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1. INTRODUCTION

The tome quality of a stringed musical instrument is governed by the
vibrational characteristics of its bedy, but understanding the relationships
between these vibrations and the imstrument’'s comstruction is a long-standing
grr:blem in musical acoustics.  Although it has received considerable attention

m experimental scientists and makers, their results are inconclusive
because of the difficulty of adjusting only onme parameter at a time. One
major obstacle is that no “two pieces of wood have identical material
properties, even when they are cut from the same tree. Thus it is impossible
to make precise copies of instruments let alone introduce deliberate and
controlled differences. A more quantitative approach, as proposed here, is to
develop a mathematical model of the instrument which predicts the sound
radiated to an arbitrary point in space from information relating to the
instrument’s dimensions, wood properties and string excitation. The musical
significance of systematic changes to the structure can then be assessed by
ear,

Barly work of this research group concentrated on experimental observations of
the modes of vibration and sound , radistion fields of guitars in both their
finished state and also at various stages of comstruction. Work has also been
carried out on the physical interaction between the player and the instrument
and on the coupling of strings to the body. Tbe experimental work identified
acoustically important componeut% of these systems and allowed us to develop a
rudimentary model of the guitar'’. The purpose of this paper is to introduce
the theoretical background of a more advanced model and briefly report on our
findings. We use the finite element method to calculate the normal modes of
plates and air cavities,  Subsequent calculations allow us to determine the
input admittance of the body, the coupling between the body and the strings,
end also, with some simplifications, to compute the far-field acoustic
rediation from the instrument. In effect, we are using information about the
construction of the instrument and its material properties to compute the
transfer function between the plucking point on the string and am arbitrary
point in' the acoustic field. This transfer function can be used to generate
sounds giving a umique opportunity to directly assess the relationships
between guitar tone quality and construction,

2. THEORY

Following !he treatment of Gough™, we consider the transverse vibrations of
a dJamped string of mass m, length L and tension T coupled via the bridge to a
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single structural resomance of the body. If a sinuscidal driving force
Fexp(jwr) is applied to a position x, along the string, the amplitude of the
nth string harmoni¢ is given by ’
2 Fsin(knxo) + nnz.
a, = & .o (1)
S{w) .

where S{w) = mn’ -w 4+ jw’/Qs, k" = nn/l, w n2 = Tknzlm and Q, is the

Q-value of the string resonance.

In comparison with a string mounted rigidly, the yielding support introduces
an additional term %Tknz/S(w), which arises from considerations of energy

flow into or out of the bridge. The structural resomance itself is treated as
& simple harmonic oscillator of resonanmt frequency @p, and Q-value Qb with an

effective mass M, at the bridge. The bridge thus moves with a displacement
zexpljeot) under the action of the string force ﬂcnanexp(jmt), where
Tk a%n

Z=w ---(2)

and B(w) = (wb’ -+ jw’/Qb).

Eliminating a, from equations (1) and (2) gives the transfer admittance x,
between the excitation point and the bridge. Hence

2w sin(knxo) Tk,
Mym B(w) S{w) - 27k}
X, is then summed over all string modes (1) and all body modes (b to find
x{w).

Now that the velocity at the bridge is kmown explicitly, the velocity v, of

all other plate elements can be determined from the mode eigenfunctions. The
total sound pressure radiated to an arbitrary point s is then calculated by
treating each eclement as a simple source a distance R, from r and summing over

all elements:

x, = 2/F = §

plr.wg) = z J 3-‘:[—’3 p, Ay, expj(wr-kR,)
]
e
where A4 Ve is the volume velocity of each element vibrating in a particular
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mode, 2, is the density of air, ¥ = «w/c and c is the speed of sound in air

The finite element calcwlations do not include the interactions between the
vibrating plate and the air modes of the cavity. The most important of these
is the well-known coupling exhibited between the fundamental mode of the plate
(Figure 1a) and the Helmholtz mode of the cavity. This splits the fundamental
plate resonance and also introduces significant radiation from the sound-hole.

Incorporating the Newtonian model of Christensen and Vistisen!”) allows us to
account for coupling between the fundamental plate mode and the air cavity
resonance, of resomant frequency @y and Q-value Qh' Introducing the coupling

.modifies equation (2), which becomes

Tknan Hiw) @
My [B'(0) H(w) - BT o

where H(w) = (@,° - & + jo'/Q,) .

The coupling Eearamcter f°, which is described fully by Cbristensen and
Vistisen, can determined from quantities obtained explicitly from finite
clement data and from details of the cavity. We note that w, must also be

modified to include the added "stiffness” induced by the backing air cavity,
giving B’ (w).
The transfer admittance for the mh string mode coupled to the plate-air
gystem then becomes

2w sin(k’fo) Tkn Hiw)

Mym (B’ (@) H(w) - £l S(w) - zﬁn’mm)

X, =1

Finally, the sound field is summed as before, but we must now 'mclui!e an
additional contribution from the sound-bole. The volome velocity of the
sound-hole source is given by

w,? H(w)
fwhz - w') + 04/Qh3.

where Av is the total volume wvelocity of the whole plate vibrating in its
fundamental mode. Experimental observations show that, to a good
approximation, it is valld to retain the same ecigenfunction for the
fundamental mode of the plate after it has coupled to the air cavity
resonance.

