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In many structural applications like bridges, arches, turbo-machineries blades, etc. curved frame
structures are used and it is important to study its dynamic behavior. The use of a curvilinear coor-
dinate system to solve such problems generates higher-order, complicated differential equations.
Finite Element Method can be used to determine the dynamics of such structures. However,
the high frequency simulation using FEM is inefficient and thus restricted in its applicability.
The wave-based methods are advantageous in this regard. The wave methods have been well-
developed for dealing with frame structures comprising of straight Euler-Bernoulli members with
joints at an arbitrary angle. In such structures, the presence of the joint induces a coupling be-
tween the longitudinal and transverse dynamics. In the present work, we extend the wave-based
technique to analyze frame structures comprising of filleted or circularly curved joints. The prop-
agation matrix in the straight portion of the structure is well documented in the literature. In
the present work, the curved portion of the structures is discretized into small linear segments,
wherein each segment subtends a small angle with the neighboring segment. Using the continuity
relations and equilibrium conditions at the joints, the reflection and transmission matrices at the
joints can be obtained. The assembly of reflection, transmission and propagation matrices and the
incorporation of the boundary conditions is in line with the standard wave method. Modal Analy-
sis and Harmonic Analysis are conducted using the present approach and the results were found to
correlate with those reported in literature as also with FEM simulations. The characterization of
circular fillets in terms of its transmission and reflection effects is presented. The present method
is computationally efficient for high frequency calculation in comparison to FEM simulation.

1. Introduction

In many structural applications like bridges, arches, pipings, scaffolding, etc. curved frames are
used. Study of dynamic behaviour of such curved frame structures is important. Free vibration
analysis of a planar circular curved frames was presented by Kang et. al. (2003)[1] . In their study,
the curved frame included multiple point discontinuities such as elastic supports, attached masses,
and curvature changes. Additionally, the authors also studied the dispersion equations and cut-off
frequencies. Mei (2012)[5] performed free and forced vibration analysis of L-shaped frame and
portal planar frame using wave propagation theory. Reflection and transmission matrices for the
L joint were derived by Mei, considering the coupling effect of flexural and longitudinal motions.
Mei (2008)[3] derived the transmission and reflection matrices for T-shaped and H-Shaped planar
frame with different boundary conditions :(i) simply supported, (ii) clamped and (iii) free boundaries.
Also, dynamic analysis of curved frame structures can be routinely performed using Finite Element
Method (FEM). However, it is well-known that the FEM simulation is computationally intensive for
high frequency range.

In Mei’s work [5], wave propagation approach is applied to study an L-shaped frame with 90◦

corner joint. In this work, we extend the analysis reported in [5] by incorporating a circular-filleted
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Nomenclature
List of symbols

a, b, c amplitudes of waves u longitudinal displacement
{a}, {b}, {B}etc amplitudes of wave in vector format V shear force

A area of cross-section y transverse displacement
E Young’s Modulus ρ density
h thickness of the frame section θ angle subtended
F normal force ψ rotary deflection
f longitudinal force per length ω angular frequency
I moment of inertia subscripts
i complex unit 1, 2 frame 1 and frame 2
K wavenumber b bending wave
L length c, f clamped and free boundary
M bending moment h horizontal
m mass per unit length j joint
P propagation matrix v vertical
p transverse force per length l longitudinal wave
R radius of curvature n near-field wave

R11, R22 reflection matrices superscript
t time + positive going wave

T12, T21 transmission matrices - negative going wave

900 joint for a similar L-shaped frame structure (as shown in Figure 2a). The objective of this work
is to evaluate the effect of fillet on the dynamic characterisitcs of the curved frame structure. The free
and forced vibration characteristics of the curved frame structure is found using the wave-propagation
based formulation. The results obtained are compared with ANSYS simulation results. The wave
based method is computationally efficient and accurate in comparison to FEM simulations.

2. Methodology

For a frame structure, the axial motion and the transverse flexural motions are coupled. The gov-
erning equation for a transverse vibration using Euler-Bernoulli beam theory is given by

EI
∂4y

∂x4
+m

∂2y

∂t2
= p(x, t) (1)

The governing equation for the longitudinal vibration is formulated as

EA
∂2u

∂x2
−m∂2u

∂t2
= −f(x, t) (2)

In both these equations x denotes the axial direction of the one-dimensional structure. p is transverse
load per unit length in the transverse direction, f is the axial load per unit length.

