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INTRODUCTION

During the last five years there have been a number of important advances in
multiple scatter theory. As a result encouraging agreement was obtained between
the new theory and previously unexplained experimental data. In particular,

the time spectra of acoustic intensity fluctuations caused by ocean internal
waves [1], which failed to agree with the results of Rytov theory and its
modifications, now fitted the predictions of the new theory well [2], [3], [4].

These initial successes have led to many papers aimed at extending and
refining the theory. Much effort has also been devoted to investigating the
accuracy of the theoretical expressions. In this context numerical simulations
of random propagation have been particularly useful. Not only have they
provided a check on theoretical results but have also given us much insight
into properties of the wave-field fluctuations that cannot be obtained from
ensemble average expressions.,

In what follows we shall outline the new developments in theory and also
describe the accompanying advances in numerical simulations. However, there are
some important areas where theory still remains inadequate. For example, the
cross—correlation of intensity fluctuations at different wave—frequencies
cannot be satisfactorily described, nor can the probability distribution of the
intensity fluctuations be derived theoretically.

ADVANCES IN THEORY

The principal quantities associated with wave-field fluctuations in a random
medium that have prospects of being derived theoretically are the second and
fourth moments, m, and m, . The following equations for these moments have long

been known [5] ’ [%] ’
i 1
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where f;: is the normalized two point autocorrelation function of refractive
index fluctuations in the medium integrated in the direction of wave
propagation z, k is the wave number of the radiation, ¥; is the transverse

Laplacian 32 N 52 , and B is the power attenuation coefficient of the random
0x% dy?
. i i
medium.
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The second moment
The second moment m, describes the directional properties of the wave-field in
the medium and also its mean intensity. Equation (1) for m, can be solved
exactly for a number of useful cases including that of a point source. However,
the introduction of a systematic refractive index profile in the medium leads
to the appearance of curved ray paths and phenomena such as focussing, caustics
and shadow zones. In this case the second moment equation cannot be solved
exactly but various approximate methods such as eikonal series [7] and multi-
scale expansions [8] have allowed these effects to be described with varying

" degrees of accuracy.

The fourth moment
The fourth moment m_ describes the autocorrelation and variance of intensity
fluctuations. The following solution of (2) was obtained in 1982 [9], for plane

wave geometry, in the form of a multiple convolution for M, the Fourier
transform of m, )

M(v,2) = "(’z?lﬁN JJexp {"jgl R(E;,Qp) + i85 (v = vi-1)}
dv,e..dvg-y 5 dE;...dEy (3)
where
S h(E,Q) =1 - £(B) - £(Q) + E(E + Q) + E - Q,
Qj = Dy * vg-1 * et v;] Z/N,
N = 22 = 2Bz.

This can be evaluated approximately to give the following useful expression
Mo(v,2) = T Jexp {-2T é h(E; v [} - 2']) dz'} exp{-ivE} dt . A (4)

A similar solution for a point source [2] and a medium that varied in time
allowed a satisfactory explanation to be given for the acoustic intensity
fluctuations observed in the Cobb Seamount experiment Eﬂ. Rytov theory had
failed to account for these.

This initial success provided the impetus for extending and refining fourth
moment solutions. The next major step was to find a better estimate of the
miltiple convolution (3). This was done in 1983 [10} and the improved result
gave very good agreement with numerical simulations. (see Fig. 1)
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Fig, 1

Scintillation index for plane-wave geometry, I' = 1000. The full curve gives the
theoretical result and the points and error bars the results of numerical
simulations.

Two—-scale expansion :

The original solution of the fourth moment equation was obtained by multiple
convolution. However, other methods of solution were soon developed and it was
encouraging to find that they yielded the same results as before, both as
regards the fundamental approximation as well as the improved estimate, The
first of the alternative methods used was that of the two scale expansion [ld]
which assumes that the required moment contains two distinct spatial scales.
One of these is called the fast scale and the other the slow scale. Detailed
investigations of the fourth moment selutions were carried out using the two
scale method [11] and revealed much about the structure of the solutions.

