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ABSTRACT

Maximumn length sequences (MLS) are becoming widely used as an accurate method af determining
the impulse response of audio transducers. Although MLS techrniques offer an enhanced inununity to
noise and distortion compared to periodic impulse testing, non-linearity in the measurement chain still
results in impulse response errors. This paper examines the nature of such errors within typical
MEAsSUrement environments.

0 INTRODUCTION

Historically the determination of the linear (ransfcr function has been the most fundamental evaluation
of an audio system, defined by the impulse response (IR) in the time domain from which the
frequency response can be calculated. The design of modemn audio equipment requircs cver more
accurate methods of detemmining the linear transfer function. An example that illustrates such a necd
is cqualisation of loudspeakers in the digital domain; digital signal processing allows equalised on-axis
frequency response deviations of better than +/- 0.5 dB across wide regions of the andio spectrum
[1). Such high performance requires a similarly accurate measurcment technique 1o ensure that the
equalisation pcrformed is the comect one; it is important 1o eradicate measurement artifacts at the

beginning of the design cycle since errors can form a closed system whereby their effects remain

unnoticed in the final measurement of the cqualised system. Another application that requires highly
accurate lincar transfer function measurement is a technique proposcd by the Authors to measure low
level errors within audio systems {2].

There are three basic metheds of transfer function measurcment: periedic impulse excitaiion (PIE),
maximum length scquences (MLS) and time delay spectrometry (TDS). PIE reveats the pcriodic
impulse response (PIR) of the device under test (DUT) dirccily by applying a periodic short duration
impulse to the DUT and averaging the output over several measurement periods [3]. The main
problem encountered in PIE is poor noise immunity due to low cxcitation signal power; (his drawback
is overcome to a large degree by using MLS which, comparcd to periodic impulses of similar
repetition rate, have a much higher excitation power for the same peak output (i.c & lower crest factor).
MLS arc essentizlly pseudo-random binary sequences which yield a unit impulse upon circular auto-
correlation, This property allows the PIR of a test systcm to be obtained by applying an MLS 10 the
DUT and cross-corrclating the system output with the input. An excellent introduction 1o MLS
techniques is duc to Rifc and Vanderkooy {4]. Whereas PIE and MLS initialty rcveal the transfer
functon in the time domain, TDS yields transfer function information as a complex frequency
response (which can of course be converted to the time domain by using the inverse Fourier
transform). TDS technigues utitise swept sinc waves which are inpul to the DUT and reveal the
complex frequency response at the system output after hardware andfor sofiware processing [5).
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TDS is similar in many ways to MLS in thc way that noise and diswortion immunity is increased over
simple PIE techniques, even though the measurements are performed in different "domains’. However,
it can be shown that in achicving a similar frequency resolution to an MLS measurement, TDS will
typically take considerably longer to execute unless a complicaled postprocessing operation is
performed [4),[5].{6). The additional disadvantage that TDS suffers in terms of hardware and
software complexity {7] also helps to explain the growing popularity of MLS [RB].[9).

Noise and distortion present in any practical measurement system reduces the accuracy of transfer
function determination. For example Figure 1 shows an fft of an MLS-derived impulse response
simulation of a 1 kHz lowpass FIR filter with less than 0.001 dB passband ripple. The excitation has
been distorted by a second order non-linearity at a peak level of 20 dB below the driving signal which
causes the transfer function to appear much more ragged over the filter's passband than its linear
specification would suggcest.

‘This paper concentrales upon a comparison of the noisc and distortion immunity of PIE and MLS
techniques. After basic bchaviour has been established, MLS distortion behaviour is more closely
examined leading to some general conclusions concerning MLS applications.

