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INTRODUCTION

A pressure-gradient cardioid hydrophone has been designed in our laboratory
[1]. [2] with a special emphasis to obtain a large bandwidth. though its
geometrical dimensions are well below the wavelength. It can be schematically
described as a stainless steel cylinder including at its front face a
trilaminar piezoelectric disk and at its back face a phaseshift acoustic
circuit (oil filled cavity and thin annular slot). Several theoretical
attempts are made in order to model this hydrophone. taking account of the
diffraction effects. In a first step, an integral formulation is used to solve
the Helmholtz equation. while the steel housing is considered as perfectly
rigid and the trilaminar disk and phase shifter are represented by lumped
constant acoustic circuits [2.3.4]. Comparison with experimental results is
disappointing, though nice results are obtained with a simpler device. So. to
overcome the hypothesis of a perfectly rigid housing, a three—dimensional
modelling of the solid part of the hydrophone is performed [4]. using thefinite element code ATILA [5.6]. Comparison with experimental results.obtained in the case of an in-air modal analysis. is satisfactory. Work is now
in progress to model the complete hydrophone and to solve the wholediffraction problem by coupling the finite element code and the integralequation formulation.

HYDROPHONE DESIGN

The hydrophone (Fig. 1) is a stainless steel cylinder (40 mm GD, 14 mm high)including on its front face a trilaminar piezoelectric disk isolated fromthe surrounding fluid by a thin polyurethane film. The trilaminar disk is

STEEL ’
‘HOUSING

TRILAMINAR 01F
DISK —> CAVITY SLOTS

/

Fig. 1 - Schematic description of the cardioid hydrophone
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constituted of an aluminium alloy core on each side of which two
titanozirconate piezoelectric ceramic disks having parallel polarization are
cemented. The disks are connected in parallel so that the output voltagesignal is maximum when the -trilaminar disk has a flexural motion. An oilfilled cavity and three narrow annular slots 0.3 mm thin , which are sealedoff from the surrounding medium by a thin rubber membrane, are provided in the
rear housing ; the cavity and the slots consitute the phase shift acousticsystem. The three 120° apart mechanical bridges ensure the binding betweenthe back and lateral faces of the steel housing. For convenience, theyare not
represented on Fig. 1.

LUMPED CONSTANT ACOUSTIC CIRCUIT AND INTEGRAL EQUATION FORMULATION MODELLING

Given an incident plane wave p‘(§) = p‘el‘E'E‘“t) impinging on the hydrophonealong a direction making an angle 6 with the 02 axis of the cylinder. our aim
is to compute the output voltage Vs (9.f) in a given frequency range and to
compare it to the experimental results. In this section, we only consider thecases 0 = 0' or 8 = 180'. knowing that when 9 = 0’, the plane wave impinges on
the trilaminar disk. We assume in this section that 02 is a revolution axis
for the hydrophone. so that the whole problem is two- dimensional.Furthermore. we make the following assumptions : i) the steel housing is aperfectly rigid cylinder including on its front face the trilaminar diskconsidered as a plane circular piston ; ii) the oil—filled cavity is
considered as a frequency independent acoustic capacity and iii) the oil flowis laminar throughout the slot.

Before we deal with the complete hydrophone. we present results obtained forthe following. more simple, device : the rear cavity is filled with air and
the slots are suppressed. so that the corresponding hydrophone has no phaseshift acoustic system and the steel housing is more rigid. Besides, a
polystyrene circular plate is stuck to the back face of the hydrophone. inorder to reinforce the acoustic decoupling of the cavity. Considering thehypotheses mentioned above. the motions of the trilaminar disk and cylindricalhousing - we take into account a possible rigid motion of this one due to theradiation pressure — are given by the following equations :

k1
-iu)Mv':=Fc+vT [R+1w—] (1)

RT- in) MT(VC+ VT) = FT - vT [R + (2)

M( MT) is the steel cylinder (trilaminar disk) equivalent mass ; vc(vc+ vT) is
the displacement velocity of the cylinder (trilaminar disk) ; FC(FT) is the
pressure force applied to the cylinder (trilaminar disk) :

FC = - Is p(g)d3 + Is p(£)d§ - FT
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FT = - ISTNEWE

-where S'. S_ and ST are respectively the cylinder front.face, cylinder back
1face and trilaminar disk surfaces ; p(§)‘iS the total Pressure Ht POint E- The
lumped circuit constants R and kT.describe the mechanical and piezoelectric
nbehaviour of the trilaminar disk as well as the binding between this one and
the steel housing. when vc = 0 (i.e. M is infinite),-equatiOns (1) and (2)
Icorrespond with’the right part of the electroacoustical circuitlrepresented on
IFig. 2

 

Fig.,2 - Electroacoustical circuit of the fixed, simplified hydrophone.

