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A distributed network of acoustic sensors allows for the spatial properties of sound in an
environment to be measured, giving information that is not available when measuring in
a small number of locations. This type of sensor network has only recently become tech-
nically feasible and economically viable due to developments in low-cost sensors and
computing hardware. The use of a large number of sensors generates big and rich datasets
which can be problematic to analyse and visualise using traditional approaches. There are
a number of machine learning tools which can be applied to this type of dataset and the
use of carefully designed data visualisations allow for the stories in the data to be told.

In this paper data measured at a Crossrail construction site using a network of 16 sensors
will be analysed to show new insights that can be found when using an acoustic sensor
network, focusing on the spatial properties of the sound field measured and the perfor-
mance of the individual sensors and the network as a whole.
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1. Introduction

Measuring and controlling the noise produced by a construction site in an urban environment is a
difficult task due to the complexities of the sound generated by the site and its surrounding area,
especially from neighbouring construction sites. In the UK, planning controls are set using Section
61 of the Control of Pollution Act [1]. This is not a standard framework, with new constructions sites
mandated to consider the conditions of existing construction sites in the locality. This is essentially a
‘first come first served’ approach to setting noise limits driven by the difficulty in assessing the cu-
mulative noise effects of neighbouring sites. To separate the noise generated by a single site from its
surroundings a new approach to measurement is required that allows for contributions to be at-
tributed. This in turn can lead to a more standardised approach to noise planning controls that doesn’t
penalise one development for the existence of another. Achieving this requires measurements of the
spatial distribution of the noise which, until recently, was prohibitively expensive and difficult to
implement.
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With advances in technology such as MEMS microphones, mini-computers and big data analytics
these challenges can now be overcome. Several studies have explored the use of consumer grade
electronics for creating distributed networks of acoustic sensors [2-4] with a number of different
applications such as smart traffic management [5], quantifiable soundscape research [6] and the
health effects of noise exposure [7].

In 2016, a large measurement campaign was conducted at Crossrail’s Moorgate construction site
in London, UK, using noise signature correlation techniques to successfully separate the noise gen-
erated by the site from its surroundings [8]. This study proved very successful and the techniques
developed within it are readily scalable to multiple construction site scenarios.

This paper will explore the dataset generated by this campaign for additional information, making
use of processing and visualisation tools designed for handling large datasets. It will not repeat the
correlation analysis work undertaken during the project but will focus on using measurement statistics
to find patterns in the data. The aim here is to demonstrate approaches which can offer easy ways to
visualise the features of a large noise measurement dataset, focussing on the availability of the data
and the temporal and spatial distribution of the noise levels.

2. The measurement campaign

The measurement campaign at Crossrail’s Moorgate site consisted of 16 measurement nodes de-
ployed on the edges of a construction site with the aim of demonstrating a method for separating the
noise contribution of the construction site from noise generated by the surrounding environment in-
cluding the neighbouring Crossrail construction site. The study focussed on the use of noise signature
correlation techniques for identifying the source locations.

2.1 The measurement nodes

The measurement nodes consisted of a MEMS microphone package and a Raspberry Pi 2B mini-
computer with audio and communication peripherals. The computer was housed inside a water and
dust proof box (IP65) with the microphone connected by a short cable and held at a distance by an
aluminium tube. The systems where powered by 5V DC power supplies connected to the construction
site’s mains supply.

The microphones consisted of a MEMS microphone housed inside a 7mm diameter stainless steel
tube and fitted with a patented acoustic filter [9]. The filter corrects the microphone’s frequency
response for the resonance of the MEMS package and the diffraction caused by the tubular housing
whilst offering a level of protection to the microphone from dust, moisture and wind. The microphone
is also fitted with a hydrophobic windshield to further protect it from the environment and to limit
the amount of wind noise contaminating the measurements.

The computers processed the signals, calculating broadband and third octave Laeq levels every 0.2
seconds. This data was transmitted to a database over the 3G/4G network where further software was
used to aggregate and present the data via a web portal.

