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1 Introduction

High-resolution signal parameter estimation is a problem of significance in many signal processing
applications. These include emitter location estimation, jammer suppression, system identifica-
tion, and time series analysis. Sensor arrays play an important role in areas such as sonar, radar,
and electronic surveillance, where the objective is to detect and estimate incoming signals. Signal
parameters of interest can include azimuth and elevation angle, temporal frequency, etc. The
availability of accurate and less expensive analog to digital converters allows the design of arrays
where each sensor output is digitized individually. This greatly expands the signal processing
possibilities for the array data as compared to analog processing methods.

Much of the recent work in array signal processing has focussed on methods for high-resolution
location estimation. When the emitter signals are generated by spatially close sources, conven-
tional beamforming methods fail to separate the angles-of-arrival (AOAs). Several diflerent meth-
ods have been proposed for estimating closely spaced AOAs, [1, 2, 3, 4, 5, 6]. Herein, a unified
subspace fitting framework is presented, establishing algebraic and asymptotic connections be-
tween a large class of these algorithms. Preliminary results from processing experimental data
from the Baltic sea are also included. A significant increase in estimation accuracy can be noted
for the subspace based estimation procedure compared to traditional beamforming. We conclude
that high-resolution model based estimation procedures can provide enhanced performance even
under non-ideal conditions.

2 Problem Formulation

Consider an array of m sensors at which :1 narrow band plane waves are arriving. Let a collection
of parameters be associated with each emitter signal. These may include bearing, elevation, range,
polarization, carrier frequency, etc., and will be referred to as signal parameters. Let the parameter
vector 0.- denote the collection of parameters associated with the 2" signal, 35(1). The response of
the It"I sensor and the time delay of propagation {or the {‘5 signal at the k“ sensor are denoted
by, pl,(9,-) and 1749;) respectively. The following parametrized data model is then obtained for the
1:“ sensor output

d d '

2,0) = Zpk(0,-)e'j'*(9‘)s,-(t) + nk(t) = Ema-pic) + nk(t) , (1)
{:1 i=1
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where a]. = pie-5’" and where n1,(t) represents measurement noise. The sensor array is composed
of m elements, and the individual sensor outputs are collected in an output vector

d

x(t) = Za(9.-)s.-(t)+n(t)
i=1

= [3(91) . . .a(9d)][sl(t) . . “HUNT + n(t) = A(0)s(t) + n(t) . (2)

The true signal parameters are denoted 6T = [93' . “05] .
A crucial assumption in the techniques to be discussed is the knowledge of the array parametriza-

tion. The array response to a wavefront with parameters 9.- is denoted a(0.~). This array response
vector is an element of a complex m-dimensional vector space. As the parameters, 0;, vary over
the parameter range of interest, the array response vector defines a manifold in the space. This
array manifold is assumed known as a function of 8;.

The emitter signals and the noise are assumed to be independent random processes with
covariance matrices

E{s(t)s'(t)} = S , E{n(t)n‘(t)} = a2 I . (3)

In addition, the asymptotic analysis briefly mentioned later requires the noise vector to be tem-
porally white and complex Gaussian distributed. The spatial covariance of the array output takes
the form

R = E{x(t)x'(t)} = A(0)SA‘(9) + a2 I . (4)

If the emitter signal waveforms are non-coherent, the signal covariance matrix, S, has full rank.
However, in many applications specular multipath is common and 5 may be ill-conditioned or
even rank deficient. In general, let the rank of the d x dsignal covariance matrix be 11'.

Assume that the sensor outputs are measured simultaneously at N time instants, t1, . . . ,tN.
Earh vector observation is called a snapshot of the array output. The data matrix is the collection
of array snapshots and is modeled by

X" = [x(t1) .. .x(tN)] = A(0)SN + NN . (5)

The sample covariance matrix is defined as

R = .ngquV = N Eaton-Va.) . (6)

Given the observations XN and a model for the array response 8(9g), the main objective for
our purposes is to estimate the signal parameter vector 0. The problem of detecting the number
of signals, 11, and/or to separate the individual signal waveforms, s;(t), is not discussed.

3 Subspace Fitting Methods

In this section, the class of subspace fitting (SSF) methods is briefly presented. For a more detailed
description, the reader is referred to [7]. The method which yields the most accurate estimates in
this class is given special attention and is related to the statistically optimal maximum likelihood
technique.

Proc.|.O.A. Vol 13 Pan 9 (1991) 30   



 

ACCURATE SOURCE LOCALIZATION

  
 

  

________

M = Rwy: weighted MUSIC weighted ESPRIT
_—.____—

Table 1: Subspace fitting methods

  

    
3.1 Subspace Fitting Framework

The $51“ methods are all based on fitting a representation of the data to a model in aleast squares
sense. Using the data matrix directly leads to the well-known deterministic (or conditional)
maximum likelihood method [3, 4], herein referred to as the DML method. This is a non-linear
least squares problem which, in general, requires a d-dimensional search procedure. When d = 1,
the conventional beamforming method is obtained. The beamformer may also be used in the
multiple emitter case by searching for d isolated least squares fits in the one-dimensional criterion
or — in more common terms — to search for d peaks in the spatial spectrum.

