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INTRODUCTIoN

Acoustic scattering from the ocean surface is a problem of

considerable interest and complexity. The surface wave amplitudes

clearly requirea statistical description and hence there are

close analogies with problems such as optical reflection from

random rough surfaces. In addition, however, the sea surface

varies in time and it is also necessary to consider a wide range

of surface wavelengths, from low—frequency swell to high—frequency

capillary waves.

The Kirchhoff approximation has long been used for such problems

and has on the one hand, the virtue of relative simplicity but, on

the other, the deficiency of an ill-defined range of

applicability. Moreover, there are cases where the approximation

always breaks down (large surface amplitude/wavelength ratios,

incident waves with small angle of incidence) and then one must

use more exact theories that can take account of multiple

interactions of the reflected acoustic wave with the sea-surface,

and attendant large fluctuations in the acoustic pressure field. ‘

(It may be noted here that the presence of large pressure

fluctuations does not necessarily imply that the Kirchhoff

approximation is invalid).

It is a straightforward matter to formulate the reflection problem

exactly as an integral equation on the surface, and indeed one can

go further and work out, under certain approximations, integral

equations for the various moments of the scattered field (e.g. Ito

[1]). Given an arbitrary rough surface, however, it is not so

straightforward to solve the integral equation for the pressure.

For the special case of a regular sinusoidal surface (spatially

one-dimensional and time—independent) Holford [2] has derived an

eigenfunction expansion procedure and McCammon and McDaniel [3]

have usedthis same technique to obtain reliable solutions to the

basic integral equation for a wide range of parameters. This

method uses the periodicity of the surface to obtain an integral

equation over only one period of the sinusoid, thus allowing

convenient numerical evaluation. For more general aperiodic

surfaces, this is not possible, but one can exploit the local

nature of the fluctuations, particularly close to the surface.

Since constructive interference generates intensity peaks,

contributions from distant, and hence uncorrelated parts of the

surface, tend to be less significant than they are in problems

involving regular surfaces. This property makes it

possible to solve reflection problems using only a fairly limited

portion of the surface, even for plane wave illumination. In this

paper we consider the class of time-independent, one—dimensional,
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randomly modulated surfaces, where the amplitude function obeys
Gaussian statistics. For the sea—surface Gaussianity is a
reasonable approximation (see, e.g. Phillips [4]). The
time-independence is clearly unrealistic, but the present model
extends trivially to the time varying case, so long as the time
taken for the acoustic wave to propagate is small compared to the
time scale of the surface waves. This requirement is generally
satisfied in practice and so time appears only parametrically in
the wave equation. The current method involves inverting an NxN
matrix, where typically N must be between 64 and 256, for adequate
resolution in practical situations. Thus extension to the 2—D
spatial problem is not trivial, although increased localization
effects may help.

The overall approach envisaged for the acoustic wave—field is to
solve for a number of realizations of the rough surface and then
to average over these realizations. Such Monte Carlo methods hav
been used successfully for may types of problem, in particular, '
wave propagation in extended random media (see, e.g. Macaskill and
Ewart [5]). In the present preliminary work, we concentrate on
vthe basic problem of evaluating the reflected acoustic field for a
single realization of the rough surface.

Direct collocation of the integral equation is not a useful
approach, due to the very high resolution required in order to
deal with high frequency acoustic waves. This problem is overcome
in the present paper by transforming to the spectral domain. The
method is essentially a re—working of the Holford [2] approach in
terms of discrete Fourier transforms. The method appears quite
general, and in fact may have applications for other types of
integral equations, although this possibility has not been
explored.

The body of the paper describes, in some detail, the numerical
technique used, emphasizing the setting—up of the matrix equation
‘that is inverted to find the Fourier transform of the pressure
gradient on the rough surface. From these values the pressure at
any point in the medium can be found, and a technique is given for
doing this. To test the numerical method, the sinusoidal surface
is treated first, and satisfactory agreement with previous results
of McCammon and McDaniel [3] is obtained. Results for a
particular realization of a surface with a Gaussian correlation
function are then presented, and compared with Kirchhoff results
for a variety of incident angles and surface amplitudes. The
effects of multiple scattering at the surface are clearly apparent
in some of these results and shadowing is properly treated.

FORMULATION AND NUMERICAL SOLUTION OF THE INTEGRAL EQUATION

We non—dimensionalize the analysis by scaling the horizontal
coordinate (range) by L, the vertical coordinate (depth) by_kL2
and the surface by h. L is the correlation length and h2 the
variance of a surface realization (which is taken to have zero
mean) and k is the wavenumber of the incident wave.
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The pressure field away from a surface 2 = fii2§(x) can then be

written as ’

p(x,z) = pinc(x,z) + ps(x,z) , ' 11)

where the incoming wave pinc is given by

'fi _ fipinC — el (“ex 702) (2)
with k = kL, do = cos 6, yo = sin e, 9 being the incident

angle measured from the horizontal.