2.2 The layout of the site

The test site for the measurements was the west half of the Crossrail development at Moorgate in
central London, UK, shown in Fig. 2. The east half of the site contains the main shaft of the station.
For the first half of the measurement campaign this site was managed by a different construction
company from the test site. Approximately 100 meters to the west of the construction site is
Willoughby house which is a 6 storey 148 flat terrace block on the eastern edge of the Barbican
complex and is the main sensitive neighbour. To the east of the site is the busy Moorgate thoroughfare
and further to the east is Finsbury Circus and Liverpool Street Station.
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Figure 2: Map of the construction site and neighbouring features with node positions marked.

A ring of 14 nodes was placed around the test site with 2 further nodes positioned on the north
(node 15) and south (node 8) extremities of the site. The delivery entrance to the site was on the north
side of the site. The site featured 3 levels with nodes distributed on all 3. nodes 17, 11 and 5 were
situated on the upper level in the accommodation area of the site. nodes 16, 14 and 4 were situated
on the lower level on the eastern edge of the site overlooking the shaft. The remaining 8 nodes were
positioned around the edges on the middle level with nodes 3 and 7 on the north side near the delivery
entrance.

2.3 The datasets

One day of the raw dataset is approximately 1.3 GBs in size giving a total dataset size of over 250
GBs. For this paper 27 weeks of aggregated 1 minute data and 4 one day subsets of the raw dataset
and have been used. The data was cleaned and fitted into fixed size data frames. The details of the
datasets are given in Table 1. These datasets can be considered ‘quite big” data but the type of meas-
urements made are very scalable and the techniques applied to big data can be employed here.

Dataset | Start Date Duration, | Resolution, Size, GB Size, rows Size, Size, cells
days seconds columns
1 27/04/2016 189 60 0.76 4,354,560 29 126,282,240
2 24/06/2016 1 0.2 1.51 6,912,016 30 207,360,480
3 23/07/2016 1 0.2 1.51 6,912,016 30 207,360,480
4 18/08/2016 1 0.2 1.51 6,912,016 30 207,360,480
5 20/08/2016 1 0.2 1.51 6,912,016 30 207,360,480

Table 1: Details of the datasets used for the analysis in this paper.

3. 27 weeks of 1 minute data

In this Section analysis of the data availability and level distributions of Dataset 1 will be shown

3.1 Data Availability

A useful first step in understanding a dataset is to analyse its completeness. The dataset is fitted to
an expected time array with null values placed where there is no measured data. Using the Python
Missingno library, this is visualised as an availability matrix in Fig. 3. For the timescales shown, the
smallest visible gap represents a period of between 1 and 6 hours where most data are missing. This
highlights several patterns in the availability of data; Nodes 5, 11 and 17 record no data for the last 8
weeks of the campaign and for 2-3 days after the 19" of June; Node 8 did not record any data until 7
weeks into the campaign; All the nodes are missing data for approximately 1 day in mid-July; Node
15 has intermittent availability for the final third of the campaign.
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Figure 3: Data availability matrix for all 16 nodes between the 27" of April and the 2nd of November 2016.
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To investigate this further the percentage availability for each node over the whole-time period
is calculated and shown in Fig. 4 (left). The map shows that nodes 5, 11, and 17 are adjacent in the
north-west corner of the site suggesting that these nodes were powered by the same supply and show
the same power failures. They were also removed at the same time. Node 8 is situated at the southern
end of the site. This node was installed but not powered for the initial 7 weeks resulting in the gap in
the dataset. As these issues are known and a result of early removal or late power connection the
availability percentages are recalculated and shown in the right-hand pane of Fig. 4.
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Figure 4: Data availability percentage map for all data (left pane) and corrected for late powering and early
removal (right pane).

Heavy storms occurred in London on the 14" and 15" of July with several lightning strikes.
This is the cause of the gap which occurs on all nodes. The erratic behaviour in node 15 is due to a
lack of power during the daytime hours. The cause is uncertain but it could be the result of a change
in site activities.

