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1.0 INTRODUCTION

The Finite—Element Method (FEM) is essentially a

numerical technique for the solution of partial differential

equations applied to bounded continua. The engineering

application has its origins in structures and much of the

terminology reflects this, but the method is far more general and

may be applied equally to many other physical and engineering

problems. The main aim of this paper is to present the

mathematical basis of FEM.

At least five distinct steps can be identified in the

method:-
i) Discretisation of the domain — the bounded domain or

region under study is divided up into many smaller regions; the

elements. These elements usually have a regular geometrical

form. A discrete number of points within the element or on its

perimeter are specified; these are the nodes at which the

physical parameter of interest is discretised. It is this

complete set of nodal or discretised values which are the

unknowns.
ii) Choice of shape functions - the physical parameter

within an element is approximated throughout the element by

interpolation between the nodal values. The functions of

position which define the interpolation are called shape

functions. .

iii) Derivation of element equations - the derivation of a

set of matrix equations which govern the behaviour of the
individual elements is a key process in the FEM. In elastic
continua, where the discretised parameter is usually the

displacements, these equations are derived from considerations of
equilibrium. However, in more general applications, such as

fields, the equations are derived using either the method of

weighted residuals or variational methods.
iv) Assembly of elements - this is the process whereby

equilibrium is considered over the whole domain, is. globally.
Equilibrium at a particular node is obtained by summing

contributions from all elements, with that node common.
Combining the element matrices into a global array to give this

overall equilibrium is called assembling.

v) Solution of assembled equations — the final step is

the solution of the assembled equations to evaluate the set of

unknown nodal values. Use of the interpolation functions

together with these nodal values then enables the unknown

physical parameter to be determined throughout the domain.
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In this paper the above five steps are applied to a
simple one-dimensional problem (an elastic bar) to illustrate the
essential features of FEM. Initially for comparison purposes
the element equations for this case are derived by three
different techniques; virtual work, weighted residuals (Galerkin)
and minimisation of a variational function.

The element equations for a piezoelectric element are
also introduced and applied to a simple axi-symmetric example (a
thin—walled piezoceramic cylinder) to illustrate this important
type of problem.

2.0 ELEMENT EQUATIONS

In the following discussions an elastic continuum will be
considered (with the displacements as the unknowns) because of
the direct relevance of this case to SONAR transducer structures.
The displacement will begiven by the matrix u (bold scripts
will be used throughout to represent matrices), where this is a
column matrix or vector withgenerally three components. In FEM
the approximation arises when u is represented in terms of
interpolation functions (for convenience in this text an equals
sign will be used throughout even though an approximation is
implied in many instances):—

u = Na , (2.1)

where a are the set of nodal displacement vectors and N is the
shape function matrix whose components will generally be a
function of the co—ordinate system. '

Generally undamped element equations of the following
form will be obtained:—

P = Ka + M3 , (2.2)

where F is the nodal (element boundary) applied force, K is the
stiffness matrix, M is the mass matrix and 3 are the nodal
accelerations. This effectively represents a force balance
condition. In the case of sinusoidally alternating forces the
steady-state (single frequency) equations become from (2.2):-

r = Ra -m‘2Ha , (2.3)

where OJ'is the frequency in radians per second. If frictional
damping were included there would be an additional imaginary term
on the right—hand side of (2.3).

The element equations will now be derived by the three
techniques referred to in Section 1.0.
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2.1 Virtual Work

Consider there are small virtual displacements at the
element nodes, given by 5a. The virtual work done on the
element in the presence of the applied nodal forces P will
therefore become the scalar product ea F , where the
superscript t represents the transpose of the matrix. In the
absence of frictional damping this work will be absorbed
throughout the element in the re-distribution of the element
strain, e, as a change in the potential energy and in the
re—distribution of the element accelerations, 3, as a change in
the kinetic energy, according to the following:—

strain energy getddv

'lv

[insa fidV ,

V

inertia energy

where V is the element volume,/o is the density of the material
of the element and o is the element stress. Now let the
element strain be related to the displacement by the differential
matrix transformation, D, ie. e = Du. For example, in the
one—dimensional case D becomes the scalar differentiator d/dx.
Substituting for u from (2.1) gives:-

e = DNa = Ba , {e = B 3a , get = (B Ea)t ; Eat]!t

and Eut = (N Ea)t = SatNt.