I COMPUTER SIMULATED COMPARISON OF PIE AND MLS NOISE AND DISTORTION
IMMUNITY

Any system with a weak non-linearity can be modelled as a lincar filter h{n) representing the lincar
wransfer function and a non-lincarity described by a distortion polynomial d{x}, possibly followed by
a further filter haa(n) (sec Figure 2). When the system is excited by either a PIE or an MLS then the
impulse response ho(n) obtained after post-measurement processing will in general contain the linear
component hn) plus a non-linear component hd(n) due to d{x}:

ho(n} = h(n) + hd(n) (n

In order to calculate the nature and magnitude of hd(n) we can calculate ho(n) with a certain d{x} and
subtract from this h{n) (which is cstimatcd by seiting d{x} to zero). The following simulations
generate such information by convolving the pcriodic driving signal (either a PIE or an MLS) with
a known system impulse response h(n). If h(n) is non-zero for a lime less than the period of the
driving signal then time aliasing is avoided and just one period is required in the simulations to
accurately describe the periodic system behaviour.

The convolved driving signal is distortcd by polynomial d{x) and after appropriate post-processing
has been performed to extract the distoried DUT impulse response ho(n), the error component hd(n)
can be calculated by subtracting the known h(n) from ho(n). Note that haa(n) in Figure 2 models the
anti-aliasing filter found in the ADC of a physical measurement system, with a cutoff frequency close
10 half the system sampling frequency. Its presence only marginatly effects the results obtained below,
hence it has been omined from the simulations for clarity.

The generalised simulation process can be summarised thus:
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Di(n) = D(n) @ hin)

Do(r) o (1 + d[Di(n)}) Di(n)
ho(n) = ID[Do(n)]

hd(n) = ho(n) - ()

2

where D(n) is the raw driving signal applied to the system (i.e. either PIE or MLS of period L and
unit amplitude); '

@ represents convolution;
Di(n) is the filicred driving signal input to the non-lincarity model d{x};
Do(n) is the distorted driving signal;

ID[x] represents the post-processing operation required to yield an impulse response from the
driving signal.

Unlcss otherwise specified, d(x} is calibrated at -20 dB relative 1o the peak value of the driving signal.
For example a third order non-lingarity could be written:

3
i Di(n) . 3
Do(n) = |1 « — | 27 | |Di{n)
SYUS

A more detailed description of the simulation process for both PIE and MLS will now follow.
1.1 PIE Distortion Immunity

Periodic impulse testing reveals the periodic impulse response of the DUT directly; no post-processing
is required since the driving signal is itself an impulse, though averaging several impulse periods can
improve mndom noise immunity (sce section 1.1.1). Hence 1D[x(n)] = x(n), and the PIE simulaticn
process can be summarised as:

Di(n) = h(n) @
ho(n) = Do(n) = (1" + d(h(n))] h{n)

In the following simulations the raw driving signal D(n) is a unit impulse with a period L of 2048
samples. This signal is convolved with a system impulse response hi{n) formed by a 20 kHz lowpass
FIR filter and representing, say, a DAC rcconstruction filter driving a system with a perfectly flat
frequency response. The specifications of this and ather lowpass FIR filters used in the simulations
are listed in Table L h(n) is illustrated in the frequency domain in Figure 3 (for this and other
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examples the fft results have been scaled so that an unfiltered periodic unit impulse has an amplitude
of 0 dB across the spectrum; further note that all ffis are unwindowed since they transform periodic

signals).
Table I Specifications for FIR filters used in the simolations (44.1 kHz sampling frequency).
Filter Passhand Stopband Passhand Stopband Group
Type Cutoft Cutoff Ripple Attenuation Delay
Frequency Frequency
kHz kHz . 4B 4B Samples
Lowpass 1 2 0.0001 100 143
Lowpass 20 Con 0.0001 100 143
Bandpass 14,18 13,19 0.006 63 86

PIE distortion immunity is now examincd by distorting the filiered driving signal with a 2nd order
non-linearity of relative level -20 dB. The distorted component hd(n)} of the impulse response distorlion
is plotied in isolation in Figure 4a, and can be seen 1o be smoothly distributed in the frequency
domain. This ocgurs because PIE errors due o non-lincarities will generally be concentrated around
the lincar impulse in the time domain and hence will be impulse-like in nature (Figure 4b). Figure dc
shows the same measurement as Figure 4a but this time with the driving signal distorted by a 3rd
order non-linearity. The distortion is distributed in the frequency domain in a similar fashion to that
of the 2nd order distortion but at a slightly lower Icvel; this discrepancy is accounted for by the
difference between 2nd and 3rd order distortion characteristics and the peak calibration of distortion
levels.

