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Predicting the scattering from waves that are incident on a damaged section of structure is of 

importance in structural health monitoring and nondestructive testing techniques to detect dam-

age. High frequency waves are generally involved, and simple models which cannot capture the 

dynamic behaviour of the waveguides at high frequency, can result in experimental failure and 

misinterpretation of the results. Moreover, damage is generally non-symmetrical with respect to 

the neutral axis of the structure, resulting in wavemode conversion and different reflected and 

transmitted waves propagating with different velocities. The aim of this work is to investigate 

wave reflection and transmission over a wide frequency range due to non-symmetric discontinu-

ities in a one-dimensional waveguide. These can be either fluid-filled pipes or plates or beams 

with point discontinuities or finite length damage. In this work, wave propagation analysis for the 

undamaged waveguide is carried out using the wave finite element method, where a small seg-

ment of the waveguide is modelled using a number of solid or plane elements which can describe 

both rich wave behaviour and wavemode conversion. Continuity and equilibrium conditions are 

imposed at the interfaces using a wave-matrix based approach and the scattering matrix is ob-

tained, together with the power reflection and transmission ratios. These provide valuable infor-

mation about the effect of damage on the propagating waves. A numerical example is presented 

which consists of a change of cross-sectional area.  
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1. Introduction 

Structural health monitoring (SHM) consists of a set of techniques in which a given structure is 

monitored to avoid catastrophic accidents. By exciting the structure with a guided wave and analysing 

the reflected waves, a large part of the structure can be monitored, making this procedure ideal for 

damage detection in pipes, for example. Several authors have been studying damage detection tech-

niques using waves, see for example [1-5]. 

SHM techniques can benefit from knowledge of the wave characteristics propagating in the struc-

ture: in order to identify the damage from a measured wave signal, the signal can be compared with 

that simulated from a computational model which can predict the behaviour of the damaged wave-

guide. A method for predicting wave characteristics is the wave and finite element (WFE) method, 

which uses periodic structure theory together with a finite element (FE) model of a small portion of 

the structure. The method has been applied to a number of benchmark cases, such as the vibration of 

tires [6], and free and forced wave propagation in cylindrical waveguides [7, 8] etc. Following some 

previous papers by Mace et al. [9, 10] where scattering of waves was studied, recently an hybrid 
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FE/WFE approach for the computation of the scattering properties of joints in waveguides has also 

been studied [11, 12]. 

In this paper, scattering of wave in a waveguide with a non-symmetric change in the cross-sec-

tional area is studied by applying the WFE method. This kind of discontinuity, which can model, for 

example, damage due to corrosion [1], is difficult to be studied analytically since mode conversion 

and other complicating phenomena may occur, in particular at high frequency. The structure consid-

ered can represent one-dimensional waveguides such as beam, plates, cylindrical shells etc. A WFE 

numerical case is studied using standard FE plane elements to obtain dispersion curves and wave-

modes which are subsequently used to find the scattering matrix and the reflection and transmission 

power coefficients. Comparison with analytical results for a symmetric change of area is first pre-

sented. Results for a non-symmetric change of area are then shown and mode conversion is discussed 

in terms of kinetic energy content in the x and y direction for the reflected and transmitted disturb-

ances. 

2. WFE Modelling of the Scattering Matrix 

Consider two generic 1D waveguides A and B with a discontinuity as shown in Fig. 1. This dis-

continuity causes the traveling waves to scatter, generating reflected and transmitted waves. Waves 

can propagate in the right (positive) and the left (negative) direction in both waveguides. The vectors 

of wave amplitudes are denoted by , 
a a  and , 

b b . In the present study, the discontinuity repre-

sents a change in the cross-sectional area. 

 

 

Figure 1: Wave reflection and transmission at the change of the cross section.  

 

To find the scattering matrices, the vectors of waves a and b are described in terms of linear com-

binations of the wavemodes. These are obtained by solving the WFE eigenvalue problem as described 

in [6]. The vector of nodal displacements Aq  and vector of nodal forces Af for  

waveguide A are given by 
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where Φ  is a matrix of wavemode shapes, 


a and 


a  are the vectors of wave amplitudes in the pos-

itive and negative directions respectively, the subscripts f and q indicate wavemodes related to the 

nodal forces and displacements respectively, and the subscript a indicates the left waveguide in Fig. 1. 

The same equations can be written for the nodal displacements and forces of the right waveguide B. 