Path integral methods

Tt had long been known that the various moments of the wave—~field in a random
medium can be written down in terms of the Feynman path integral [1Zj. This
approach has the advantage that a medium with a deterministic refractive index
profile can easily be dealt with, the ray paths arising naturally in the
process of evaluation of the integral. This approach was used successfully to
obtain the second moment m, [12]. It was subsequently used to find the fourth
moment m, [131, giving results that were identical with those obtained by
multiple convolution or two scale expansion. This extension of the fourth
moment solution represents the most general and flexible form available at
present, We shall now consider it in some detail.

General solution with profile :

The general form of the fundamental approximation to the fourth moment in the
case of a point source and an arbitrary deteymipistic refractive index .
profile is [13] -

. - | .
My(v,2) = TE%TW Jlexp {-2T I h(y,(2") ; u,(2")) daz'}

exp {-ik [vj(z) . v, (2]} dv,(2) | (5)
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where v, and v, are the solutions of the equations

vi(zh

ZI(Z') - ¥ (5a)

vI(Z') =y (2') . W+ kS(Z - 2") . (5b)

W is a matrix of derivatives of n,, the refractive 1ndex profile, along the ray
path S. Here S is the solution of the ray equation

§"(z') =Vny(s(z") ; z!) | (5¢)

The following features of the general solutions are important:

(a) It describes.a point source. In practice most sources are small and can be
well approximated by a point.

(b) Because of the presence of the refractive index proflle radiation from a
point source follows the. deterministic ray paths S(Z) in the absence of random
irregularities. The §(Z) are found by solving the ray equation-(5c). This is
important in applications to ocean acoustics because of the sound speed profile
that exists in all oceans. The solution (5) describes fluctuations due to
scattering about a single ray path, but solutions can be combined to deal with
convergence, zones where several rays arrive along separate paths.

(c) The 1ntegrat10n with respect to Z' in the exponent allows us to take into
account variation in the scaLterlng properties of the medium along the ray
path. Such variations can occur in real situations and it is important to be
able to deal with them.

(d) The ability to 1nc1ude curved ray paths allows us to deal with cases of
foci and caustlcs.

L1m1tat10ns of Carte51an coordlnates

The obvious flex1b111ty of the solution (5) means that it can be used in most
cases encountered in practical ocean acoustics. A more accurate result can be
achieved if necessary by the use of the next approximation which also handles
points (a) - (d) above but has a more complicated structure. Certain serious
objections have, however, been raised concerning the validity of the point
source solutions described above. It has been suggested |1l4| that because the
fourth moment was derived in a Cartesian system of coordinates the small
departure from a truly circular wave front encountered in this representation
leads to a large.cumulative error in the multiple scatter limit, and that the
solution could be grossly id error.

Curvilinear coordlnate systems

A recent major advance in scattering theory, relevant to the obJectlon mentioned
above, has been the formulation of the moment equations in general curvilinear
coordinate systems rather than in Cartesian coordinates In this way wave-
fronts expanding from péint sources can be dealt with exactly, while c¢urved

ray paths due to refractive index profiles can be made to coincide with the
curvilinear coordinates and the limitations of small ray excursion and curvature
can be removed. The only restriction now remaining is that the random
irregularities in the medium should cause the radiation to depart by only small
amounts from the deterministic ray paths.
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The introduction of curvilinear coordinates has also enabled us to answer the
question of the error arising when the wave-field from a point source is re-
presented in Cartesian coordinates. The fourth moment equation, written in
cylindrical coordinates, can be solved as a multiple convolution to give

N .
M(V,Z) = ?E%TN S lexp {Eél h(R; Wj 3 Ry Qj) + in (vj-Vj_l)}

dv, eee dvyg dy, ... d¥y (6)

where |

. _ N 11 11 o1 1
0 = D T PNl G TR e Y G

and R is the scaled radial coordinate r,

Evaluation of (6) leads to results that are formally the same as those obtained
when Cartesian coordinates are used, except that the z coordinate is replace by
the radial coordinate r,

> >¢
(>Co, Zo)
™ ‘ (3C0J2‘0>

Fig. 2

(a) Cartesian and curvilinear coordinates for a point source with no refractive
index profile.

(b) Case of a general refractive index profile.

