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Two families of optimised compact difference schemes are presented. The first uses Holberg’s
minimised Group Velocity (MGV) approach, and the second uses an approach based on previ-
ous development of Dispersion Relation Preserving (DRP) schemes on vertex based grids. The
resulting schemes are compared analytically and experimentally to previously published MGV
and DRP optimised schemes. The new schemes are shown to have reduced phase velocity errors,
and greater resolving efficiency. Some simple benchmark problems are solved with the obtained
schemes using Linearized Euler Equations without convective terms, before being extended to
orthogonal curvilinear coordinate systems and applied to 2-dimensional wave problems. The ex-
tension is simplified to minimise the need to interpolate derivatives at undefined locations, and
allows for the efficient and accurate handling of complex material boundaries.
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1. Introduction

Optimised Finite Difference schemes have been commonplace in the computational simulation of
various wave propagation problems. Implicit Compact Difference schemes largely act as an extension
of these, but are able to obtain much greater levels of accuracy while using the same stencil size of an
equivalent Explicit Finite Difference scheme.

Since their introduction, a number of authors including Kim and Lee (1996), Kim (2007), and
Liu et al. (2008) have attempted to optimise the standard compact FD scheme by extending the DRP
approach developed by Tam and Webb (1993). The vast majority of these efforts have been on the
vertex based approach, despite the fact that staggered schemes have been shown to exhibit less dis-
persive behaviour than their vertex based counterparts. Recently, Venutelli (2011) has attempted to
use Holberg’s MGV approach on staggered grids and obtained promising results, but the potential
for modified versions of MGV, or the application of existing DRP techniques, to staggered compact
difference schemes is an area that is still unexplored. This represents the first motivation of this work.
The second motivation of this work is comes from their practical usage, as a number of complications
can arise from the use of staggered compact difference schemes. These include implementation dif-
ficulties on complex-shape domains and the additional computation needed to interpolate midpoint
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values of decision variables. A curvilinear scheme, which is based on a reduced form of the Lin-
earized Euler equations and solved in a Leapfrog type manner, is presented which aims to minimise
these problems.

2. Optimised Schemes

The standard staggered compact difference scheme for a first derivative Lele(1992), on a six-point
stencil takes the form:
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The terms α, β, a, b and c can be obtained by solving the following relations, up to a chosen order
of accuracy:
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If all equations are solved simultaneously, a single 10th order scheme is obtained (Lele, 1992).
However optimised schemes can be obtained by reducing the order of accuracy and substituting the
unwanted equations in the system for alternative equations. This forms the basis of both the MGV
approach (Holberg, 1987) and the DRP approach. To begin, first it is important to transform the
compact scheme (1) into the wavenumber domain using a Fourier transform.
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All following schemes use different strategies of optimising the compact difference parameters
in this wavenumber domain. The schemes compared are Venutelli (2011), and two new schemes
introduced in this paper. The first is a 2 parameter extension of his MGV approach, which begins
with the definition of the integrated error function E:
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∫ r
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The optimal values of r and n can then be found for schemes of 8th or lower order accuracy. For
example, for a 6th order scheme, equations (2)-(4) are used, with 2 additional constraints to make the
solution well defined:

∂E
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Where γ represents an acceptable tolerance level. A value of γ = 0.01 is taken to match that used
by Venutelli. The task is then to maximise r.

The second approach is analogous to Kim (2007)’s method for non-staggered grids. The integrated
error function for this scheme takes the form:

E =
∫ r
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k

r
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The optimisation procedure is functionally identical to that of existing DRP based methods. While
a number of optimisation strategies could be used, the one used in this paper is a Maple implementa-
tion of the Conjugate Direction with Orthogonal Shift (CDOS) method developed by Moiseev (2011).
This method has been shown to be effective at handling problems of a highly non-linear nature. A
tolerance level of 0.0001 is used, matching that of previous studies on vertex based methods. The
results in Table 2 show significantly greater resolution than Kim, who achieved kc = 0.839π at 4th

order accuracy, where kc represents the lowest value for which the relative error of the computed
wavenumber falls outside a tolerance level when compared to the real wavenumber. For this paper, a
tolerance of 0.001 is used to match that of previous work.