In the absence of external forcing (p and f ) and by asuuming harmonic time dependency (eiωt)
the solution of the homogeneous part of equations(1)and (2) can be written as

y(x) = a+1 e
−ikbx + a+2 e

−knx + a−1 e
ikbx + a−2 e

knx (3)

u(x) = a+3 e
−iklx + a−3 e

iklx (4)
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where ai’s are the complex amplitudes. The wavenumbers are given by

kb = kn =
4

√
mω2

EI
; kl =

√
m

EA
ω (5)

2.1 Propagation

Consider a straight segment of the frame as shown in figure(1c). Let B and C be two points
separated by an arbitrary distance x as shown in the figure. The amplitude of the forward waves at B
can be related to the amplitude of the forward waves at C using the propagation matrix P which in
turn depends on the wavenumbers and the distance between the points B and C [1].

{B+} = [P (x)]{C+}, {B−} = [P (x)]−1{C−} (6)

where, {B},{C} are column vectors having three elements. It contains propagating bending wave
component, evanescent wave component and traveling longitudinal wave coefficient, respectively.
Here, the propagation marix is given by [3]

[P (x)] =


e−ik1x 0 0

0 e−k2x 0

0 0 e−ik3x

 (7)

2.2 Reflection and Transmission for an Angular joint

(a) Free body diagram

(b) Reflection and transmission at angled joint

(c) Wave propagation in straight section

Figure 1

Similar to propagation matrix discussed above, the reflection and transmission matrices relate the
incident wave amplitudes to the reflected and transmitted wave amplitudes. The reflection and trans-
mission matrices associated with 900 corner joints have been derived by Mei [3]. In the following, we
derive the reflection and transmission matrices associated with an arbitrary angular corner joint.

Let us assume a semi-infinite frame structure whose leg 2 is infinite. The reflection and transmis-
sion matrix corresponding to an incident amplitude vector {a+1 } is given as

{a−1 } = [R11]{a+1 }, {a+2 } = [T12]{a+1 } (8)
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(a) Discritized curved section (b) Forced

Figure 2

The transverse and longitudinal deflection of frame 1 at any point can be expressed as

y1(x1) = a+1be
−ikbx1 + a+1ne

−knx1 + a−1be
ikbx1 + a−1ne

knx1 (9a)

u1(x1) = a+1le
−iklx1 + a−1le

iklx1 (9b)

Frame 2 has only forward moving wave as it is infinite and its transverse and longitudinal deflection
can be represented in terms of x as

y2(x2) = a+2be
−ikbx2 + a+2ne

−knx2 (10a)

u2(x2) = a+2le
−iklx2 (10b)

The forces and moments generated in frame1 and frame 2 can be related in terms of deflection as
shown below,

M1 = EI
∂2y1
∂x21

, V1 = −EI
∂3y1
∂x31

, F1 = EA
∂u1
∂x1

(11a)

M2 = EI
∂2y21
∂x22

, V2 = −EI
∂3y2
∂x32

, F2 = EA
∂u2
∂x2

(11b)

Invoking equilibrium conditions and kinematic continuity at the angular joint (free body diagram of
the angular joint is shown in Figure 1a), we obtain six equations relating the wave amplitudes. These
are represented in a compact matrix notation as follows

[N1]a+2 − [N2]a−1 = [N3]a+1 (12a)

[N4]a+2 − [N5]a−1 = [N6]a+1 (12b)

Rearranging and simplifying these equations, yield the transmission and reflection matrix of the an-
gular joint as

[T12] =

[
[N2]−1[N1]− [N5]−1[N4]

]−1[
[N2]−1[N3]− [N5]−1[N6]

]
(13a)

[R11] =

[
[N4]−1[N5]− [N1]−1[N2]

]−1[
[N1]−1[N3]− [N4]−1[N6]

]
(13b)

A similar procedure is carried out to obtain the transmission and reflection matrices due to an incident
wave vector in Frame 2. These matrices are defined as T21 and R22, respectively.
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2.3 Boundary Condition

The reflection matrices at clamped and free boundaries are derived by Mace [2]. These matrices
given by Rc and Rf are given as

[Rc] =


−i −1− i 0

−1 + i i 0

0 0 −1

 , [Rf ] =


−i −1 + i 0

1− 1 i 0

0 0 1

 (14)

2.4 Discretization & Assembly

In the following, a brief description of the interrelationship of the wave amplitudes at the different
sections of the structure is presented. The curved section of the structure is discretized into N small
linear segments as shown in figure(2a). Note, the successive segments subtends an angle with the
other. This generates a discontinuity at the junction of two segments due to change in direction as
shown in the figure(2a)
.