The equilibrium of forces and continuity of the displacements at the discontinuity can be written in 

vector-matrix form as  

 

 
A A B B A A B B;    C q = C q D f = D f  (2a,b) 
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where C and D are matrices used to describe the boundary conditions at the discontinuity. Combining 

Eqs. (1) and (2), results in  
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where 
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is the wave scattering matrix. The time-averaged kinetic energy and the time-averaged energy flow 

can be also calculated using [13]  
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where M is the mass matrix of the section in which the time average kinetic energy is being calculated 

and the superscript H denotes the Hermitian matrix operator. The power matrix can be calculated in 

each waveguide by  
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which is an m by m matrix, where m is the number of wavemodes [12]. The reflected and transmitted 

power coefficients can then be evaluated for a single wavemode using 
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where the superscripts i, r, and t in Eq. (7) represents the positions in the P  matrix corresponding to 

the positive going wave in A, negative going wave in A and positive going wave in B respectively, 

the scalars r  and t  are reflection and transmission coefficients taken from submatrices 
AA

R ,
BB

R ,
BA

T  or 
AB

T  and P  are scalars taken from the power matrix. 

3. Numerical Results  

This section shows some results for reflection and transmission of waves propagating in one-di-

mensional waveguides with a change in the cross-sectional area. The WFE method is applied and the 

waveguides are discretized using 2D standard FE plane element in plane stress, defined by four nodes, 

each node having two degrees of freedom: translations in the x and y directions. The FE matrices of 

a small segment of waveguides A and B, are obtained and the WFE modelling is applied to obtain 

the dispersion curves and wavemodes in each waveguide. In the numerical example three wavemodes 

are considered: bending propagating, longitudinal propagating and bending nearfield. The scattering 

matrix is then obtained as described in Section 2 once the boundary conditions are applied. The ma-

terial properties are: density 7800kg/m3, Young’s modulus 206GPa, Poisson’s ratio 0.3. 
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3.1 Symmetric change of area 

Figure 2 depicts a schematic figure of the case considered, showing also the WFE discretization 

together with the geometrical properties.  

 

 

Figure 2: Symmetric discontinuity: WFE discretization using 12 plane elements for section A and 4 plane 

elements for section B.  

Figure 3 shows the comparison between the dispersion curves obtained by the WFE and those 

obtained analytically for an equivalent beam in bending motion (Euler-Bernoulli beam) and a bar in 

axial motion. It can be seen that there is a large discrepancy at high frequency due to the Euler-

Bernoulli model. In the following, wavemodes up to 200kHz are considered, therefore only the bend-

ing propagating, longitudinal propagating and bending nearfield waves are assumed here. 

 

Figure 3: Complex dispersion curves: a) waveguide A; b) waveguide B.  WFE solutions: blue lines for 

positive going waves; green lines for negative going waves; analytical solutions.  

3.1.1 Incident bending and longitudinal propagating wave: reflection and transmission co-
efficients; comparison with analytical results.  

Consider a bending propagating wave incident upon the change of the cross section. Figures 4 and 

5 show the reflection and transmission coefficients for the reflected and transmitted bending and lon-

gitudinal waves. Results for the nearfield waves are omitted since they are decaying waves with no 

energy flow in the case considered (although these nearfield waves are important at the discontinuity). 

In Figs. 4 and 5 the reflection and transmission coefficients are compared with those obtained analyt-

ically. Results show that there is a very good agreement between the analytical and the results ob-

tained from Eq. (4) for frequencies lower than about 50kHz. The difference in the absolute value of 

the transmission coefficient is due to the better FE description in terms of the nodal displacements in 

the two directions x and y at the discontinuity. Discrepancies at high frequency (>50kHz) are due to 

the differences in the models (failure of the analytical beam and bar model) as it can be also seen in 

Fig. 3. 

a) b) 
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Figure 4: Symmetric change of cross-sectional area. Reflection coefficients: a) absolute value; b) phase. 

 

Figure 5: Symmetric change of cross-sectional area. Transmission coefficients: a) absolute value; b) phase.  