(- FT/ ST) is the average pressure applied to the trilaminar disk ; N is*the
electroacoustical transformation ratio and R1 , L1 . C1 , Co are electrical
quantities with :

R = R1(STN)2 (38)
1 1

k = —+— (NS )2 (3b)T [c1 Co] w
MT = L1 (NST)2 (3c)
This lumped constant circuit ensures (1) identical displacement velodities on
each side of the trilaminar disk and (ii) that VS is proportional to vT-:

NST vT

V5 = no 00 (‘4')

The values of C0, C1. L1. R1 are obtained from in-air measurements (FT-=.0) of
the electrical impedance of the device at the resonance and antiresonance
frequencies [2]. The good agreement between the impedance values computed from
this circuit and those obtained from in-air measurements ensures the validity
of this lumped constant circuit at least in the studied frequency range [2].

At this stage, the unknown quantities are N and the surface pressurE‘p(g)_ In
the upper part of the studied frequency range, the geometrical dimensions of
the device are not small compared with the wavelength of the incident wave. sothat a computation of p(§) taking account of the diffraction effects.must be
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Proceedings of The Institute of Acoustics

MODELLING OF A PRESSURE GRADIENT CARDIOID HYDROPHONE

performed. For this purpose. we use the well known integral equation

043) Mg) = p‘(§) + Lug) Bn’ g(£.r‘_')dr‘ - imp v (2') g(£ 5') d1"S n ‘ _

where r is a point on S. g(r.r') = e1k|5'5"/4fl|r-r‘l and Bn‘ stands forY'.g', n' being the outward normal to S at point r' ; a(§) = 1/2 when 5 is a
regular point of S, vn (5') is the normal surface velocity and p the fluid
density modulus. Assuming the trilaminar disk and the cylinder to be
perfectly rigidI we thenhave :

g(£-3') dE' -
0((2) 9(2) = 19(5) + ISNE') 8n'g (2.5‘) dr' - imp v1. J‘

T
S

.. - imp VCUS g(£.£')d£' - IS g(£.§') dr'] 2 E S (5)

An approximate solution of (5) (see e.g. ref. [7]) is obtained by dividing S
into N subdivisions Si. over each of which the surface pressure is taken equal
to a constant pl. Then 2 in (5) is allowed to take N different values riv
each of which is the middle of Si, so that a(gi) = 1/2. Thus (5) is converted
into a (N x N) system of linear equations

N
l_ 1 = p} 4-: 1;,J J‘santg(51'£')d£' - iquvTJ‘sg(§1.£v)d£n _

=1 1 T

... - iup vC I]; g(§1,3')d5' — [é g(rl,§')dr‘] 1 < i S N (6)

The integrals are' computed using a Gauss-Legendre quadrature rule. special
care being taken when 31 belongs to the integration surface. Solving the set
of simultaneous equations (1),(2),(6) and (H). we obtain the values of VT,VC.
p(§) and V5 for a given frequency, provided this frequency is lower than the
first eigenvalue of the associated Dirichlet problem. which is always verifiedhere. The electroacoustical transformation ratio N is considered as aparameter - the only one in this model - and is determined so that thecomputed resonance frequency fo of the hydrophone is equal to the measured
resonance frequency. We have reported on Fig. 3 the experimental and computed
values of | Vs(f)/ pll vs frequency with N = 660 Pa/V and 9 = 0' ; in-air
measurements of N performed for this hydrophone yields about 700 Pa/V [2]. Weobserve a good agreement between computed and experimental values except inthe low frequency range. which is rather surprising since diffraction effectsare negligible for f S O.H6 f0. This discrepancy between computed and measured
values is due to the fact that we have neglected the influence of thepolystyrene plate [8]. If we assume that this plate behaves like a planecircular piston of radius a (a is the cylinder radius) and of negligible mass,then its in-air resonance frequency is very high. However. when the hydrophone
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Fig. 3 - Vs(f, 6 = 0') for the simplified hydrophone

is immersed in fluid. the added fluid mass Ma must be taken into account : if
we take Ma 5 89 a3/3 [9], then the resonance frequency fp of the plate is
approximately (k/Ma )g/Zfl where k represents the elasticity of the plate, so
that fp E 0.1 f0. Indeed. low frequency measurements of VS performed for this
hydrophone [8] show a well defined resonance frequency situated at 0.13 f0.
immediately followed by a pronounced drop of Vs(f) up to about 0.55 f0.
Moreover. if we include the polystyrene plate into the previous model -
Eq.(1), (2), (6) and (4) -. the plate being characterized by the mechanical
quantity k and the surface S_. then the low frequency behaviour of V5 is well
reproduced (see Fig. 3) [4] z the presence of the polystyrene plate on the
rear face of the hydrophone is clearly at the origin of the phenomenon.