Also let the element stress be related to the strain by 6 = Ee,
where E is the material stiffness matrix; thus the stress can be
written as 6 = EBa. Finally, for steady—state conditions
ii: — 1-1 Na.

Equating the strain and inertia energies to the virtual
work and substituting the above relationships the following
equation results:—

EatF ‘caH [BtEBdWa — “2 EaH [th NdV)a
v JV

From this it follows that:-

F = Ka — tnzfla , I (2.4)

where, the element stiffness matrix, K [at]:de (2 .4a)
V
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and the element mass matrix, H = / N€A\Ndv (2.4b)

V

Consider applying the above equations to a simple
one-dimensional element, namely an elastic-bar element of
length, h, area, A, density/€~ and material stiffness given by
Young's modulus, E. Let the two ends of the bar be the nodes,
designated by subscripts 1 and 2, so that the nodal force vector,
P, has two components, F1 and F2. Also let the nodal
displacement vector, a have the two components, 31 and a2.
Assuming linear interpolation between the nodes and with the bar
aligned along the x—axis, then the displacement vector, u, has a
single component which becomes:-

u = (1-x/h)a1 + (x/h)a2 = N1a1 + Nzaz ,

where_the shape function, N, is a row matrix, given by [N1, N2].

For this one—dimensional case D = d/dx and therefore B
becomes:- '

B DN = (d/dx) [N1, N2] = [-1/h . 1/h] = (1/h) [-1, 1]

Substituting the matrices, B and N, and their transposes into
equations (2.4a) and (2.4b), then (2.4) has the following two
component eqhations (note, the volume integrals reduce to line
integrals with the area, A, taken outside the integrals):-

> ‘ ft

F1 =V (rm/him1 — a2) -»»2p A]; [(1-x/h)2a1 + (1—x/h)(x/h)a2]dx
O

r./

F2 = (AE/hH—a1 + a2) maul; [(1-x/h)(x/h)a1 + (x/h)2a2]dx
' 0

Solving the integrals, which are straightforward, the element
equations become for this case:—

F1 1 -1 a1 1/3 1/6 31
= (EA/h) - mm2 (2.5)

F2 . —1 1 a2 1/61/3 a2

where m =/o Ah, the element mass.

2.2 Weighted Residuals

This method of determining the element equations is less
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specific than the virtual work method whose rootsare firmly in
structures. It is applicable to problems in which a physical
parameter, say u, although in this case it is not necessarily
displacement, obeys a partial differential equation set:—

L[u]=0 , where L[ ] is a set of linear partial
differential operators.

If the parameter, u, is now approximated by Na, then the
operation:-

LINa] will no longer be zero, but will have a

residual value. The idea of the weighted residual method is
then to scalar multiply the residual by weighting functions, H,
such that the integral of the product taken over the domain, H,
is zero, ie.:—

f
1

J‘ WtLINa1dI-I = o ,
H

where the integral is over the domain. Now the integral of the
sum of many parts is equal to the sum of the integrals of the
parts, thus if the above weighted residual form is applied to an
individual element then the assembly of these elements by
summation will give the above integral.

There are several choices of weighting-function, but the
one most commonly encountered in FEM is the Galerkin form in
which the weighting functions are the element shape functions.
Thus for a single differential equation, Llu], the Galerkin
form, applied to an element of volume V, becomes:—

,.

jNiLINaMV = 0 ,

V

where 1 takes on values equal in number to the number of shape
functions, which in turn equals the number of components of a.

Consider applying this method to the elastic-bar element
for which the governing differential equation is of the Helmholtz
form:-

LIu] = E (dz/dxzm +f>u12u o .
where JEZS is the sound velocity of compressional waves in the
bar. Therefore applying the weighted residual technique to L[u]
gives a pair of equations:-
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/ r

jN1LINaldv = 0 and I’NZLHUaJdv = 0 , these become:-

V JV

r} r
I . ,

EA J’N1[(d2/dx2)lla]dx + A/ppizj'l N1Nadx = 0
J

O 0

r

‘, r..
I

.5 ’
EA 1 N2[(d2/dx2)Na]dx + A/fi ! NZNadx = o

.10 j
0

Integrating the first terms in these integral equations by parts

produces two boundary terms:-

'r

EAN1 (d/dx)Na F1

 

-.v

mm: (d/dx ma] F2

where F1 and F are the respective forces applied at the two

nodes. Substituting for these boundary terms the pair of

integral equations become:- '

_ r ‘n

EA _.'| [(d/dx)N1][(d/dx)lla]dx - AF uisz1NadX = F1
JO 40

{I r,
2 i

EA J! [(d/dx)N2][(d/dx)llaldx - A/J w J: NZNadx = F2

0

Now, Na = N1a1 + Nzaz , N1 = 1-x/h and N2 = x/h. Substituting

these expressions into the above equations and evaluating the

straightforward integrals that result, the pair of element
equations, (2.5), are again obtained.