Table 1: Obtained schemes with the modified MGV approach

Scheme n r a b c α β
4th order 22 .866π .5501888045 1.412144220 .1944680976 .5195175641 .0588829967
6th order 22 .822π .6248746793 1.265245254 .1115338503 .4622076859 .0386192058
8th order 22 .753π .7147338451 1.0614935332 .0643347795 .3954227561 .0248583228

Table 2: Obtained schemes with the modified DRP approach

Scheme n kc a b c α β
6th order 11 .875π .6295951077 1.2560279016 .1077103518 .4590749488 .0375917317
8th order 12 .788π .7215710857 1.0444900869 .0621004685 .3899620161 .0241188040

3. Comparison of Schemes

Once the coefficients are obtained, we can determine the resolution and phase speed characteris-
tics of the schemes. The MGV schemes are compared with those obtained by Venutelli(2011), while
the DRP Schemes are only compared with Lele’s original unoptimised scheme due to the lack of
research into this family. In Figure 1, we see that both approaches yield less dispersive schemes than
the unoptimised 10th order scheme, but the MGV schemes tend to overshoot, which causes greater
dispersive error at certain wavenumbers. The 6th order DRP scheme stays within the tolerance level
of 0.1% for the largest range of wavenumbers.

ICSV24, London, 23-27 July 2017 3



ICSV24, London, 23-27 July 2017

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

k

k̄
Exact
Venutelli 4th
Venutelli 6th
MMGV4th
MMGV6th
MMGV8th
Lele 10th Order

(a) MGV optimised schemes show less disper-
sive behaviour than the unoptimised scheme.
However, the 4th order scheme overshoots at
lower wavenumbers.
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(b) Schemes optimised with the DRP ap-
proach show similar behaviour to their MGV
counterparts, but do not overshoot at lower
wavenumbers.

Figure 1: Modified Wavenumber vs Wavenumber plots for both families of optimised schemes,
zoomed in to focus on higher wavenumbers.
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Figure 2: Group velocity plots for MGV schemes (left) and DRP schemes (right), compared to the
exact solution and the unoptimised scheme.
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Figure 3: Resolution error for the MGV schemes (left) and DRP schemes (right), compared to the
exact solution and the unoptimised scheme.

In Figure 2, we see that the modifications to the MGV approach allow the scheme to fluctuate
more at lower range numbers, under the condition that their error stays within the tolerance of 1%.
This is is what causes the overshooting errors that we see in Figure 1. Meanwhile, in Figure 3 we see
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the resolution error. This is a useful way of visualising the deviation in Figure 1, and shows the the
relative error

4. Benchmark Problem

To compare and validate the accuracy of the schemes in real world simulations, a model is imple-
mented with a simplified version of the Linearized Euler Equations. All convective terms are ignored,
and the following equations are obtained for a general number of dimensions, j:

∂p

∂t
= −ρ̄c2 ∂vj

∂xj
(12)

∂vj
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= −1

ρ̄

∂p

∂xj
+ F (13)

Where F is an additional source term. A 1D model of these simplified equations are then solved
in a Leapfrog-esque manner. This staggering allows the cell centred schemes to be used without
midpoint interpolation. Using this formulation, a benchmark problem is set up which is similar to that
in Tam (1995). A theoretical fluid is used with ρ = c = 1, and run on a domain with −20 < x < 450.
An initial velocity is set to:

u = 0.5exp

(
− ln(2)(

x

5
)2
)

(14)

The simulation is run with two different values ∆x = 2 and ∆x = 3.55, to demonstrate how the
schemes perform at different points per wavelength. For agreement with the benchmark problem, the
simulation is run up until t = 400 and then compared with the exact solution. The L2-norm is taken
for each scheme at the end of the simulation and compared in Tables 3 and 4.
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(a) Using ∆x = 2, most schemes have a good agree-
ment with the exact solution.
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(b) At ∆x = 3.55, the 6th order DRP scheme and
Venutelli’s scheme produce the best results, but all
schemes struggle.

Figure 4: Zoomed in waveforms at t=400, comparisons made between Venutelli’s 6th order scheme,
Lele’s unoptimised scheme, and the proposed schemes.

At ∆x = 2 we see that all schemes achieve great results. This is not surprising as all of the
optimised schemes with the exception of the 4th order MGV scheme have extremely high accuracy at
lower wavenumbers. At ∆x = 3.55 the schemes are tested much more, and some schemes like the 4th

order MGV perform rather poorly, while our 6th order DRP actually performs better than Venutelli’s,
and significantly better than the unoptimised scheme.
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Table 3: L2-norm at ∆x = 2

Scheme L2-norm
Venutelli 6th 0.0046
Modified MGV 4th 0.0704
Modified MGV 6th 0.0218
Modified MGV 8th 0.0105
Modified DRP 6th 0.0157
Modified DRP 8th 0.0083
Lele 10th 0.0145