PIE noise immunity is simulated by adding to the driving signal a noise signal with an amptitude
probability density distribution {(pdf) shown in Figure 4d, indicating near Gaussian characteristics. This
signal is scaled such that it has an mms value 60 dB below the peak value of the driving signal to
which it is then added. Subtracting the commupted impulse response from the linear response will of
course simply reveal the alienualed noise signal (Figure de) indicating flat frequency response.

1.1.1 Optimum PIE Excitation Level

We have seen that distonion immaunity of PIE-derived measurements is approximately ¢qual to the
relative peak level of the distortion for low order non-lincarities. Noise immunity is equal 10 the ms
level of the system noise below the ms level of the driving signal, i.c. no additional noise rejection
is offered by PIE measurcments. The total error level in a PIE measurement will equal the sum of
distortion error and noise crror, and it is obviously desirable to minimise this total ermor by carcful
choice of driving signal amplitude. Generally, if the driving sigrial amplitude is increased then for a
fixed system distortion and noise characteristic the propontion of total error due to distortion will
increase and that due to noise will decrease. The opposite will occur when the driving signal amplitude
is decreased. Therefore the optimum driving signal level occurs when the total ermor contributions from
noise and distortion are equal, With some knowledge of the noise and distortion performance of the
system under test it is possible to make a fairly accurate estimation of the optimum driving signal
amplitude that will result in minimum total crror. Averaging the results of N measurements will reduce
the noise contribution by a factor of ¥N while the deterministic emror due to distortion will remain
constant. Thus averaging also rcduces the oplimum driving signal amplitode.

194 Proc..O.A. Vol 13 Part 7 (1991)




Proceedings of the Institute of Acoustics

MLS DISTORTION IMMUNITY

1.2 MLS Distortion Immunity

In the following simulations the driving signal is a binary maximum length sequence s(n) of period
L = 2047 samples and unit amplitude; this is gencrated in sofiware by an 11-stage shift register with
an appropriate exclusive-OR feedback structure [10). The driving signal is then conveolved with
the linear impulse response of the simulated system, again a 20 kHz lowpass FIR filter. The
convolution is most cfficiently performed in the frequency domain over 4096 samples to avoid periodic
time aliasing (see chapter 12 of [11]). Distorting the convolved driving signal will corrupt the
impulse response obtained from the measurement but the nature of the distortion will be different from
that of the PIE derived mcasurement since MLS techniques involve a post-processing operation,
crosscorrelating the input driving sequence s(n) with the system output 4], Hence

IDIX()) = 5(n) © x(r)

) & ' (5)
= oo X s xned)
) b

Here @ comesponds 10 a circudar crosscorrelation operation across the measurement period L, hercafter
referred o simply as a crosscorrelation. If s{n) is of unit peak amplitude then the crosscorrelation
simply consists of additions and subtractions and can be efficiently performed by fast Hadamard
transform [10),[12). Now crosscorrelation is an associative process hence impulse distortion hd(n}
can be calculated by crosscorrelating s(n) with the driving scquence distortion Dd{n). The MLS
simulation summary is thus:

Di(n) = s(n) & h(n)

Do(n) = [ + d{Di(m)}] Di(n)

Dd(r) = Do(n) - Di(n) {6)
ho(n) = s(n} ® Do(n)

hd(n) = s(n) © Dd(n)