2 . 3 Variational Method

The main idea behind this method is to obtain a
functional, say L for the problem, which is minimised such that

variations of the functional, SQ, with respect to the physical

parameters, say a, are equated to zero, ie.:-
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$9 = ( "c9 [5a) 5a = 0.
Since Ea may take any value, then ( hbfi lba) = 0.
Application of this latter result for each of the components of
a produces the required set of equations. '

Consider the case of the element of an elastic—bar and
form the following integral around the wave equation for a small
variation, cu:-

(I.

I = A [E (dz/dxzm +flm2u] Eudx
O

This integral can be equated to zero since the wave equation
equals zero. Now the following applies:-

d/dx( du/dx 6n) = (du/dx)[d/dx( Sun + (dzu/dxz) Su

The last of these differential terms appears in I and so can be
replaced by the first two terms. This yields a perfect
differential which can be integrated to give:-

1-»

+ AJ V; wzugu — Edu/dx[(d/dx) Euhdx = o
O

-m .r . k
I = AE eudu/dxl

0

The boundary term can be written:—
.

AE Sudu/dxl = F1£u1 — F2 Suz = SW1 - Swz = 5(w1-w2),
n

where w and W are the works done at the two nodes. Now making
use of the following two results:-

uSu: S(u2)/2 and du/dx[(d/dx)£u] Eudu/dxFJ/z , the
integral I becomes:—

h

I = S{ (w1—w2) + (A/2)j[/J wzuz - E (du/dx)2]dx) =é( Q ) = o,
0

where Q is the functional. Incidently the two terms within the
integral in the above equation may be recognised as the kinetic
and potential energies within the element and hence the
expression within the curley braces is essentially a statement of
the conservation of energy. Now the nodal works may be written
as:— W1 = F1a1 and W2 = F2a2 .
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Therefore minimising the functional Q :—

= +

A

+ B/ba1uA/2)/ [/3 wzuz — E (du/dx)2]dx) = o
O

and there will be a second similar equation for Cfilbaz = 0.
Replacing u by (N1a + Nzaz) in the above, carrying out the
differentiations and the integrations, again generates the
element equations (2.5).

3.0 FEM EXAMPLE APPLIED TO ELASTIC BAR

Consider the case of an elastic bar, of overall length,
H, which is subjected to an alternating force at one end, is
rigidly clamped at the other and is laterally free. Assume that
the bar is aligned with the x~axis such that the force is appliedat x=0 and the rigid clamping occurs at x=H. Let the amplitude
of the alternating force be F0 and its frequency be such that the
length of the bar is a quarter of an acoustic wavelength, Ra,
ie. H: Xa /4. The aim is to calculate the displacements along
the bar under these circumstances.

This is a problem which has a simple analytic solution
and hence the theoretical results can be compared with the
results obtained by FEM. The bar is in fact resonant at its
fundamental length mode and the amplitude of the displacement, asa function of x, is given by u1cos(x fl/ZH), where u1 is the
amplitude of the displacement at x=0.

The first step is to divide the bar into a number of
elements. The more elements used the more accurate the results,
but at the cost of more calculation. As a compromise the bar is
divided into four elements, which enables the essential features
of FEM to be demonstrated without the calculations becoming
excessive and confusing. The nodes and elements are numbered as
is shown in Fig.1.

The element equations applicable to this problem have
been derived above, set (2.5). They can be rewritten:-

E1 - E2 ai 31

= B1 2
- E2 E1 aj aj
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where i and j refer to Ehe node numbers, E s [(EA/h) — (mtu2/3)]
and £2 = [(EA/h) + (m w /6)]. Therefore the equations for the
four elements become:—

element (1) F0 a1
= E12 , where F1 = F0

F2 a2

element (2) F2 a2

= I"12
F3 a3

element (3) F3 a3

= E12
F4 3‘4

element (4) F4 a4
= E12 , where as = 0

F5 0

F1 and as equal the prescribed boundary conditions at x=0 and x=H
respectively. Also the element length, h, equals H/4.