 

3.1.2 Incident bending wave: power reflection and transmission coefficients and time-av-
eraged kinetic energy 

As an example, the results when a bending wave is incident are shown. Figure 6 shows the reflec-

tion and transmission power coefficients obtained using Eq. (7). Since there is no dissipation in the 

discontinuity the sum of the all reflected and transmitted power is one, as expected. It can be seen 

that only coefficients associated with the bending modes are greater than zero, and that the behaviour 

changes around the point in which the nearfield bending wavemode crosses the longitudinal wave-

mode in Fig. 3(a). Due to the symmetry, theoretically there is no wavemode conversion at the discon-

tinuity. This can be evaluated easily considering the power reflection and transmission coefficients 

and the time-averaged kinetic energy content in the x and y directions with respect to the total time 

averaged kinetic energy for both reflected and transmitted waves. Figure 7(a) shows the percentage 

of the incident time-averaged kinetic energy in the x and y direction with respect to the total incident 

time-averaged kinetic energy associated with the bending wave. Figure 7(b) shows the reflected and 

transmitted time-averaged kinetic energy in the x and y direction with respect to the total reflected 

and transmitted time-averaged kinetic energy. It can be seen that as frequency increases, the percent-

age of the time-averaged kinetic energy in the y direction decreases and the percentage of the time-

averaged kinetic energy in the x direction increases. In particular, it can be seen there is an exchange 

of the two behaviours around the frequency in which the nearfield bending dispersion curve crosses 

the longitudinal dispersion curve, see Fig. 3. 

a) b) 

a) b) 
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Figure 6: Symmetric change of cress-sectional area. Power reflection and transmission coefficients.  

  

Figure 7: Symmetric change of cross-sectional area. Percentage of the time-averaged kinetic energy in the x 

and y direction with respect to the total time-averaged kinetic energy: a) incident bending wave, b) reflected 

and transmitted waves 

3.2 Non-symmetric change of area 

In this section the results in terms of power reflection and transmission coefficients and time-

averaged kinetic energy are shown for a non-symmetrical change of area, as depicted in Fig. 8. Two 

cases are considered as shown in Figs. 8(a) and 8(b). These are referred to as case 1 and case 2.  

 

Figure 8: Non-symmetric discontinuity: a) case 1; b) case 2. 

3.2.1 Incident bending wave: power reflection and transmission coefficients and time-av-
eraged kinetic energy 

Consider a pure bending propagating wave incident upon the non-symmetric discontinuity. Fig-

ure 9 shows the reflected and transmitted power coefficients, while Fig. 10 shows the reflected and 

a) b) 

a) b) 
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transmitted time-averaged kinetic energy in the x and y directions with respect to the total reflected 

and transmitted time-averaged kinetic energy. Compared to the previous case it can be seen that, in 

the frequency range considered, there is a significant mode conversion for case 1 and almost no re-

flection for case 2. Comparing Fig. 9 with Fig. 6, it can be seen that the power coefficients for the 

longitudinal reflected and transmitted modes are greater than zero for case 1, while almost all the 

energy flow associated with the incident bending wave is transmitted for case 2. In particular Fig. 9(b) 

shows that higher frequencies (shorter wavelength), must be considered to evaluate the  reflection in 

case 2. Considering the percentage of the time-averaged kinetic energy in the x and y direction, 

Figs. 10(a) and (b) show that the reflected and transmitted waves have different energy contents in 

the x and y directions for both case 1 and 2 with respect to an incident bending wave as showed in 

Fig. 7(a). This shows a change in the cross-sectional displacements for the reflected and transmitted 

waves with respect to the nature of the incident wave. 

 

Figure 9: Non-symmetric change of cross-sectional area. Power reflection and transmission coefficients for 

case 1, (a), and case 2, (b). 

 

 

Figure 10: Non-symmetric change of cross-sectional area. Percentage of the time-averaged kinetic energy in 

the x and y direction with respect to the total time-averaged kinetic for case 1, (a), and case 2, (b). 

4. Conclusions  

In this paper, the scattering of waves induced by an incident wavefield on a change in cross-

section of a one-dimensional waveguide is modelled using a wave matrix approach. A WFE model 

is applied to determine the wavemodes using FE plane elements discretized through the cross-section 

of the waveguides. This model can describe both rich wave behaviour and wavemode conversion. 

Results are given in terms of the reflection and transmission coefficients and in terms of the energy 

content in the reflected and transmitted disturbances up to high frequency. At low frequency, com-

parison between the numerical results and those obtained by an analytical model in the case of a 

a) b) 

a) b) 



ICSV24, London, 23-27 July 2017 
 

 

8  ICSV24, London, 23-27  July 2017 

symmetric change of area has shown that the method can predict scattering with very good accuracy.  

Scattering in the case of a non-symmetric change of cross-sectional area is shown in terms of power 

reflection and transmission coefficients and energy content in the reflected and transmitted disturb-

ances. The approach has been seen to be efficient in modelling wave reflection and transmission, and 

the intention is to use it to investigate the wave scattering from symmetric and non-symmetric dam-

ages. Deeper investigation of wave scattering behaviour at high frequency, including higher order 

wavemode, is the subject of on-going work. 
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