-L(U,v,W) » 671 (U, v, W)

Table 3: The Joint-Process (Pre-Windowed) Lattice Form
for Computing Reflection Coefficients

Table 4: The Jeint-Process (Pre-Windowed} Lattice
Prediction Filter

For t=l,....L do:
R SRR L
X.K '
Sp = St ReRy

—
For p=d,...,M-1

-1 -y ~
Koer,t = F {Kpep ta1s Tpee10 Sp,0)
)

]

1.t ® Flop e Tpee1 Rt

oLt FlTp tere Sp,u0 Korae
< YL ~) ~N
Koet,t = F (Kpuy ge1r T, %p,t

X ~%
j"lnt = Fle }

)

~ x .
patt pt Kot ‘
The prediction filter parameters (Tablg 4) are given by
Kp = Kp,Lo %p = Kpat,Lo & = FpLe 9 * B0 57 5

“For 120,... M dniiz :
%0° 05 T0=0 5.0

] -[I-K{K:']'IIZ K;s'llz. 1=0

%J‘%J’%J’%J’o'1>o
-For p=0,... ,M-1 do:

Ip+l.1

Cort i

-1
= 8 4 Ty i)

1 '
g- {Up.i-l' Kle '£p+1
K = G{K

1,4 w+1,1° Op,i-1° Kpe!
Tors ® 68, 110 Koug 00 Kput)

13 -1 X
Bt * 8 & Tt )

)

. N 4
H.. [ o1t = 8on, 00 Bpr oo Koot

Finally set Cy 4 = 1;'1 for 1=0,...,M-1