Table 4: L2-norm at ∆x = 3.55

Scheme L2-norm
Venutelli 6th 0.0405
Modified MGV 4th 0.1166
Modified MGV 6th 0.0628
Modified MGV 8th 0.0475
Modified DRP 6th 0.0404
Modified DRP 8th 0.0485
Lele 10th 0.0984

5. Curvilinear Coordinates

It has been shown by Tam (2012) that a numerical scheme that has been optimised to have DRP
properties, will maintain those properties when used in curvilinear coordinates as long as the grid
meets some certain criteria. It can also be shown that an MGV optimised scheme can also be used
under similar conditions. To enable the use of staggered grids with the curvilinear transformed version
of equations (12)-(13), a form must be derived with minimal use of cross derivatives which are not
defined in the cell centres. This is done by using a similar derivation to the one used by Xie et al.
(2002) for solving Maxwell’s equations. In 2D, the obtained equations have the form:
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Where J = xξyη − yξxη is the determinant of the Jacobian. A 3D extension, or one containing
additional terms is also possible. These equations are only valid when solved on orthogonal domains,
so it is important that the grid generation procedure produces orthogonal grids. This is not a significant
restriction as orthogonality is often desirable, since this often leads to significant simplification of both
the transformed equations and the application of boundary conditions. Orthogonal schemes also do
not suffer from the numerical instabilities that can arise from cell deformity on non-orthogonal grids.
However, since the value of φξ and φη are not defined at the stored pressure locations, some midpoint
interpolation is still required, which is handled with the standard 10th order compact scheme:
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With α = 10
21

, β = 5
126

, a = 5
3
, b = 5

14
, c = 1

126
. This can be optimised, but additional work needs

to be done to obtain the best possible scheme.

5.1 Results

An initial validation is performed on a simple resonating disk with a diameter of 0.4m. A theoret-
ical fluid is used with ρ = 999kg/m3 and c = 2500m/s, and is vibrated at its forcing frequency. The
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frequency is obtained using an Eigenfrequency study with PARDISO solvers within COMSOL Mul-
tiphysics, and is calculated to be approximately 7623Hz. This is then used in a time dependent study
using the newly obtained transformed equations, with derivatives calculated using the new 8th order
DRP scheme. To ensure grid orthogonality, and to remove the dependence on grid generation, tradi-
tional polar coordinates are used. In the θ direction, a periodic boundary condition is implemented,
while in the radial direction, the outside edge of the disk is assumed to have zero normal velocity,
φr = 0. For stability and simplicity, this is implemented with a symmetry boundary condition.

Figure 5: Resonant mode calculated with the compact scheme (left) at 7623Hz agrees with the COM-
SOL study. Time dependant pressure at a node on the outside edge of the disk (right) shows the
expected linearly increasing peak pressure.

A second validation is performed to test the schemes on a grid that has been generated using the
CRDT algorithm (Driscoll, 1998), and demonstrates a potential application for measuring acoustic
pressure inside a crucible with a vibrating top surface. The crucible is filled with Aluminium and is
excited with the aid of an electromagnetic coil above the top surface. An oxide layer develops on the
top of the fluid and in the model is approximated as a reflecting solid wall. Material properties have
been approximated to be ρ = 2375kg/m3 and c = 4600m/s.

(a) t ≈ 5.5× 10−6s (b) t ≈ 1.6× 10−5s (c) t ≈ 7.6× 10−4s

Figure 6: Pressure distributions in the crucible at 3 timesteps - Soon after the electromagnetic field is
activated (a), when the waves start reflecting (b), and some time later when the crucible is resonating
(c)
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An eigenfrequency study performed in COMSOL resulted in a fundamental frequency of 17906Hz,
which is then used as part of a time dependant study using the newly obtained 8th order DRP scheme.
Snapshots at 3 different timesteps are shown in Figure 6. As before, the simulation agrees with the
COMSOL study as resonance is achieved.

6. Conclusions and Future Work

Two new families of staggered Compact Finite Difference schemes have been presented, with
some simple test cases demonstrating their use. The schemes optimised with the DRP based tech-
niques has led to new schemes with significantly better resolution properties than their vertex based
counterparts, and compare well to the MGV optimised staggered scheme proposed by Venutelli(2011).
However, attempts to modify the MGV approach with similar techniques were only partially success-
ful. In addition, when used with the newly obtained transformed equations (15)-(19), excellent accu-
racy is achieved on domains with complex shapes. However, the current method is limited only to 2D
domains, and a formulation does not yet exist for use with 3D cases. Development of such equations
is an important step for some realistic applications, and is part of continued study.
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