The relation between wave amplitudes at the boundaries is given by

[I]{a+} = [Rc]{a−}, [I]{b−} = [Rf ]{b+}. (15)

Here, [I] is the 3 × 3 identity matrix. Along the straight horizontal section, the wave components at
points A and C are related by propagation matrix

[I]{c+1 } = [P (Lh)]{a+}, [I]{c−1 } = [P (Lh)]
−1{a−} (16)

, where Lh is the length of the horizontal section. The curved section between C and E is discretized
into number of linear elements of equal size as shown in figure(2a). Two sets of reflection and trans-
mission matrices derived earlier are used to find the relation between wave amplitudes at point C and
are given by

[T12]{c+1 }+ [R22]{c−2 } = [I]{c+2 }, [T21]{c−2 }+ [R11]{c+1 } = [I]{c−1 } (17)

Similarly, the wave amplitude relation at point D in figure(2a) can expressed in terms of reflection
and transmission matrices as follows

[T12]{d+1 }+ [R22]{d−2 } = [I]{d+2 }, [T21]{d−2 }+ [R11]{d+1 } = [I]{d−1 } (18)

However, points C and D can also be related by propagation matrix since it forms a straight element.

[I]{d+1 } = [P (l)]{c+2 }, [I]{d−1 } = [P (l)]−1{c−2 } (19)

Similarly, the wave amplitude relationships for all consecutive interim points in between D and E are
arrived at. Finally, wave amplitudes at B and E are also related by the propagation matrix

[I]{b+} = [P (Lv)]{e+2 }, [I]{b−} = [P (Lv)]
−1{e−2 } (20)

where, Lv represents the length of the vertical section
Assembly of the above equations leads to a matrix equation of the form [A(ω)]{X} = {0}. Here,

[A] is a square matrix of size 12 × (N + 1). {X} is column vector having 12 × (N + 1) elements
representing wave amplitudes. For non-trivial solution, the roots of the characteristic equation is
solved numerically. These roots denote the natural frequencies of the system.

The wave propagation based method can also be extended for the forced vibration analysis. To-
wards this end, we note that application of a point loading induces different waves on either side of the
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point of application of the load. As an illustration, in figure(2a) a point harmonic forcing is applied at
the point G. In the portion to the left of G, there is a forward wave of amplitude {g+11} and a backward
wave of amplitude {g−11}. Analogously, in the portion to the right of G, there is a forward wave of
amplitude {g+12} and a backward wave of amplitude {g−12}. These wave amplitudes are related by the
following equation ( as derived by Mei [4])

[I]{g+12} − [I]{g+11} = [I]{f}, [I]{g−12} − [I]{g−11} = [I]{−f} (21)

where {f} = F

4EIK3
b


−i

−1

0


Here, F represents the magnitude of the harmonic transverse force applied on the frame structure.
Due to this force the propagation matrix will also get modified as follows

[I]{g+11} = [P (Lh1)]{a+}, [I]{g−11} = [P (Lh1)]
−1{a−},

[I]{c+1 } = [P (Lh2)]{g+12}, [I]{c−1 } = [P (Lh2)]
−1{g−12}

(22)

In contrast to free vibration analysis, for forced vibration analysis equation(22) is used instead of
equation(16). All other equations arrived at for the free vibration analysis carry over to the forced
vibration analysis also. By incorporating these equations, a system of matrix equation of the form,
[Af (w)]{Xf} = {F} is obtained. For forced vibration analysis A is a square matrix of size 12 ×
(N + 2). Similarly, {Xf} and {F} are column vectors having 12 × (N + 2) elements representing
the wave amplitude and force, respectively.