When the above element equations are assembled
(equivalent to taking equilibrium over the length of the bar) the
boundary force associated with an internal node, eg. F2 of ,
element (1), will be equal and opposite to the boundary force at
that same node from an adjacent element, eg. F2 of element (2).
Under these circumstances the components of force associated with
internal nodes in the global matrix will be zero. Also, there
is a basic requirement that there is continuity of displacement
at each node. The assembled global matrix equation becomes:—

F0 - -—E2—: ‘0 0 0 a1

0 EL 1.231; _ 22. L 3 _ 0 a2
0 - o : -E2 : 231 : -E2: 0 a3
0 o _0—7-33__I_E_---E‘l a_ _2_ -_‘ _1_a 2l 4
F5 0 o o :42 E1! 0

2‘ , Proc.l.O,A. Vol 10 Pan 9 (1988)
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where F5 is the unknown force at node 5, which represents the
reaction force at the rigid boundary and the nodal displacements,
a are the other unknowns. The dotted lines have been drawn in
to show the element origin of the various stiffness components.
Two points to note are that the matrix is symmetrical and banded;
a general result for this FEM displacement formulation. This
reduces both storage requirements and speed of solution.

The solution of these equations whilst tedious is quite
straightforward and leads to the following displacements:—

32mm1 — (sf/231)]

 

a — F0
2 E1([2E1 — (EZZ/E1HIZE1 — (E22/2E1] — 322)

a1 = (F0 + E2a2)/E1

a3 = EzaZ/[ZEi - (FIZZ/2131)]

a4 = E2a3/2E1 (3.1)
The solution of these equations can now be carried out

for both the static and the dynamic cases.

3.1 Static case

The results can be obtained for the static case by simply
setting the frequency to zero, ie.A)= 0 7 then E = E2 = EA/h.
Substituting these into the set of equations (3.1) above, the
following result:-

a1=4Foh/EA, a2=3Foh/EA, a3=2Foh/EA and a4=FOh/EA.

These are the expected static displacements for an applied force
F , eg. a /4h is the static strain at x=0, Fo/A is the applied
egress an E is the stiffness.

3.2 Dggamic case

For the dynamic case, (A! = 27Vc />\a, where c2=E//o , the
bar sound-velocity, and }a= 4H. Therefore:—

{/02 = nzg/mz/Q .
Substituting into E1 and E2 this expression for u)2 and the
expression for the element mass, m =/0Ah, then the following
expressions result:—

E1 = 0.9486(EA/h) and E2 = 1.0257(EA/h) .

Using these in equations (3.1) the following expressions for the
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displacements are obtained:-

a1 = 256.72(Foh/EA), az/a1 = 0.921, a3/a1 = 0.704

and a4/a1 = 0.380.

These three ratios may be compared with the expected
values of; cos( fl/B) = 0.924, cos(7T/4) = 0.707 and
cos(3 fi/B) = 0.383. The agreement with the nodal values
obtained by FEM is quite good, but because of the linear
interpolation, assumed between the nodes, the values of
displacement at other positions would not be in such good
agreement. This is illustrated in Fig.2 where the two
solutions are compared graphically.

It is worth noting that the values of displacement
obtained in the dynamic case are of the order of eighty times
bigger than the static values. This occurs because of the
resonance condition with'no damping.

4.0 PIEZOELECTRIC ELEMENT EQUATIONS

The essential difference between the piezoelectric and
non—piezoelectric case is the occurrence of a dielectric
stiffness matrix and mixed stiffness matrices, which produce
modifications to the conventional stiffness matrix. In addition
the electric potential is discretised aswell as the displacement.

