
 

INVESTIGATION OF AEROACOUSTICS PROBLEMS USING 
A DISCONTINUOUS GALERKIN SPECTRAL ELEMENT 
METHOD 
Bao Zhenzhong and Qin Guoliang 
Xi’an Jiaotong University, Department of Fluid Mechanics and Engineering, Xi’an 710049, P R China 
email: onebao@stu.xjtu.edu.cn 

Needs of accurate and efficient numerical solvers in CAA have motivated the development of 
low-dispersion and low-dissipation schemes, the capabilities of the high resolution discontinuous 
Galerkin spectral element method for the simulation of aeroacoustic problems are investigated in 
the present work. The linearized Euler equation is discretizationed by discontinuous Galerkin 
spectral element method in space and the classical fourth order Runge-Kutta method in time 
marching, the characteristic absorbing boundary condition is adopted too, and the Riemann’s 
problem presented in linearized Euler equation is tackled by a HLL numerical flux. Two 
dimensional example of a convected isentropic vortex is computed with three different meshes to 
demonstrate the high accuracy of the proposed method. The exponential convergence can be 
obtained for a fixed mesh and increasing local polynomial order, then it is proved that the 
discontinuous Galerkin spectral element method has the h/p convergence property. The sound 
scattering by a cylinder is also simulated and the numerical results are compared with the 
analytical data. It is shown that the numerical results agree well with the analytical data. The 
paper can provide a theoretical foundation for solving the computational aeroacoustics problems 
with a high order of accuracy. 
Key words: computational aeroacoustics, discontinuous Galerkin method, spectral  
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1. Introduction 

With the rapid advancement of high-speed computational capability, the Computational fluid 
dynamics (CFD) have been used widely in science and engineering. However, traditional CFD 
methods that are aimed at dealing with fluid dynamics problems numerically cannot meet the 
demand of aeroacoustic problems. Therefore, the CAA (Computational Aero-acoustic) have been 
developed since 1990s [1-3].  

Needs of accurate and efficient numerical solvers in CAA have motivated the development of 
low-dispersion and low-dissipation schemes. Discontinuous Galerkin spectral element method 
(DG-SEM) [4,5] is the combining of the discontinuous Galerkin method [6] and spectral element 
method (SEM) [7], so which features the goodness of two technologies. The spectral element 
method is an advanced implementation of the finite element method in which the solution over each 
element is expressed in terms of a priori unknown values at carefully selected spectral nodes. The 
advantage of the SEM is that stable solution algorithms and high accuracy can be achieved with a low 
number of elements. Additionally, SEM is also very well suited to deal with complicated geometries. 
The DG methods can easily handle adaptivity strategies, and since the elements are discontinuous, 
the resulting mass matrix is block-diagonal, so the DG methods can be highly parallelized. 



So far DG-SEM has not been widely used in CAA area. The dispersion and dissipation properties 
of the Gauss and Gauss-Lobatto DG-SEM have been well studied by means of theory (can be found 
in [5]). Muhammed et al. [8] applied the DG-SEM for studying the sound generate and acoustic 
feedback mechanisms at a side-view mirror by solving the fully compressible Navier-Stokes 
equations, however, the computational cost is very expensive. David et al. [9] researched the 
trailing edge noise for airfoil flows at medium Reynolds numbers, and this demonstrated the 
capabilities of DG-SEM for the accurate numerical simulation of the complex aeroacoustic problems. 
In this work, an investigation is conducted in order to evaluate the scheme order and acoustic 
propagation problems. 

The remainder of this paper is organized as follows. In Section 2 we provide a description of the 
linearized Euler equation for acoustic propagation problems, and the governing equation will then be 
discretized by DG-SEM in space and classical fourth order Runge-Kutta method in time marching. In 
Section 3, the isentropic vortex propagation case and the acoustic wave scatting by a circular cylinder 
are investigated in detail. Finally, Section 4 contains the conclusions of our work. 
 

2. Theory 

2.1 Governing equation 
In theory flow variables and acoustic variables are all governed by the fully compressible 

Navier-Stokes equations. However, given the large computational cost, the simplified solution of 
acoustic propagation problems can be numerically simulated by solving the LEE. 