2.5 Free vibration analysis

For the present work, one end of the frame is free and the other end is fixed. The physical prop-
erties of the frame used are Young’s modulus E = 2× 109N/m2, Mass Density M = 7800Kg/m3,
Poisson’s ratio ν = 0.30, the cross-sectional width and breadth being 0.0127m each. The length of
each arm is 0.5m, with radius of curvature R = 0.5m and angle of 900 degrees. For the present
problem, the curved structure is divided into 30 elements. Reflection and transmission of waves occur
at each junction of these elements. Along with propagation matrix, boundary conditions, reflection
matrix and transmission matrix at each discontinuity, a global matrix of size 372 × 372 is derived.
Natural frequencies are obtained by finding the eigen value of this matrix. The corresponding eigen
vectors are the mode shapes. The results obtained using the present method are compared with results
obtained using Finite Element Method commercial package (Ansys). These results are presented in
figure(3). The modal analysis shows good correlation between the present wave based method and
the results obtained using ANSYS.

As discussed earlier, an objective of the current investigation is to determine the effect of the fillet
radius on the dynamics of the structure. Towards this end, keeping all the parameters of the frame
constant eg: mass, area of cross-section etc, variation of the natural frequency with respect to change
in radius of curvature was obtained. The frame structure discussed above is analyzed with varying
radius of the interconnecting fillet. The fillet radius is varied keeping the mass of the structure fixed.
Accordingly, the length of the horizontal and vertical arms of the structure change with changing fillet
radius. Finally, the natural frequencies obtained are non-dimensionalized with respect to the natural
frequencies for a L-shaped structure (viz. zero fillet radius). The results for the variation of the natural
frequencies of the first three modes with increasing fillet radius are shown in Figure 5. The results
obtained using ANSYS are also presented alongside for comparison.

Forom, these results it is found out that the fundamental natural frequency shows a decreasing
characteristics whereas the second natural frequency is exhibiting an increasing trend. It is interesting
to note that third mode is exhibiting a stiffening characteristics beyond a critical value of fillet radius.
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(a) Mode1 at 3.88 Hz
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Figure 3: Comparison of modal analysis results obtained using the present method and ANSYS.
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Figure 4: Change of normalized natural frequency with respect to radius

2.6 Forced Vibration Analysis

A harmonic forcing of unit amplitude is imparted at the midpoint of the horizontal section. Uder
this condition, the response at the tip of vertical section is calculated as shown in figure(2b). Due to
the forcing function additional discontinuity will be created at the point where the load is applied.
As a consequence, the propagation matrix has been modified. The curved portion of the frame is
discretized into 30 linear elements. So the system of equations can be written as AX = F where A
is the global matrix whose size has been increased to 384 × 384. X and F corresponds to column
vectors of, 384× 1 representing the wave amplitude, and applied force, respectively.
The transverse deflection of any point in the frame is obtained by adding the transverse compo-
nent(propagating and evanescent)of the wave amplitude(forward and backward) at that point. Iden-
tical procedure is carried on the longitudinal component of the wave amplitude so as to obtain the
longitudinal deflection. Both the frequency response function(fig(5a)) and the operational deflection
shape(fig(5b)) obtained through this approach shows good match with the corresponding ANSYS re-
sults. For the purpose of visualization, the operational deflection shape is scaled by 105 times. Here
again, we observe a good correlation of the results obtained by the two methods.

In the frequency response function(5a), it is observed that at low frequencies the response ob-
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Figure 5

tained through present method shows some mismatch with FEM. At these frequencies the wavelength
is comparable to the arc length of the curved structure. Extensional mode dominates at these frequen-
cies. This can be captured using curvilinear co-ordinate system and is well described in ref([1]).

3. Conclusion

In this paper, wave method is employed to analyze the in-plane vibration of a curved frame struc-
ture. The coupling effect between the longitudinal and transverse vibrations is considered. Reflection
and transmission matrices for the angled joint are derived. The result shows good agreement with
FEM results. High frequency dynamical simulation through FEM is known to be computationally
intensive. A finer mesh at high frequencies leads to larger matrix size for the FEM simulation. In
this respect, the proposed wave-based method is more efficient. This method yields the same matrix
size irrespective of the frequency. Also, the accuracy is not compromised at the higher frequencies.
The present work assumed Euler-Bernoulli beam theory. However, at high frequencies the effects of
rotary inertia and shear distortion comes into picture. This can be tackled by utilizing Timoshenko
beam theory instead of Euler-Bernoulli beam theory.
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