To derive the element equations the virtual work approach
of Section 2.1 can be followed. Consider the following pair of
piezoelectric equations which relate the elastic stress, 6, the
strain, e, the electric field strength, 5 , and the charge
density, q :-

0': Be — epE, (4.1a)

q = epte + 65 (4.11:)

where E is the material elastic stiffness (as previously), e
and its transpose are piezoelectric parameters, and e is thg
electric permittivity. ,

Consider the virtual work associated with small nodal
virtual-variations in elastic displacement, 5a, and in
electrical potential 8¢., together with applied nodal forces,
F, and applied nodal charge Q:—

Eatr = [Setadv + Sat/a 'u'dv (elastic) (4.2a)
\l V

25 . Proc.l.O.A.Vo|10 Part 9 (1988)



  

   Proceedings of the Institute of Acoustics

FINITE ELEMENT PRINCIPLES

f
i

éfito = j éthdv (electric) (4.2b)
,1

Replace the stress in (4.2a) by (4.1a), replace the charge
density in (4.2b) by (4.1b) and make use of the following
relationships:—

r r r
e = Ba, cet = CatBt, & = - De¢ and éfit = - c¢tDet,

where De includes a differential matrix operating on the shape
function for the potential. Then following the procedure used
in Section 2.1 equations (4.2) become:-

1? = Kuua + xu¢¢ — :uzna (4.3a)

-0 = K¢ua + K¢¢¢, (4.3b)

where the "stiffness" and mass matrices are:-

f

Kuu = / BtBBdV (elastic stiffness)

v

{t - II I II= B e D dV (piezoelectric stiffness )“11¢ J pe
v

K = D te thV (inverse piezoelectric "stiffness")?u e P .
I v

f

x¢¢ = —j Det € Dedv (electric "stiffness")

V

[Ht Ndv (mass)

V

Substituting the potential from (4.3b) into (4.3a) this latter
equation is condensed:-

F1 .-. K1a- wzfla , (4.4)

where the modified force and stiffness matrices are:-
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1 _ -1F — F + Q

and x1 = Kuu - [Ku¢(K¢¢)'1K¢u]
Equation (4.4) is of identical form to the element

equations (2.4), but with mixed matrices. So for the
piezoelectric element, equation (4.4) can be assembled and solved
in the same way as the elastic element equations, but with the
boundary conditions for charge aswell as force applied. Once
the displacements have been evaluated the potential distribution
can be obtained from (4.3b).

5.0 AXI—SYMMETRIC APPLICATIONS

There are many important types of SONAR transducer which
exhibit cylindrical symmetry and so this application will now be
discussed.

Consider a cross—section through an axi-symmetric
structure, such as the cylinder shown in Fig.3. Let the
cylinder have a length, h, inner radius, R and let it be
described by cylindrical co-ordinates, r,z,9. The small
three—noded triangle represents an arbitrary finite element.
Let the nodal displacements in the z and r directions
respectively, be a and b,

where a = [a1,a2,a3]t, b = [b1lb2.b3]t

and the subscripts are the node numbers.

Now in FEM the general z—displacement, u, within the
element, is represented:—

a1
u = [f1,f2,f3] a2

a3

where f;,f2,f3 are suitable interpolation functions of position
0r,z. r the three—noded triangle these are usually simple

linear functions. Similarly for the r-displacement, v,:-

1v = [f1,f2,f3] b2
, b3

Therefore u and v can be written:-_

u a a
= [If ,If ,If ] = Nv 1 2 .3 b u b
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where I is the unit matrix and Nu is the shape function
for displacement.

For this axi—symmetric case the strains, e, become:-

8/32 0

. 0 Z/br u u t
e = o 1/r v = D v = [ez,er,ee,erz]

E/Er b/éz

Now the matrix B, which appears in the element stiffness—matrix,
is given by B = DN . Since f1,f2,f3 are simple linear
functions of r,z, Ehen B will have constant coefficients, except
where these are associated with the 1/r coefficient in D, ie.
those associated with the circumferential strain, e . (It is
worth noting that for-a thin planar element, where ghere are only
two straincomponents e and ez, all of the coefficients of B
are independent of position co—ordinates, ie. a constant strain
element.)

Once B has been determined then the stiffness matrix is
given by:-

r
1

Run = [at]:de = j BtEBrdrdzde ,
V v

but for cylindrical symmetry B is independent of 6 and hence:—

Kuu = anthBBrdrdz ,

A

where for an isotropic material in cylindrical co—ordinates the
material stiffness matrix, B, is:-

‘74 fl WL 0.
E /4 17/4 [4 0

(1+/4)(1-2/A) /4 /4 13M 0

o o _ o (1-2fl)/2

where/u is Poisson's ratio and E is Young's modulus.