The use of a data availability matrix is a fast way to assess the performance of a network of
sensors highlighting whether groups of nodes or singular nodes are missing periods of data.

3.2 Level Distributions

The Laeq data for all nodes for the length of the campaign is shown in Fig. 5. Plotting this amount
of data in the same visualisation masks individual trends due to the density of the data. In this case,
this has been mitigated by reducing the size and opacity of the individual data points and highlighting
the mean values. The daily and weekly cycle of peaks and troughs is visible, especially in the second
half of the dataset. An extended gap can be seen that corresponds to the August bank holiday. The
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background levels drop during the summer months (July-September). The loudest single events occur
in the 2" and 3" week of July.

110 Individual data points (10 minute mean)
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Figure 5: La,eq data time series plotted as individual 10 minute averages (dots, coloured by node number), 1
hour averages of all nodes (dark blue solid line) and data range (pale blue area).

In July, the contractor for the test site took over responsibility for the neighbouring shaft site
and began conducting activities during night time hours. To explore the impact of this, the distribu-
tion of the Laeq data can be visualised using a split violin plot showing the kernel density estima-
tion of the data, the median and the upper and lower quartiles. The data is split into two time
ranges, 07:00 — 19:00 and 19:00 — 07:00.
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Figure 6: Day-night split violin plot of Laeq for 6 months

Fig. 6 shows a day-night split violin plot for each full month of data generated. The expected im-
pact of night time activities is an increase in the night time levels. However, this is not shown in
Fig. 6. Instead, the night time levels reduce significantly from July onwards. The daytime levels fol-
low the trend of Fig. 6 with a reduction during the summer months. In the night time distributions
for August, September and October a double peak distribution is observed showing that there are
two distinct noise distributions occurring. In this case, the louder peak is connected to the night
time activity on the site and the lower peak is the noise levels which occur during several rest peri-
ods.

Plotting level distributions using a violin plot is an effective way to compare data from fixed pe-
riods especially when it is classified using binary categories such as day and night.

3.3 Events

Noise events are defined here as significant level increase above the ambient noise. A subset of
the dataset can be taken by selecting the points of the time series in which one or more nodes
measures a Laeqabove a threshold. For the following analysis, this threshold is set at 85 dB(A).

In Fig. 7 (left) the means and standard deviations of the levels found on all nodes are plotted as a
scatter plot for all time points where one node has a value above 85 dB(A) and colour coded by the
node with the highest level at that time. Most points have a mean between 75 and 85 dB(A) and a
standard deviation between 3 and 8 dB. There are 3 distinct groupings outside this majority group
to investigate further; one with mean levels near 90 dB(A) and standard deviations between 5.2 and
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6.8 dB (upper-left), a second with high standard deviations but mean levels between 75 and 85
dB(A) (lower-right) and a third with high standard deviation and high levels (upper-right).
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Figure 7: Mean Laeq Vs standard deviation (upper panel) and distribution across nodes for events where each
node is peak (lower panel).

The right frame of Fig. 7 shows the mean (bold) and individual (faint) distributions when each
node has the maximum value, highlighting groupings of nodes within the dataset. The density of faint
lines shows the proportion of maximum values that occur at each node with nodes 3, 4 and 14 dom-
inating in this case. Most neighbouring nodes have similar levels such as 4 and 14. However, despite
its proximity to nodes 4 and 14, node 10 shows different behaviour. Nodes 4 and 6 appear to be
opposites. Having identified several situations of interest the level distributions can be a mapped to
show the spatial patterns present.
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Figure 8: Mapped level distributions, mean distribution when node 3 is maximum (far-left), mean distribu-
tion when node 10 is maximum (mid-left), single event where standard deviation is low but peak is above 85
dB(A) (mid-right) and single event where nodes 4 and 6 have levels above 90 dB(A) (far-right).