LEE in conservative form can be written as:  
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， ,and U is the vector of conservative variable,  1F U ,  2F U are the 
two-dimensional flux vectors, respectively. S is a source term, which can contain an initial condition 
of a pressure disturbance, or a possible unsteady sources in the flow field. The corresponding 
expression is as follows, 
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Here  is the density, P is the pressure, u,v are the Cartesian velocity components and E is the total 
energy. The system is completed by the following equation of state for a perfect gas,                                              
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where  is the ratio of specific heats. 

2.2 Spatial and time discretization  
In the present paper, we adopt the DG-SEM to discretize the governing equation in space. First, 

subdivide the domain  into Nel non-overlapping elements, Each spectral element is mapped into a 

standard element [-1,1]. Trial functions    
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 , where P is the interpolation order. One 

dimensional basis functions is defined in the standard element by the following: 
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where  11
1

,
pP   is 1,1 Jacobi polynomials. 

Then, with the common Galerkin approach the test functions lw are chosen identical to the basis 
functions, and by integrating over the reference element and using a spatial integration by parts we 
obtain the weak formulation of DG-SEM formulation. 
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wheren represents the outward unit normal vector out of the element at the boundaries. 
Communication between the elements in the DG-SEM formulation is achieved through the 

interface numerical flux. The HLL numerical flux [10] adopted in this paper is as follows: 

(6)         

 
     

 

0 ,

0 ,

0 ,

L

R L L R
L R

R L

R

S

S S S S
S S

S S
S



   



 


     
 

F U

F U F U U U
F

F U


  

where 0c is the speed of sound， LS , RS  are the wave speeds on the left and right of the interface, 
respectively.  0maxLS u c  ，  0minRS u c  。 

Then substitute basis functions and numerical flux back in Eq.(4) to get the semi-discretization 
system: 
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The classical fourth order Runge-Kutta method is applied in time marching. And in order to 
suppress the spurious waves which are generated by truncating the unbounded domain, the 
characteristic absorbing boundary condition [11] is adopted too. This also would lead to a 
significant reduction in computational cost, especially for the three-dimensional large-scale 
numerical simulation. 

3. Results and discussion 

3.1 Isentropic vortex case for numerical convergence studies 
A convected isentropic vortex propagation problem [12] in the inviscid flow is computed with 

three different meshes to investigate the convergence property of the proposed method. The 
background flow is   0 0 0 0 1111 ,u ,v , p , , , . And the initial condition is a linear superposition of a 
homogeneous background flow field and an isentropic vortex:   1 1 1 1         ,u,v, p , u, v, p . 
These isentropic vortex perturbations (no perturbation in entropy) are given by (density, pressure 
and static temperature in a non-dimensional form ): 
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where    2 22 5 5r x y    ，the vortex strength is=5, and for air 1 4.  . 
The numerical computations are performed in the domain    0 10 0 10, ,   . The time step chosen 

was small enough so that the temporal error can be negligible. In addition, the periodic boundary 
conditions were imposed on the boundaries. The exact solution of the LEE with the above initial 
conditions is just the passive convection of the isentropic vortex along the positive diagonal axis. 

Table 1: Accuracy on the isentropic vortex test case at t=10 

Order of 
accuracy Mesh 2L  

error 
2L  

order 
L  

error 
L  

order 
 3 
 

10×10 
20×20 
40×40 
80×80 

8.78E-03 
1.96E-03 
2.50E-04 
3.27E-05 

— 
2.16 
2.97 
2.93 

2.28E-02 
4.00E-03 
5.15E-04 
6.43E-05 

— 
2.51 
2.96 
3.00 

 4 10×10 
20×20 
40×40 
80×80 

4.03E-03 
2.16E-04 
1.74E-05 
1.16E-06 

— 
4.22 
3.63 
3.91 

8.00E-03 
5.52E-04 
5.52E-05 
4.31E-06 

— 
3.86 
3.32 
3.68 

 
The accuracy results at t=10 for different order of accuracy and mesh (structured squares 

elements) are given in Table 1. The numerical results showed that the DG-SEM has achieved the 
desired order of accuracy except the third order scheme on relatively sparse mesh. The numerical 
order of accuracy can be defined as below expression: 
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where mE 、 nE are the some kind of error norm between numerical results with analytical results, 
respectively. mh , nh  are the grid scales on the different meshes. 