To determine Kuu the product BtBB is integrated over the
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area of the triangular element. However when the element is
small a good approximation is to assume constant strain and
replace the radial co—ordinate, r, in B, by a fixed radius, say
R0, equal to the radius to the centroid of the element's area.
Under this approximation:—

xuu = 2 WRoBtEderdz = 2 r. RoBtEBA ,
A

where A is the area of the triangle.

In a similar manner the electrical potential is
discretised and approximated using linear shape functions, N¢,
and scalar nodal-potentials, ¢1,¢2,¢3.

5.1 Thin-walled cylinder

To illustrate the above procedure consider a thin—walled
piezoceramic cylindrical element of length, h, wall thickness, t
and radius, R, which is subject to a uniform circumferential
static-pressure, Po, as shown in Fig.4. The cylinder has end
electrodes and is polarised along its axial direction,z. The
element has two nodes with displacements and potentials given
by:-

a = [a1,b1,a2,b2]t and 9) = [¢1,¢2]t .
Under uniform radial loading b1=b2=b and therefore:-

u = (1—z/h)a1 + (z/h)a2
and v = b

These can be written as:-

u (1—z/h) 0 z/h 0 a1
= b

v 0 1/2 0 1/2 a2
b

where the first matrix on the right hand side is recognised as,
the shape function Nu.

For this case there can be no shear in the r-z plane and-
no strain in the radial direction, so the strains and
displacements are related by:-

b/Bz 0 u

e9 0 1/r v
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From the product of D and Nu it follows that B is given by:-

-1/h 0 1/h 0
B:

0 1/2R o 1/2}R

Also for this case the material stiffness-matrix, 3, reduces to
the Planar equations:-

1 )4
/j> 1

E =

(1-/M

The element elastic stiffness matrix, Ru“, can now be
calculated:-

2)

f t= =BEBdV = g CdV =Ezfi tC
Ru“ 1’ (173) (1- R51)

v

where C equals:-

1/h2 —/u/2Rh -1/h2 -/u/2Rh

74/211}: 1/4122 ,u/znh 1/4122

-1/h2 ,u/znh 1/h2 [42ml

—/M/2Rh 1/4R2 /u/2Rh 1/4R2

To calculate the remaining stiffness matrices in
equations (4.3a) and (4.3b) it is necessary to consider the
electrical potential along the z—direction. This is
approximated by linear interpolation functions:-

[(1-Z/h) ,z/h] (b = N ()3[a] it]
where N¢ is the shape function for potential.

In the absence of shear only the z—component of electric
field strength, E is non-zero. This is related to the
potential by:—

52 = -quz = _ b/gz ([(1-z/h) ,z/h1[g1] )
2
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= -[-1/h . 1/h1 9251
9’2

where De [-1/h , 1/h].

The piezoelectric equations, (4.1), for this case
become:—

6 1 e ez = E 2 /H z _ 82 l

69 (1-/u ) fl 1 e9 at

and q2 = [e1 , eh] [e2] + 682
e6

where the piezoelectric constants, ezz ande29, which are
equivalent to the more conventional 933 and e13, have been
written for convenience as el and et respectively. Also the
matrix eP therefore becomes:—

ep = [91 I etlt

The mixed and electric stiffness matrices, Kt , K and
K ¢ may now be evaluated using matrices B, De and e and the
sgalar permittivity, 6., using the definitions assoéfiated with
equations (4.3). These evaluations are straightforward and the
results when substituted into (4.3) give the following pair of
matrix equations:— .

 

F21 a1 e1/h -el/h

F b —e /2R e /2R ¢R1 = ZNRthE c + 27m: t t 1
F22 (1742) a2 —e1/h el/h ¢2
FR2 b -et/2R et/ZR

and Q a 1 —1 ¢1 = _ xwt b1 + 27TRt6/h 1
Q2 :2 ‘1 1 “‘2

where it is to be noted that K¢u = Ku¢t.

These two equations are the piezoelectric element
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equations for this thin—walled end—electroded cylinder under
static conditions. The hydrostatic receiving senSitivity for
this case can be found by simply considering a single element.