Fig. 8 shows four cases — mean distribution when node 3 is the maximum, mean distribution
when node 10 is the maximum, a single event where the standard deviation is low but the peak is
above 85 dB(A) and a single event where both nodes 4 and 6 have levels above 90 dB(A). Examina-
tion of the patterns shown in Fig. 8 reveal that node 10 appears to measure noise in a unique situation
compared to the other nodes, including its two nearest neighbours. It is one of the three nodes placed
on the lower level overlooking the shaft. It is likely that events with peaks measured on this node are
generated by activities on the shaft site with some degree of physical shielding from the other nodes
and in close proximity. The far-right map in Fig. 8 shows two peaks with one on the shaft side and
the other in the south west corner. This highlights that high standard deviation and high levels on
nodes 4 and 6 can be used to identify events featuring two activities. This approach could be gener-
alised to any pair of opposite nodes identified using the distributions shown in Fig. 7.

6 ICSV24, London, 23-27 July 2017
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4. 4 days of 200 ms data

In this Section, the focus is on the level distributions and noise events found in datasets 2-5. The
data availability for all nodes on all 4 days is above 99% and is not examined in detail here.

4.1 Level Distributions

Fig. 9 shows the time series for the 4 one day datasets. When compared to Fig. 5 more details
are visible. On the 24" of June, the night time periods show a stratification suggesting a steady source
of noise from outside the site, such as the road or the neighbouring constructions site. The 23™ of
July features a single measurement above 100 dB(A) just after 06:00. It is noticeable that similar
peaks are found on all 4 days suggesting that this event is the starting of a piece of equipment. On
both the 18" and 20™ of August activity during the middle of the day results in repeat readings near
80dB(A), the former appears less consistent whilst the latter features a steady noise on just one node.
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Figure 9: Laeqtime series plotted as individual 1 second averages (dots, coloured by node ID), 10 second
averages of all nodes (dark blue solid line) and data range (pale blue area) for 4 separate days.

4.2 Events

The events highlighted in Section 4.1 are mapped in Fig. 10. In the first and last cases, a one hour
mean |s taken from the time ranges highlighted and in the other two cases a single event is shown
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Figure 10: Mapped levels for events occurring on the 24/06/16, 23/07/16, 18/08/16 and 20/08/16

In all these cases the levels on most nodes are lower than those generally found in Fig. 8. This is
due to shorter averaging periods or no averaging at all giving a more instantaneous impression. For
the first case the higher readings are on the east side of the site and, due to the level drop of 8-10 dB,
it is likely that the source is from within the shaft site rather than the main road for which a drop of
less than 6 dB would be expected, assuming spherical spreading. The single event above 100 dB(A)
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on the 23" can be seen to affect the south west of the site. A similar pattern is found for the repeat
events of the 18" although at a lower amplitude. On the 20" of August, the peak occurs at node 7 on
the opposite side of the site and due to the distribution across the site, the source is likely to be local
to node 7.

5. Conclusions

The construction site noise study undertaken in 2016 at Crossrail’s Moorgate site generated a large
and rich dataset containing many features. The study itself was highly focussed on separating the
noise generated within the site from its surroundings, using spectral correlation methods.

In this paper, different analysis approaches have been applied to the dataset to reveal further fea-
tures. These approaches have only dealt with the broadband level data. The data analysis and visual-
isation shown highlight both the challenges of working with a large noise dataset as well as some of
the stories that are contained within. These stories include the gaps that occur due to electrical storms
and installation issues, the changes in night time noise levels due to activity on the site and the
changes of background noise during the summer months and the spatial distributions which occur
due to activities in and around the site including how the topology of the site can contribute to peak
in the measurements at particular locations.

The next steps which could be taken include adding the frequency data to the analysis to allow for
the character of the noise to be assessed as well as the spatial variation and the application of machine
learning tools, such as cluster analysis, for grouping patterns. By applying these methods, it is possi-
ble to record the types of activity that occur through analysis of the noise signatures. This can allow
for more informative noise monitoring that can help to optimise projects, reducing noise impact and
increasing efficiency.
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