Moreover, in order to investigate the convergence property of this case, we applied three 
different grid system: a structured squares mesh with 400 elements, a structured triangle mesh with 
392 elements and an unstructured triangle mesh with 374 elements, which are all generated by 
Gmsh [13], an open-source finite element grid software. 2L error convergence curves for different 
mesh are presented in Fig. 1. As can be seen from the Fig. 1(a), Fig. 1(b) and Fig. 1(c), the 
exponential convergence can be obtained for a fixed mesh with increasing local polynomial order, 
then the error almost remained stable after polynomial order reached a certain value, suggesting that 
due to the round-off error, the calculations reached machine error levels. Besides, if we ignore the 
small discrepancies of element numbers between structured squares mesh and triangle mesh, It can 
also be indicated that the structured squares mesh can obtain a faster convergence than the other two 
meshes in this case. Fig. 1(d) shows the arithmetic convergence (h refinement) and the exponential 
convergence (p refinement) of the DG-SEM. 



 

 
(a) Structured squares mesh 

 
(b) Structured triangle mesh 

 
(c)  Unstructured triangle mesh 

 
(d) p and h convergence 

Figure 1: 2L error convergence curves for different meshes.

3.2 Acoustic wave scatting by a circular cylinder 
The acoustic wave scatting problem from the Second CAA workshop [14] is a simplified model 

in which the sound field generated by a propeller is scattered off by the fuselage of an aircraft. The 
computational domain and the element mesh are shown in Fig. 2. 1830 unstructured triangle 
elements and a time step t = 0.005 are used. A circular cylinder with radius r = 0.5 is located at the 
origin. The three monitoring points are: A (r=5, θ=900), B (r=5, θ=1350) and C (r=5, θ=1800), 
respectively. In this study the characteristic absorbing boundary condition is also applied to 
suppress the spurious waves, which are generated by truncating the unbounded domain. The 
Gaussian pressure pulse at (x, y) = (4,0) is given by the initial condition.  
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Figure 2: Element mesh for acoustic wave scatting by a circular cylinder. 

The instantaneous snapshots of the acoustic pressure perturbation at the time t=2,4,6,8 are shown 
in Fig. 3. The reflected wave and deflected wave are also captured when the wave front passes 
through the cylinder surface. As can be seen from the below graph, the acoustic pulse has already 
reached the out boundary at the time t=8, it can be indicated that the absorbing boundary condition 
worked well for wave propagation in unbounded domains. Comparison in time of the exact results 
of pressure with computed results at the three different monitoring points are illustrated in Fig. 4. 
Numerical solutions are in good agreement with the analytical solutions. As a result of wave 
reflection and diffraction, the amplitude of acoustic pressure at point B and C are lower than the 
point A.  

 

Figure 3: contoursaneous pressure contoures of acoustic wave scattered by a circular cylinder. (10 contour 
levels between -0.04 and 0.04) 



 

 

Figure 4: Comparison in time of exact results of pressure with computed results at the three different 
monitoring points. 

4. Conclusions 

In the present study, the capabilities of the DG-SEM for the accurate simulation of the acoustic 
propagation problems using the linearized Euler equation were investigated. The numerical 
accuracies are verified by the case of a convected isentropic vortex, and the results showed that the 
DG-SEM can be used for numerical computation with high resolution, due to its properties of   
exponential convergence. Furthermore, we applied the DG-SEM to solve the case of acoustic wave 
scatting by a circular cylinder on unstructured triangle mesh. Compared with the available exact 
results demonstrated the accuracy and flexibility on complex geometries. Future work will 
investigate the flow-induced noise problems by hybrid methodology with the DG-SEM.  
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