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1. INTRODUCTION

In any attem t to measure vibration with anaccelerometer. the mass of the accelerometer will
inevitably a.f act the dynamics of the structure on which it is mounted. The vibration levels and
natural frequencies of the mass loaded structure will therefore differ from those of the unloaded
one. It is, of course. desirable that these differences are acceptably small. This paper considers
the case where the accelerometer is mounted on a part of a system which vibrates as a beam in
bending. Estimates are provided for the average and maximum differences involved which are
seen to depend on the mass and moment of inertia of the accelerometer and also on its location on
the structure. .

  

  
The transducer introduces errors as indicated in figure 1. am)’
The overall levels are changed from a to a’ while the | I l H
natural frequencies are reduced from a)“ to ain‘t A simple a“(¢n)_ _ ’
experimental technique that may be used to estimate these
errors is to introduce an additional mass at the response
point. A new measurement is taken and by comparing the
loaded and doubly-loaded measurements. estimates of the Fig. 1 Response against frequency:
perturbing effects can be found. While this method may _ unloaded. _____ loaded
be viable for vibration-testing purposes error estimates can ’ ‘
only be obtained after measurements have been taken and cannot therefore give prior indications of
the errors involved. Additionally. it is not applicable if the excitations cannot be reproduced.

  

“’n

A second experimental technique. which explicitly corrects for the added mass. is that of mass
cancellation [1]. It. however. requires knowledge of the point inertance u (acceleration per unit
force) at the response point. If the measured acceleration is at then the accelerometer introduces an
additional force - ma' at its mounting point. Hence. the acceleration in the absence of the
accelerometer is a = (l + mn)a‘. For the special case of vibration testing where the structure is
excited at a point and the acceleration is measured at this point then the point inertance is given in
terms of the measured inertance of by 1/01 = llu" - m. In practice, this can be achieved by either
post-processing the measured data or by subtracting a signal proponional to the measured
acceleration from the measured force. thus producing a signal proportional to the net force applied
to the structure [1]. The method requires additional information concerning the system's point
inertance which may not be available. Funhermore. if the rotational inertia of the accelerometer is
important, particularly if measurements are being taken on thin beams or panels or using a larger
accelerometer or an impedance head. then information concerning the displacement or rotation per
unit force or moment is necessary. This information may not be available.
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Theoretical estimates for the magnitudes of the changes can be found if the effective mass rrie at the

transducer location can be estimated [2]. Typically. the acceleration level and natural frequencies

decrease by amounts of the order of nilnte and lem, respectively. For a lumped mass system the

effective mass will be greater or equal to the mass of the element on which the accelerometer is
mounted. If, however, the accelerometer is mounted on a‘ continuous element. such as the flexible

beams considered in this paper. then the effective mass is less easy to determine. It may be
estimated from the input inertance of an equivalent infinite structure. Typically this will be of the
same order as the mass of the continuous system in half a wavelength. Again. it is not clear how

rotational inertia should be taken into account.

This paper considers the mass loading effects of a transducer mounted on a part of a system which

vibrates as a beam in bending. Both the mass and moment of inertia of the transducer are
considered. The main results from [3] are reviewed and some experimental results presented. It is
found that the rotational inertia and the location of the transducer have substantial effects on the

changes in natural frequencies while the changes in level depend primarily on the mass and location
of the transducer.

2. THE PERTURBING EFFECTS OF TRANSDUCER [NERTIA

The vibrations of the beam can be regarded as consisting of propagating and near-field wave
components travelling in both directions. Their amplitudes at the transducer location are indicated
in Figure 2. The transducer scatters incident waves and the scattered waves have amplitudes that
are determined by reflection and transmission matrices [4.5]. The effects of transducer inenia
appear in these matrices as two parameters.

5 = Ink/46 : en =Ik3/4o =otc3 (l)
r—e'——> r

where m and J are the transducer mass and moment of
inertia and a and k are the mass per unit length and =#fl—.&—_—a
wavenurnber of the beam. Thus a and (R represent the
effects of translational and rotational inertia respectively. _ _
The constant a = (doe/m)2 where e is the radius of a E E h
gyration of the transducer. Note that as frequency Fig. 2 Wave amplitudcsat
increases It increases as do the mass loading parameters. transducer location.
Furthermore rotational effects become relatively more
important at higher frequencies. as one would expect.