This implies that the Cartesian representation is accurate to the extent that r
can be replaced by z. In other words the point of observation (x4, z,) must
remain close to the z axis, The same result presumably also holds true even
when the presence of a refractive index profile leads to curved ray paths. It is
important to keep this in mind when using existing fourth moment solutions. The
three methods of solution discussed above have been carried out using a
Cartesian coordinate system and so the results should only be used provided that
the ray paths do not depart much from the z axis (the ratio xg, 2z, should be
small). Solutions found in curvilinear coordinates would be free from such
restrictions. However, apart from the case given above, these solutions have not
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yet been found. They will be a logical extension of the present work on
fluctuation phenomena and will provide answers to some still unanswered
questions in the field.

NUMERICAL SIMULATIONS

As a method for obtaining insight into fluctuation phenomena numerical
simulations of random wave propagation area method that ranks equal in
importance with the analytical approaches discussed above.

Plane wave geometry

Simulations have been used successfully to test the results of fourth moment
theory in the case of plane wave geometry |16 . The principles of such numeri-
cal simulations are well known and will not be described here. A typical example
of the intensity fluctuations induced in a plane wave travelling in a random
medium containing irregularities with a Gaussian autocorrelation function is
given in Fig. 3. The variance of these intensity fluctuations estimated from
many such numerical simulations is shown by the points with error bars in

Fig. 1. This provided a check on the accuracy of the theoretical expression
shown in the same figure. % z

Y1 A

Fig. 3 Intensity fluctuations simulated for plane-wave geometry,

Point source o

One method of checking the accuracy of the fourth moment solution in the case
of a point source is by comparison with the results of numerical simulations,
as was done in the case of plane wave geometry. However, numerical simulations
involve considerable difficulties when we are dealing with a point source. This
is because it is most convenient to represent the scattering medium in Cartesian
coordinates. In such a coordinate system there are very rapid oscillations in

- the phase of the wave-field close to the source, and it is not possible to
achieve the required resolution numerically. To overcome this a physically
extended source |17| is used whose field approximates to that of a point source
at ranges where the scattering effect is only just beginning to be important,-
and in a certain range of angles about the z axis. Simulations of intensity
fluctuations using such a quasi-point source are shown in Fig. 4. The intensity
fluctuation variance resulting from many such simulations is shown in Fig. 5
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together with the theoretical variance obtained by solving the fourth moment
equation for a point source. The agreement appears reasonable but there is a
fairly large statistical scatter in the simulations. This is due to the fact
that the intensity fluctuations are non-stationary transverse to the z direction
and spatial averages cannot be used to substitute for ensemble averages. Thus
the simulations must be repeated a much larger number of times in order to
achieve a statistical average equivalent to that of the plane-wave case where
gspatial averages can also be used.

1

A\
—

Fig. 4 Intensity fluctuations simulated with a quasi-point source.
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Fig. 5 Scintillation index from simulations with a quasi-point source.
The full line gives the theoretical result.

Curvilinear coordinates can also be used in numerical simulations to avoid the
problems associated with a point source [18}. Curved wave-fronts appear
naturally in cylindrical coordinates and the rapid phase oscillations mentioned
above are not encountered. Intensity fluctuations arising in the wave-field
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radiating from a point source are shown in Fig. 6,

Fig. 6 Intensity fluctuations simulated with a true point source,

These fluctuations are now statistically stationary in the azimuthal direction
and spatial averages can be used for ensemble averages. As a result better
statistical averages can be obtained with fewer realizations. The variance of
intensity fluctuations obtained by this method is shown in Fig. 7 together with
the theoretical result, and the agreement is seen to be quite satisfactory.
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Fig. 7 Scintillation index from simulations with a true point source,
The full line gives the theoretical result.

Thus numerical simulations have enabled us to verify the accuracy of our fourth
moment solution in the case of a point source. We have additional confirmation
of the conclusion, drawn above on theoretical grounds, that point sources can
be adequately dealt with in Cartesian coordinate systems provided the
observation point is not too far from the z axis.
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Intensity cross—correlation

So far our review of scattering theory has been concerned with wave-fields of
a single frequency. The record has been one of solid progress, theory having
been extended into most areas of interest and the results substantiated by
numerical simulations, The picture is not so encouraging when it comes to wave-
fields at two different frequencies. The appropriate moment equations can be
.written down for the two-frequency case and a solution can be found for the
fourth moment as a multiple convolution. However, attempts to evaluate this
solution encounter serious difficulties |19|. It turns out that the resulting
approximate intensity cross—-spectrum does not agree with the exact cross—
spectrTm which can be obtained from the multiple convolution in the very far
field |20].