As an alternative to the full data matrix, a low rank representation thereof can be used in the
least squares fit. This leads to the class of subspace or eigendecomposition based methods. Using
the left singular vectors of XN that correspond to the d’ largest singular values (or equivalently,
the d’ “largest” eigenvectors of R) results in a multidimensional version of the MUSIC (MUltiple
Signal Classification) algorithm, [1, 2]. This technique was proposed in [5]. In the original MUSIC
method, of one-dimensional least squares fits are performed or, equivalently, :1 peaks of the MUSIC
spectrum are found.

Consider the general subspace fitting (SSF) problem

IlM — nut . (7)
The optimization (7) is a. least-squares problem, which is linear in T and non-linear in 9, since 0
generally parametrizes A in a non-linear fashion.

By appropriate choices of data representation, M, and array parametrization, A(8), several
algorithms can be described by (7), see Table l.

The following notation is used in the table: The eigendecomposition of the sample covariance
is partioned according to

R = EaAsE: + EnAnE: I
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where A, is a diagonal matrix containing the 21’ largest eigenvalues. The set of d—dimensional
steering matrices is denoted

«4" = {A | A = [3(91).~--,&(94)]} - (9)
Thus, the methods in the left column of Table 1 involve a multidimensional search - the cost
function is minimized with respect to the siylal parameters of all sources simultaneously. Introduce

.A = {a | a = a(0,)} . (10)

This is identical to the previous parametrization but with the assumption that only one emitter
is present. In this case (middle column of the table), the cost function is evaluated over a range
of 0.- and the local extrema result in parameter estimates.

The right column contains a rather different parametrization which is specific to the ESPRIT
algorithm, [6]. Although this technique will not be discussed further, it is included in the table
to show the strength of the SSF framework. See [8] for more details. In the last row of Table 1, a
weighting of the eigenvectors is introduced. The relevance of this weighting is discussed next.

3.2 The Weighted Subspace Fitting Method

For many estimation problems the maximum likelihood method provides the most accurate esti-
mates possible, i.e., the Cramér—Rao Bound (CRB) is attained asymptotically in the number of
data. This is not the case for the DML method, since the number of unknowns increase without
bound when the sample size is increased. This opens up the possibility of finding an estimator that
gives lower estimation error variance than does the DML technique. In [7], a general weighting
of the signal eigenvectors is introduced, i.e., M = aw“? is used in A statistical analysis
shows that the weighting which provides minimum variance estimates is the diagonal matrix

Wm = (A, — a2 I)"'A:‘ . (11)

The optimal SSF technique is termed the weighted subspace fitting (WSF) method. The optimal
subspace weights are related to the inverse of the variance of each eigenvector in 173,. Thus,
the weighting is particularly important when some of the eigenvector estimates are uncertain, as
happens when the corresponding eigenvalue is close to the noise variance. This, in turn, is true
when the signal covariance matrix is nearly singular due, for example, to multipath. In such
scenarios, the WSF technique can give significantly more accurate estimates than the other SSF
methods including the deterministic ML method.

For easy reference, the main steps of the WSF technique are summarized below.

WSF Algorithm

1. Form the sample covariance, it.

2. Calculate it, the eigenvalues of R. Find the d’ eigenvectors that correspond the largest
eigenvalues and let these be the columns of El.

3. Estimate the noise variance by :‘r’ = (22%,.+1 Jug/(m - d’) . Form the weighting matrix
. . _ . -1
W”, = (A, — 2)ZAa .
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4. Obtain the signal parameter estimates by solving

5 = arg mng‘r{A(A'A)“A'E,W°,.E:} .

The criterion function in step 4 above is obtained from (7) by minimizing explicitly with respect to
the linear variable T. The indicated optimization problem can be solved by using a Newton-type
descent technique, see [9] for details. The issue ofinitializing the search procedure and determining
the numbers (1’ and d is also addressed in [9].

The previously mentioned DML method is based on a deterministic model of the emitter
signals. If the latter are instead assumed to be temporally white and Gaussian distributed,
the so-called stochastic ML (SML) method is obtained, For the Gaussian signal model the
general theory of ML estimation is applicable, stating that the SML estimates are asymptotically
efficient, i.e., the stochastic CRB is attained. However, also the SML procedure requires the
solution of a multidimensional non-linear optimization problem. A Newton-type search for the
SML technique can be implemented using 0(m2d) flops per iteration, whereas the corresponding
WSF implementation uses 0(md2) flops, see [10]. In most problems of interest we have 41 < m,
in which case the WSF optimization requires significantly less computing time. Furthermore, it
has been shown that the W5? and SML estimates are asymptotically identical implying that they
have the same estimation error covariance. See [11] for theoretical evidence and [10] for numerical
experiments.