    If we attempt to model the complete cardioid hydrophone [2.3]. then the
equations of motion for the trilaminar disk and cylindrical housing are :     

       
  

    

  

k. . T— 1w McvC = FC + vT [R + 1 ZTJ - pcST + SS(DCT P5)

ikT
- iw MT(vC+ VT) = FT - vT [R + -ZTJ + pc sT
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pc is the (constant) pressure in the oil cavity, Ss the slot surface and pSthe surrounding fluid pressure on the outward slot surface. pc is given by :

 

pc = [SS (v'vc) ' ST VT]' iwC'

where C' is the acoustical capacity of the oil cavity and v the average fluidvelocity in the slot. Finally. the pressure drop between the slot extremitiesis [3] :

ps ' Pc = Sszs (V ' Vc) ' imps esVC

where 55 is the slot length, 05 the oil density modulus and Z5 = R5- imLs is
the slot impedance taking into account the oil viscosity. Moreover. we must

add to (6) the term imp(v — vc) J; g(£i. El) dr' accounting for the oil flow
5

in the slot. Solving the corresponding set of simultaneous equation, wecompute Vs(f) through (4) ; hereagain, N'is the only parameter. This lumpedconstant circuit model induces two resonance frequencies fl and f2corresponding to the trilaminar disk + cylindrical housing and phase shiftsystem coupled oscillators, the lowest of these frequencies. f1. beingstrongly damped on account of the large value of R'. If we takeN = 700 Pa/V.which is the experimentally estimated value. then we find a discrepancy of 20per cent between the computed and measured values of f2. Besides. these valuesagree only for N 2 1200 Pa/V. which is not physically admissible. This meansthat at least one of the hypotheses on which this model is built is notverified. Through a finite element modelling, we have first investigated theperfectly rigid body hypothesis.

FINITE ELEMENT MODELLING

In this section. we present the finite element in-air modelling of the solidpart of the three dimensional cardioid hydrophone. using the finite elementcode ATILA. We neglect piezoelectric effects. so that the eigenmodes of thisdevice are solutions of the following linear system [5] :

([K] - w; [M]) E = 9

[K] and [M] are respectively the stiffness and mass matrices of the solidstructure. The vector 3 represents the nodal values of the displacement field.

The hydrophone admits a symmetry plane normal to the Z axis. so that thedisplacement field is either symmetrical or antisymmetrical with respect tothis plane. Thereby. only one half of the structure has been modelled. andboundary conditions have been prescribed to select symmetrical orantisymmetrical modes. The steel cylindrical housing is modelled by 20nodesparallelepipedic and 15 nodes prismatic solid elements while 6 and 8 nodesshell elements are used to represent the trilaminar disk (see Fig. 4). Thenumber of degrees of freedom in the symmetrical (antisymmetrical) case is 1211(1103). The first measured and computed eigenfrequencies of the structure,
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?
normalized to the measured frequency OR the fundamental mode, are reported in
the table below (5 and A stand: respectively for symmetrical and
antisymmetrical) : a

1

2A2

. 87

3A 1m 68

2.142.l+0 2.41

The corresponding mode shapes are represented on Fig. 5 - for clarity's sake.
the trilaminar disk is represented .separately. Modes 15 and SS-3A are
respectively the first and second eigenmodes of the trilaminar disk ; the
others are eigenmodes of the steel housing. Modes 25. “S, SS and 65 are all
nearly antisymmetrical with respect to a plane containing the Z axis, so that
their computed eigenfrequencies are very close to those of the corresponding
antisymmetrical modes 1A, 2A, 3A and 4A. The eigenfrequencies have been
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Fig. # - Finite element mesh of the hydrophone.
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Fig. 5 - Mode shapes
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Fig. 5 (continued) - Mode shapes
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obtained experimentally through an electrical excitation of the trilaminar
disk. so that the strongly electrically coupled modes 1s and 35 have been
clearly identified ; mode 23, though weakly coupled. has been also
significantly excited. The discrepancies between the computed and measured
values of the eigenfrequencies of modes ZS and 38 can be partly imputed to the
simplified description of the device taken into account in this finite element
modelling.

The first in-air eigenfrequency (mode ZS)of the steel housing is 1.3 f2 . i.e.
is situated near the upper resonance frequency of the cardioid hydrophone
immersed in fluid and subjected to an incident wave (see preceding section):we
may therefore infer that, in the upper part of the studied frequency range,
the hypothesis of a perfectly rigid cylindrical housing is questionable.

CONCLUSION

If the lumped constant circuit and integral formulation modelling yields good
results for the simplified hydrophone, it is not the same for the complete
cardicid hydrophone. The finite element modelling of the solid structure of
the latter shows that the steel housing is not rigid in the upper part of the
studied frequency range : this entails that a finite element modelling of the
complete hydrophone (including the oil cavity and piezoelectricity) is
necessary, the diffraction effects being taken into account through the
integral equation formulation.
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