5.2 Receiving sensitivity

Consider the electrical terminals are open—circuit such
that Q and 02 are zero and let the ends be shielded from the
hydrostatic pressure such that Fz = F22 = 0. Because of the
symmetry a1 = —a2 = -a and since the pressure is uniform,.then
the total radial force is:-

- 27YRhPo

This may be considered to be equally divided between the two
nodes, such that the applied nodal forces become:- m

FR1 = FRZ = — NRhPO

Let the potential at node 1 be set to zero so that the potential
at node 2 becomes the received potential, ie. ¢1 = 0. - -

With these various conditions substituted into the
element matrix equations the following three equations result:—

0 = 2 n RhtEp( -2a/h2 -/ub/Rh) — 2 n Rte1¢2/h
_ TtRhPo = zfinhtspgua/Rh + b/2R2) + ZTiRtet¢2/2R

o = 27iRt(—2ela/h - etb/R) + 2 Write 02h:

where E = E/(1—/A2)- ”
These eguations when solved give the following value for ¢2:-

¢2 = RhPogt/t I

ie. the receiving sensitivity, Mo = ¢z/Po; becomes the standard
result:-

Mo = Rhgt/t '

where the piezoelectric constant gt is given by:-

gt = gfilel — et)/[E€ + el(e1 —/Aet) + et(et —/ue1)].

6.0 DISCUSSION

The principles of FEM have been given above but there are
a few further comments that need to be made; some of these are
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elaborated upon in companion papers in this proceedings.

The discretisation process, whilst easily imagined never
the less does involve some complexity in deciding upon the best
fitting procedure for the elements in the domain. For example a
finer mesh structure is likely to be required, in regions in the
domain where high displacement gradients are present, than is to
be required in regions where low displacement gradients are to be
found. Also, the fitting of regularly shaped elements to
curved boundaries may not be optimum and so isoparametric
elements, which themselves have curved boundaries, are sometimes
used.

In the one— and two-dimensional examples considered in
this paper the displacement matrix had either one or two
components for each node, whereas in three-dimensional
applications there will in general be three displacement
components at each node. This means that the components of the
stiffness matrix, eg. E1 and E2 in the example of Section 3.0,
will become (3 x 3) matrices. Therefore although the assembly
process proceeds in exactly the same way as described here, never
the less proper account must be taken of the component matrices
when considering storage requirements.

For elements which use nodes just at the corners, eg. at
the three vertices of a triangle, and provided-only displacement
continuity is required across element boundaries, then simple
linear shape functions may be used. However, if there are nodes
at other positions, eg. on the perimeter at the mid-points
between nodes, then the shape functions need to be higher order
polynomials. -

In computing an element's stiffness matrix an integration
is involved, which for the case of the simple examples was
performed analytically. However, where the shape functions are
more complicated and the elements may have many orientations it
may benecessary to carry out the integrations numerically.

Steady—state dynamics have been considered throughout,
but it is possible to retain the time as a discretised parameter
and use FEM to evaluate the time history or transient behaviour
of the displacement or potential.

There is a considerable ammount of computation normally
required when FEM is applied to a practical problem. As a
result of the build up in round-off errors the overall accuracy
of the results may be impaired; consideration of this problem is
therefore important. A companion paper in this proceedings
addresses this.
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Finally in the case of transducer applications it is

often necessary to include the effect of fluid loading. This is

accomplished by the use of some form of boundary elements to

represent the fluid, but there are problems because of the usual

unbounded nature of the fluid and the difficulties associated

with trying to adequately represent this extended fluid by a

layer of boundary elements. Another consequence of this is that

sound radiation into the fluid produces damping which results in

the arithmetic becoming complex rather than real. This also
occurs if the element equations themselves include frictional

damping terms.

7 .0 CONCLUSIONS

This paper has attempted to outline the principles behind

the Finite Element Method by concentrating on two relatively

simple problems, where the element equations are easily obtained

and the process of assembly is easily demonstrated. In a paper

of this length it is not possible to cover the subject in greater

depth and so if further details on the basics are required the

following bibliography, which was consulted by the present author

in preparing this paper, should be consulted. No attempt has

been made to examine the computing implications of FEM since this

is covered explicitly by other papers within this proceedings.
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‘FigJ Geometry for one—dimensional elastic bar.
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Fig.2 Normalised nodal displacements for the
elastic bar
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Fig.3 Cross-section through a cylinder showing a
triangular element and the geometry.

Fig.4 Finite element for a thin-galled cylinder

- Proctl.0.A. Vol 10 Pan9 (1935)

 