If it is assumed that no excitations act to the right of the transducer and that the amplitudes at the
transducer of near-field components generated by reflections from boundaries to the right are

negligible then the propagating components are related by b’ = pbb" where pt, is 'a reflection

coefficient. 0n the other side of the transducer a' = pats“ where pa and 9h differ due to the
penurbing presence of the transducer. This change in reflecan coefficient changes the natural
frequencies and vibration amplitudes as follows.
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2.1
For a finite structure in the absence of damping the reflection coefficient pb represents a pure phase

change. The transducer introduces an additional phase lag

le+cB+pcos°B

l+u+usind>k (2)v=2mn'

where [raven-2:23 (3)

The wavenumber at each natural frequency is thus reduced by \y/Zl where l is the flexural path

length and the consequent change in the n'th natural frequency is

52a: fix (4)
ton 4M e

where M = al is the total mass of the flexural element (i.e. total mass neglecting added point

masses). The phase angle ¢R is generally an unknown random variable uniformly probable

between 0 and 21:. The change in natural frequency has a mean value

50! m v 2+:__n=___u . = 4—11
(on m z ' V° m" 1+” (5)

and fluctuates between the limiting values

tan 2 ' e
(5)

._ 4—P—
‘Vd— e-eR-O-l

Consider first for simplicity the case where
rotational effects are neglected (i.e. cR = 0).
Now

Lawn: _£lm_l c(l+cos-¢B)
(on 2M: l+z(1+stn°R)

(7)

The natural frequency is decreased. The mean of
the decrease is

 

Fig. 3 Mean decrease in natural frequency:

 

8» m l a . _
__n..___ . =.m/M , —0.0.2.
to" _ 2M 2 ml 1 + a (3) 2‘2, )V‘JE a
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which tends to 0 as 1 increases. If the
accelerometer is located at a node, then cos on =
- l and 6m“ = 0. As would be expected the
accelerometer mass has no effect. The largest
changes occur if the accelerometer is located
close to an antinode and are equal to twice the
mean.

Returning now to the case where rotational
effects are not ignored, the mean decrease in
natural frequency is indicated in Figure 3 which
shows the variation of Val: with c for a range of

values of a. where :R = «1:3. Firstly. it should
be noted that since Va is positive the added inertia
always decreases the natural frequencies. For
small a rotational effects are small and Stun is

given by equation (8). However. for large 5
rotational effects dominate and vo/c asymptotes ~M M M

towards the curve for a a co which is such that

 

Fig. 4 Maximum decrease in natural frequency:
= . M -

fill pfl (52+ tan-1 (1 + 22))SM (9) flan-E. 1?;?%T:d)le'

where A is the wavelength in the beam.
1

Transition between these two regions occurs approximately when cIr = (2d)? at which value :R =
l

% and u = ~ The peaks of mo in Figure 3 occur approximately where e = II? at which value

1
u =- l. Rotational efi’ects begin to be significant at about half this value. namely a - ll2n3.

Figure 4 shows (wo + Way: for a range of a and thus indicates the maximum decrease in natural
frequency that could occur. Once again since W S w, natural frequencies decrease and
w + V‘, s 2%. At low frequencies the maximum change in natural frequency is approximately

twice the mean while at high frequencies. where rotational efi'ects dominate. the maximum change
asymptotes to

5m m 31: - .F“11:.fi553mt (10)

These results may be summarised to put simple bounds on the maximum decrease in natural
1

frequency. Firstly. at low frequency, where e < mu:i rotational effects are unimportant and
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1
1+:
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m

5n (11)

For high frequencies such that e > l/«zi rotational effects dominate and

31
5?

 

so
mn

 

(13)

Between these limits. around an. both rotational and translational effects are relevant.

2.2
Ifforces act to the left of the transducer in Figure 2 then the transducer inertia affeCIs the vibration
levels. the changes depending on whether reflections from boundaries are important.

2.2.)W. These are structures which are large enough and have
sufficiently high damping so that ph is negligible. The ratio of the responses of the unloaded and
unloaded structures is

w_*_i
V! 1+ (l+i)e (13)

The rotational inertia of the transducer does not affect the displacement, but it does affect the slope.
As frequency increases 2 increases so the loaded response decreases.

2.2.2 W. Since the natural frequencies in the unloaded and loaded cases
differ. it is appropriate to compare the responses
at different requencies. separated according to
equation (4). so as to compare responses at
similar points on the resonance curves of the two
systems. In that case. ignoring rotational inertia
which has no effect in the non-resonant case. the
responses are related by

1wt

“w— = t + (1+i) e+i£pb (14)

For light loading. this fluctuates about a mean
given by e nation (13) and approximately
between the limits of l and l/(l + 2:).

3, EXPERIMENTAL RESULTS

3.1 mandate
An experiment was performed on a freely
suspended aluminium beam of cross-section
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32 mm x 2.9 mm for which M = 0.274 kg, E1 =

326 Nm”, 0 = 0.273kg/m. It was excited 0.302
m from one end by a Ling model V201 exciter
whose input signal was a transient generated by a
Wavetek model 75 arbitrary waveform generator.
A Bruel and Kjaer accelerometer type 4367 (mass
13.2 g) was used to measure the acceleration at
the response point. The response was measured
at 5 different points. 10 mm apart. the first point
being 0.702 m from the end.