The scattered field is (Meecham [5])

_ fl r” (1) A _ . .PS - z 1-3””“0 k'E 5' d" ' ‘3’
where E = (x,kz), E' = (x',h§(x')), h = h/L

and W(x) = i - i 32 + h;'(x) EB hc(x)
\ E k 32 3x_z =

kL2 '

It can also be shown (Meecham [5], Holford [2]) that W(x) itself

satisfies a Fredholm second kind integral equation on the surface,

namely

\l’(x) + if: J_w~y(x')x(x',x)dx' = Minoan) , (4)

where . wine: _(Yo + aofic,(x))eik(xao-hC(x)Yo)

1 Hf1)(kp) -
and K(x',x) = E ———3———-[;(X') - C(x) - (X'—X)C'(X)] (5)

with p2 = (x'-x)2 + h2[c(x') - C(XH2 -

Note that the integral equation is singular due to the limits of

integration but the kernel itself is not, having the behaviour

I:

K(XIIX)’\I—l'____.z.;._.(x—) asp-)0.

2nfi 1+(fic-(x))2
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The choice of collocation points in any discretization of the
kernel is thus not crucial.

For convenience we introduce a new unknown W = e_1ku0x W where W
can be interpreted as a slowly varying envelope. The form of

_ ' l _

(4) is unchanged but the kernel is now K Kelkm‘)(x x).
Similarly (3) becomes

Ps(r) = EJ eik“ x"o w<x)H§1)[§|E—5'|]dx'. (6)
—no

For simplicity we henceforth drop the overbar.

To solve (4) for W(x) we generalize the method of Holford [2] to

deal with non-periodic surfaces. More specifically, a method is

needed which deals with arbitrary surfaces which in addition may

be known only at a discrete set of points. To model a sea

surface, for example, where the spectrum is given, FFT techniques

are required to generate a realization of the "surface".
Accordingly, we discretize and approximate (4) by letting (without

loss of generality since we are free to choose the horizontal
origin)

x = xj = ij j = 0,1,...,N—l

x' = xi = RAX l = 0,1,...,N—l .

Then

N-l

W- + Ax K _W ‘= 2W,
3 i=0 2] 2 1an (7)

' - = . = l
where W] W(xj) and ng K(x£,xj)

Defining a discrete transform pair in the normal way,

A N-l _ .. .
wn = l n w_e 2n13n/N (8)

N j=o J

N-l A . . _ .w. = Z w e2ninj/N I V y (9)

3 'n=0 n . '

' 1N_1 -2ni'n/N '
and applying the operator —2 e 3 to (7) we obtain

Nj=0

A xix—1 A A
w + NAx w = 2w. ' (10)
n m=o m mn, incn ,-
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1 N-l~N—l _ -- .where an = fiz z 2 Klje Zflljn/N eZnilm/N (ll)

j=0 2:0

The matrix equation (10) may be inverted to find the WP with the

matrix elements calculated using a 2—D Fast Fourier Transform.

As in the sinusoidal case (Holford [2], Uretsky [7]). the

pressure field maynbe calculated directly from the transformed
normal derivative W to give

N-l .A ' .Az . .
P (x 'z) = Z R eikooxj elk er eZerJ/N (12)
s ] r=0 r

where Y Olll'I-I _ l I

 

= l - [Zflr + ‘2 for ra E
ENAx 0J 2

2
r

(13)
_ ‘2 N

1- [Em—N)+%J —,...,N-l .A for r = ,
kNAx z

The reflection coefficients, Rr, are given by

1 N—l A 1 AA

Rr = fi2§_0 Wm EVr Cr—m(kth) (l4)

N-l
where Cr(r) = 2

n=0
A more detailed description of this analysis willbe given
elsewhere.

e—iTC(Xn) e-2wirn/N
o

Specialization of these results to a truly periodic surface, for
example a sinusoid of wavelength A, is made by letting
L = A, NAx = A and xk = £Ax + qA where q = —NQ,...,0,...,NQ,

where the surface is implicitly truncated to (2NQ+1) periods.
The matrix equation (7) remains unchanged in form but Klj is»

NO
now defined as Z K(Xi,Xj). The formulation is then

. q=_NQ

equivalent to those of Holford [2] and McCammon and McDaniel [3].