The asymptotic covariance matrix of the WSF and SML estimates can be expressed compactly
as follows (for simplicity, only one signal parameter per source is assumed here)

 

E{(é _ oxé _ of} ~‘1 (Re {(131,1 D) @ (SA'n-‘AS)T})" (12)' 2N A '
where the matrix D contains the derivatives

(is 69.
D = —- , . . . , — , 13

[59 0:91 39 6:9,] ( )

P‘ = I - A(A'A)"A‘, and where 0 denotes element-wise multiplication. This expression can
be used to accurately predict the variance of the WSF estimates.

4 Experimental Results

Subspace based, high-resolution source localization techniques have been extensively analyzed on
simulated array data. These studies show the potential of vast improvements in estimation ac-
curacy and detection possibilities. Furthermore, multi-dimensional techniques such as WSF can
cope with coherent multipath propagation which can cause severe problems for more traditional
methods. Analysis of subspace based estimation procedures have shown that the resolution capa
bilities are only limited by the collection time and not by the physical antenna apperature, [7]. Of
course, this is only true when modeling errors are not present. As the number of data increase,
estimation errors due to model perturbations will dominate over errors due to noise, [12]. The
application of subspace based techniques on real data is therefore of great interest.

Below, preliminary results from a project aimed at examining the viability of newly developed
subspace based algorithms on hydro acoustic sensor array data are presented. The data is collected
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by aseven-element uniform linear array with an apperature of approximately one wavelength.
The array is mounted horizontally and consists of sensors which are ideally omnidirectional in
the horizontal plane. A far field narrow band source is placed, in turn, in 18 different locations
around array broadside. The purpose is to estimate the azimuthal angle to the emitter.

The data was digitized and stored for later off-line processing. In the figures below, the data
is narrow band filtered and Hilbert transformed prior to forming the spatial covariance matrix,
(6). Each estimate is based on three seconds of collection time and the SNR is approximately
6dB. Traditional beamforming is compared against WSF for 18 difi‘erent emitter locations and the
estimates are displayed in Figure 1. All values are normalized in terms of the 3 dB array beam
width at broadside, (zero degrees). When estimating the principal eigenvector(s) of R, the noise
is assumed to be spatially white, i.e., no pre-whitening is performed. ‘

BEAMme Ella-ta- WSFEm

HMS are: ones mum

  "a s a s to r: 14 Is re 20

Wm’ restate. 1594 W"""h' restate. rm
Figure 1: Beamforming and WSF estimates for experiments 2-1.9. Me emitter location indicated
by solid line.

Note that the root mean squared (RMS) error is substantially less for the WSF estimates
as compared to the results obtained with beamforming. When one source is present, the beam-
forming estimates should not deviate significantly from the WSF estimates. However, multipath
propagation is present in several of the experiments and two main propagation paths can be de-
tected. In these cases, the WSF algorithm estimates two directions with high accuracy, whereas
the beamforming estimates suffer. We expect that the performance differences will be even more
pronounced when several emitters are active simultaneously in the same frequency band.

The errors seen above are predominantly modeling errors. The collection time is quite long
and the effects of measurement noise is negligible. Two main sources of modeling errors may
be expected. By examining the rank structure of the spatial covariance matrix, one notes that
the noise is not spatially white. Secondly, the array elements are not identical resulting in a
non-ideal array manifold. If the background noise structure is slowly varying, direct estimation
of the noise covariance with no emitters is preferred. Estimating a parametrized noise covariance,
[13], requires detailed knowledge of the noise characteristics. Modest array manifold errors, once
characterized, can be handled by robust estimation techniques, [14, 15]. To obtain very accurate
direction estimates, array calibration is often required. However, the treatment of calibration data
is not a trivial problem.
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It is of utmost importance to identify and characterize the type of modeling error encoun-
tered in underwater applications. With this knowledge, it may be possible to model systematic
perturbations and formulate estimators which are less sensitive to unmodeled errors.

5 Conclusions

High-resolution signal parameter estimation techniques are herein formulated within a subspace
fitting framework. Many so—called subspace based or eigenstructure techniques have a natural
interpretation as a 5813‘ problem. The optimal SSF method (termed WSF) and the traditional
beamforming method are applied to real data, collected by a. hydro acoustic array. The ideal
response of a uniform linear array is assumed and fairly accurate azimuth estimates are obtained.
The WSF estimates have approximately five times lower rms error than the corresponding beam-
forming results. The influence of modeling errors is discussed and possible techniques for handling
model perturbations are mentioned.
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