This failure is shown schematically in Fig. 8 where the approximate form is
given by the full curves and the exact by the broken curves for two values of
o the ratio of the wave-field frequencies. The further o departs from unity
the worse the discrepancy becomes,: : ’

O w)

\
\
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Fig. 8 Illustrating the failure of the cross-frequency spectrum of 1nten51ty
fluctuations in the far field.

Detailed investigations |20| show that the intensity cross—spectra obtained
from the fourth moment equation by existing standard methods can be used only
for wave frequency ratios close to unity and for distances in the scattering
medium that are not too large. All the methods discussed in the first part of
the review suffer from the same draw-backs.

We conclude that some basically new approach to evaluating the fourth moment
equation is required in the cross-frequency case. The cross-frequency
correlation of intensity fluctuations stands out as one of the major unresolved
problems in current random propagation theory.

Summary

Expressions for the first four moments of the wave field in a random medium
can be now derived theoretically using a number of approaches. Point sources
and refractive index profiles can be included. All these random wave
propagation situations can be simulated using numerical methods.

Proc.l.0.A. Vol 8 Part 5 (1986) 9



Proceedings of The Institute of Acoustics

SUCCESSES AND FAILURES OF MULTIPLE~SCATTER THEORY

Future developments should see the use of curvilinear coordinate systems
combined with a variety of multiple scale expansions., This should allow such
complicated phenomena as caustics and shadow zones to be dealt with in an
increasingly exact manner.

Finally, the question of the cross—correlation of intensity fluctuations still
remains to be resolved, and a theoretical derivation of the probability
distributions of wave field fluctuations is still nowhere in sight.
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SCATTERING OF WAVES BY REFRACTIVE LAYERS WITH POWER LAW SPECTRA
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Royal Signals and Radar Establishment, Malvern, Worcestershire WR14 3PS, UK

1. INTRODUCTION

Many useful insights into the phenomenology of wave propagation through
extended inhomogeneous media have been obtained by studying the properties of a
much simpler scattering system: the random phase changing screen. This system
is of interest in its own right as a physical optics model for scattering by
thin diffusing layers and rough surfaces both in transmissive and reflective
geometries. In recent years, laboratory measurements of the scintillation of
laser light scattered from turbulent plumes, mixing layers, mobile and rigid
rough surfaces [1] have allowed more quantitative assessment of the predictions
of a variety of theoretical phase screen models. As a result there has been
renewed interest in the physical meaning of various statistical and spectral
models and the mathematical implications of using them in phase screen
calculations or indeed in the more complicated extended medium problen.

If, as is usually assumed, the phase distortions introduced by the screen
constitute a Gaussian Process, then interest centres on the choice of phase
autocorrelation function or spectrum. It is well known that autocorrelation
functions which can be expanded in an even powered series about the origin,
such as Gaussian or Lorentzian models, correspond to smoothly varying single
scale phase functions which are infinitely differentiable. In the case of
strong scattering, when the path fluctuations exceed a wavelength, non-Gaussian
intensity patterns generated by screens of this type are dominated by geomet—
rical optics effects [2]. On the other hand it is now recognised that raw
power law models (ie without inner and outer scales) constitute the simplest
class of multiscale screens. In this case the phase function is hierarchical,
being self-affine under magnification and can be described in the language of
Mandelbrot as a Gaussian random fractal [3]. Within this group of models
further classification according to spectral index is necessary to distinguish
between continuous functions which are not differentiable and those which are
Once, twice ... or n times differentiable. Clearly the physical implication of
a model which is not differentiable will be the absence of geometrical optics
effects: the predicted statistical properties of a scattered wave will include
only the effects of diffraction and interference [4]. On the other hand a
model which is only once differentiable will generate density fluctuations of
geometrical rays but no caustics or focusing [5]. Evidently the spectral index
and hence the truncation of differentiability determines the maximum order of
singularity or catastrophe in the scattered wave field. In practice raw power
law behaviour is not observed in nature: often regions of different power law
index are found together with high and low frequency cut-offs (inner and outer
scale effects). The presence of an outer scale always ensures that when
sufficient area of the scatterer contributes to the wave field at the detector
then Gaussian field statistics will be observed, the exact nature of the
approach to this limit being determined by detail of the low frequency cut-off.
The presence of an inner scale means that at sufficient magnification (small
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