RESULTS AND DISCUSSION

It is well known that acoustic energy is scattered by a sinusoidal
surface in certain discrete non-specular directions given by the
Bragg angles. In the present formulation, this is equivalent to
exciting only some of the real reflection coefficients Rr in (12),
the rest being zero or negligible. For a general surface, however,
we do not necessarily expect the scattered energy to be propagated
in only a few directions. All modes may be excited in an
essentially continuous distribution of energy with angle with
perhaps a "smearing" around some preferred directions. The
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reflection coefficients, however, must satisfy energy conservation
(Uretsky [7]), namely that the reflected energy E must satisfy

_ ZYI'E:Re{§[er fi}=1,

bearing in mind that this should not be the sole criterion for the
convergence of any numerical scheme.

Table 1 shows a comparison of some E values of McCammon and
McDaniel [3, Table l] with the present values for a sinusoidal
surface with 16 points per wavelength (N = 16). Unfortunately,
McCammon and McDaniel gave no indication of how many kernel terms
(NQ in the previous section) they used— here NQ = 150 for the
figures in Table 1. Moreover, they calculated the reflection
coefficients analytically from the values for the

A
transformed normal derivative WP so a direct comparison is of

limited usefulness. The curves of reflection coefficient obtained,

however, were essentially identical to those of McCammon and
McDaniel [3], so that agreement with the sinusoidal case can be
claimed with some confidence.

15
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Table l: Reflected energies E of [3] compared
with the present results for a sinusoidal

surface with 13 = .1588 and E 12.4. FS =
full solution, KA = Kirchhoff approximation.

)1

It is clear from the value of NQ used in Table 1 that a very long
surface (about three hundred surface wavelengths) is needed to
adequately predict local intensity patterns. This is due to the
periodic nature of the surface with disturbances caused by
individual surface features constructively interfering. We expect
that for an aperiodic surface, effects from ranges of, say,
several correlation lengths will interfere destructively and thus
not contribute greatly to the near field. This reduction in the
amount of surface required is of great benefit since (10) r ,
indicates we must invert a matrix equal in size to the number of
points taken on the surface.

The major results shown inthis section used a 256 point Gaussianly
distributed surface with a Gaussian correlation function and 32
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M

Fig. 1! The surface used in Figs 2, 3 with h = %.

points per correlation length (see Fig. 1). Different correlation

functions will be examined in future work. As a preliminary

investigation, we compare the present numerical results with the

Kirchhoff approximation (KA), made by neglecting the kernel term

an in (10) (so avoiding a matrix inversion). The KA is

generally considered to be a high-frequency, small slope

approximation, though exact interpretations vary (see, for example,

Wirgin [8]). It would appear from the scalings of the previous '

section, that the KA should be valid for 12 >> 1 and 3 << 1.,
Figures 2,3 are waterfall plots of intensity for the surface of

Fig.1 and various depths such that z>cmax. Fig.2 showsa comparison

of the full numerical solution and the RA for

k = 50, h = 0.1 and e = 90U (normal incidence). The agreement

is excellent as is the energy balance in each case. Note that

kh = kh is not small. It can be shown in the limits k >> 1 and
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Fig. 2: Plots of intensity versus range for successive equally

spaced values of depths (A2 = .002). The graph on the left shows

_the full solution and on the right RA. The parameter

values used are h = .1, k = 50, 6 = 900 and 2min = .002.
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h << 1, the problem of surface scatter is equivalent to the

problem of transmission through a phase-changing screen which is

known to exhibit focusing effects precisely as in Fig.2 (Mercier

[9]). Equivalence of the two problems will be demonstrated

elsewhere.
AA A

' In Fig. 3(a), (b) we relax the conditions on k,h giving k = 15,
A
h = 1/a and e = 90° and 45° respectively. In this parameter
regime we have lost much of the focusing seen in Fig. 2. At this

greater surface roughness, on the other hand, multiple

interactions with the surface give rise to intensity fluctuations

nearer the surface. Energy conservation indicates that the KA is

still quite good for normal incidence (Fig. 3a) but, as expected,

is a poorer approximation for oblique incidence (Fig. 3b),

although the intensity plots are remarkably similar. We expect

any method of solution, in which a fixed length of surface is

considered, to deteriorate as we decrease the angle of incidence

since specular and near—specular reflections from other parts of

the surface contribute more and more to the scattered intensity in

the field of view. It is not clear as yet why the plots at

non-normal incidence are "smoother" than those at normal incidence.

In conclusion it has been demonstrated that numerical solutions can

be obtained for the fully elliptic problem of scattering from

a randomly modulated surface. It is interesting to note that the

Kirchhoff approximation appears to give more accurate answers for

the surface considered here, than is the case for a sinusoidal

surface.
.
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(b)

Fig. 3: As for Fig. 2 but with E = 1/3, 12 = 15, 2min = .0267 and
(a) e = 90°, (b) e = 45".
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