Measurements were taken to give results over a
frequency range up to 5 kHz. Firstly the transfer
accelerance (acceleration per unit force) was
measured. Then an additional mass of 13.2 g
was attached at the response point and a new
measurement taken. The effect can be regarded as
comparing the behaviour of a uniform beam with
perturbing masses of m and 2m. with m =
13.2 g. For this beam and accelerometer eR a

0.75823 and the frequency range corresponds to
values oft and an up to about 1.2.

3.2W
The theoretical change in response level
corresponds to the ratio of the doubly loaded and
singly loaded responses. In Figure 5 non-
resonant levels are compared. These have been
measured at frequencies between resonances
where the response amplitude varies very slowly
with frequency. The agreement between the
theoretical and experimental results can be seen to
be good. "

Figure 6 shows level changes measured at
resonances. together with the theoretical mean
and maximum changes. Much more scatter in the
results is evident due primarily to the dependence
of the level change on accelerometer position.
However. the results generally lie within the
predicted limits. differences being attributable
partly to damping but also to rotational effects.

The resonance around a = 0.6. for example.
indicates that the doubly-loaded level is larger
than the singly—loaded one. This is due to the
fact that this mode is only weakly excited so that
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translational effects are small whereas rotational
ones are substantially larger. Two other causes
of increased scatter are any changes in modal
damping the accelaomemr may introduce and the
poorer resolution that can be obtained
experimentally at lightly damped resonances.

In Figure 7 an attempt has been made to "avenge
out" the effects of the accelerometer location by
averaging the level changes of Figures 5 and 6
over the different measurement positions where
results from four ormore points were available.
'Ilieltheoretical and experimental mean results can
be seen to agree well.

3.3 ‘
The changes in natural frequencies are shown in
Figure 8. The theoretical curves give the mean.
maximum and minimum changes between the
singly and doubly loaded cases. Scatter of
results is evident due to the dependence on the
accelerometer location. However, the
experimental results generally lie within the
theoretical limits. Clear low and high frequency
ranges. where rotational effects are negligible
and dominant respectively. can clearly be seen.
The transition between these takes place around

I
z“=(2o) 3 = 0.87, at frequencies around 2.8kHz.

In Figure 9 the effects of accelerometer location
are "averaged out" by averaging the experimental
changes in natural frequency where results from
four or more measurement points were available.
These averaged results can be seen to agree well.

At higher frequencies, the experimental decreases
are consistently smaller than the theoretical ones.
This is thought to be due to two factors. Firstly.
damping has been ignored in the derivation of the
theoretical results. Secondly. at high
frequencies. where inertia becomes most
important. -the larger decreases in natural
frequency tend to occur when the accelerometer
is mounted at a position of large slope. These
positions necessarily have small or zero
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displacements and therefore are difficult to ddect by measm'ing the acceleration at the aocelaometer
location.

4. CONQUDING REMARKS

In the previous sections the perturbing efi'ects of the transducer were seen to depend on the mass

and moment of inertia through the parameters e and an. For finite systems the location of the

transducer is important. The location was desar‘ibed in terms of a phase angle (DR which in practice

is a random variable. The perturbing effects for finite structures were therefore described by a
mean value. independent of location, and a maximum value achieved forcenain specific locations.

The acceleration levels arereduced according to equations (13) and (14). The rotational parameter
CR does not appear in these expressions but it does significantly affect the reduction in natural

frequencies. The mean and maximum decreases are given by equations (5) and (6). In general
1

terms at low frequencies (a < 1l2a 3) rotational effects are not important and the reduction is less
than the ratio of transducer and beam masses. m/M. At higher frequencies, when rotational effects
dominate. the reduction is ovemed by the ratio of the flexural wavelength to the lenth of the
beam and is less than an: . In practical situations rotational effects may well be impomnt,
especially for larger accelerometers or impedance heads.

One of the assumptions made was that near-field interaction terms are negligible. These should
have negligible effects so long as the length of the flettural element is. say. half a wavelength. and
may well be valid for much shorter beams. In the analysis of finite structures damping was
ignored although it could be included through the reflecrion coefficients, pb. Small levels of

damping have negligible effects on natural frequencies, but they may have larger effects on
damping factors of individual modes.

As far as the flexural vibration of plates and panels is ooncemed the results above do not in general
hold exaCtly but do give an indication of the magnitude of the changes in level and natural
frequency involved. It is appropriate here to substitute 49511:, where ps is the surface density, for
the beam mass per unit length 6.
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