A Wh = -Av
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3. RESULTS AND DISCUSSION

Finite element calculations were performed using LUSAS on a large mainframe
computer at }Pe South West Universities Regional Computing Centre, As in our
eartier workl, the model consists of a top plate, complete with struts and
bridge, fixed at its edges. Typical output is shown inm Figure 1. The
cigenfunction data was then reduced for local processing. Numerical solutions
were derived for y{w) and p(r.w) on an IBEI PC equipped with a maths
co-processor  and  digital-to-analogue interface.  Typical results are shown in
Figure 2. Note the presence of resonance 5 due to the air cavity and body
modes as well as string resonances. ¢ linearly decreasing phase in the
pressure response, which dominates the fine structure, merely represents the
propagation delay of the signal to the observation point. The complex sound.
pressure data was then Fourier transformed to obtain impulse responmses of the
system. Since plocking the string is virtwally identical to impulsive
excitation, these time-domain signals were used to comstruct note sequences
which could be used for comparative listening tests.

(¢) 612 Hz () 672 Hz (3) 738 Hz () 864 Hz

Figure 1. Contour plots of top-plate eigenfunctions calculated by the finite
clement method. The plate is fully strutted and includes the bridge. The
plate thickness is 2-6 mm.
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Figure 2. Calculations of transfer admittance x(w)} and sound pressure p(w).
String partials are marked by dots. A high note (588 Hz) was used in this
cxample so as to clearly differentiate between string resomances and body
resonances. p(w) is derived 1 m in front of the instrument. Reference levels
for the dB scales are arbitrary, -
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Figure 3. FFT analyses of guitar sounds, (a) Shows the variability of decay
rates to be seen amongst the partials. The fundamental decays extremely
rapidly because it couples strongly to a powerful body mode. (b) Shows detail
of the "body noise” which occurs in the transient. The component at 327 Hz is
due to the string; all other components are related directly to body modes.
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We have not yet undertakem systematic studies to investigate tbe relationships
between synthesised guitar sounds and parameters of comstruction, but early
experiments involving the thinning of plates from 30 mm to 2'2 mm clearly
indicate that audible changes  occur. The signals are severely
bandwidth-limited, mainly because of the lack of reliable mode data above
1 kHz,  Nevertheless, they demonstrate features in common with real tones,
such as frequency-dependent damping rates of string barmonics, string
anharmonicity (due to strong coupling between the string and body) and the
presence of "body ncise” (Figure 3).

One interesting observation from this work, or from experimental work for that
matter, is the apparent similarity between modes of different instruments,
What is important, however, are the subtle changes which occur in the vicinity
of the bridge. Tiny changes in the positions of the nodal lines cam have a
profound effect on the transfer admittance and thus substantially modify the
sound of the instrument. These sort of changes are likely to be more
important than shifts in mode frequencies, for example.

One other aspect we have investigated with the model is the possibility of
coupling between other plate modes and the Helmholiz cavity mode. Any plate
mode which induces volume changes in the cavity has the ability to couple. We
have performed calculations and shown that small frequency perturbations of
modes occur due to coupling, and that there are a small additional
contributions to the sound field from the sound-hole. For the particular
parameters involved in our modelled instruments, these effects would be
considered unimportant, but we suggest that this might not be typical. Many
classical guitars employ asymmetric cross bracing. e second mode of the top
plate (Figure 1b) then becomes asymmetric and induces cyclic volume changes of
the cavity. We suggest that in instruments with thin top plates, the resonant

uency of this mode might become low enmough to couple significantly to the

- cavity and enhance the response of the imstrument.

4. FUTURE DEVELOPMENTS OF THE MODEL

There are clearly severe limitations with a model of this kind. -One of the
most apparent is the limited bandwidth (less than about 1.6 kHz).  Although
there 15 a pgood understanding of the foaction of instruments in this
low-frequency range, the upper frequencies bave attracted much less attention,
though they are very important perceptually. One argument for concentrating
on the lower frequencies is that makers are likely to be able to control only
the lowest few resonances of the instrument and that rest *has to look after
itself",  Onme wonders, however, if the higher partials of guitar sounds are
related to more global properties of the instrument, such as material
properties or damping rather than mode shapes and frequencies. We are
Eerormin statistical studies of these higher partials in an attempt to cast
ight on the problem.
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Our current model takes no account of damping in the material or
of radiation damping, both of which are kmown to have an important influence
on the tome and playing qualities of instruments, Q-values used in the
calculations have to be derived from typical experimental data (values range
from about 70 to 20, the latter being associated with stromgly radiating
modes). Neither form of damping can be incorporated into our existing finite
element model, which is based on a commercial package. Material damping can
be included, but not for orthotropic materials, as we have here, which have
different damping properties along the material’s principal axes. Techniques
such as boundary elemeats can be incorporated into finite element programs to
simulate radiation reaction as well as providing a significant improvement in
the calculation of radiation fields, but these again are not available in
commercial packages in any form suitable for our -class of problem. The
solution is to write our own code, specific to our problem, to calculate
fluid-loaded, damped modes- of vibration of musical instrument structures. We
have a current project on an NCUBE 128-node parallel processor located in
Cardiff to tackle this problem.
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