This procedure is followed to obiain Figute 5a which shows a 2048 point [ft of the impulse distorion
caused by a 2nd order non-linearity calibrated at 20 dB below the peak amplitude of the filicred
driving signal Di(n} (in this and the following [fis of MLS signals the last point is extrapolaled without
significandy cffecting the accuracy of the plots}. This measurement is repeated in Figure 5b for 3rd
order distortion. By comparing Figurcs 5a and 5b to 4a and 4¢ respectively, it is clear that the MLS-
derived un-truncated impulse measurements offer an increase in distortion immunity of between 10
and 15 dB over equivalent PIE fcasurements, Figure 5c indicates the random signal immunity of the
MLS measurement using the noise signal shown in Figure 4d calibrated at -60 dB with respect 1o the
peak MLS amplitude. Note how the MLS noise immunity is approximately 33 dB greater than for the
cormesponding PIE case (Figure 4c). This agrees with the general result that MLS methods achicve a
Gaussian noise immunity of YL, where L is the period of the MLS.
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For explanation of these results on an intuitive level, the error ley el due to additive Gaussian noisc is
reduced for the MLS mcasurement because random noise is unco Telated to s(n) and hence hd(n) will
tend to sum to zero from sample to sampie during the crossco: relation operatici of Equation (6),
However, this is not the casc for non-linearities where distorion will to a degree b2 correlated with
the unfiltered driving signal s{n), hence distortion immunity does not show the same improvement in
moving from a PIE based measurement regime to an MLS one. This argument is g en further weight
by the slight improvement in MLS-based distortion immunity shown by 2nd ouler non-lincarity
(Figure 6a) compared to 3rd order (Figure 6b) since 2nd order distortion will be 14 ; cotrelated with
the driving sequence than will 3rd. This is because even order driving distortion D) will be of the
same sign from sample 10 sampie immespective of the sign of the driving MLS while add order errors
are always rclated to the sign of the driving signal. '

An aliemative way of ¢xamining the differences between the two measurement strategies is 10 compare
the various power levels in each system. For the same peak driving signal amplitude, the MLS driving
signal has L times the cnergy that the periodic impulse based excitation docs. Hence for an additive
random noise signal of fixed amplitude, the signal to noisc ratio increases by VL. However, distortion
encigy generally increases with driving signal energy, hence in changing from a PIE 1o an MLS
measurement the distortion energy also increases and signal 1o distortion ratio does not change by a
great deal. :

1.2.1 Optimum MLS Excilation Level

For the same peak distontion amplitude, MLS excitation offers a 10 to I5 dB increase in distortion
immunity over PIE for low-order non-linearity and an YL increase in noise immunity, where L is the
mcasurement pedod. Hence for the same crror conditions and peak driving signal amplitude, MLS
offers a minimum reduction in total error of 10 to 15 dB over PIE. However, like their PIE
counterparts, MLS-based transfer funclion measurements possess minimum total error when the noise
and distortion crror contributions are of egual magnitude, and with an optimally chosen excitation
amplitude the total error advantage can be up 10 VL. Because MLS noise immunity is higher than
distortion immunity then an optimally set up PIE mcasurcment is likely to have a higher peak
amplitude than an optima! MLS arrangement measuring the same system. Like PIE measurements,
MLS noise immunity is further increased by averaging several measurcments, although again distortion
errors remain unaffecied. Thus optimum MLS excitation amplitude also decreases as averaging is
effected.,

2 NOISE AND DISTORTION IMMUNITY OF TRUNCATED MLS-DERIVED IMPULSE
MEASUREMENTS

The noise and distortion immunity of MLS-derived impulse responscs can be increased by tuncating
the impulse response achicved afler cross-correlation. This is because the lincar impulse response h(n)
will typically be contained in the first few samples of the measurement while noise and distortion
hd(n} will tend to be spread over the measurement period. Rife and Vanderkooy (4) suggest that non-
lincar ML35 errors can be viewed as a phase-randomised signal in the frequency domain which should
result in a time domain signal evenly spread over the measurement period. If the etror encrgy is eventy
spread then truncating the distorted impulse response of period L at t samples will result in an increase
in signal to distortion ratio (SDR) of T dB given by:
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N
T = 10 log,, %]

To investigate the accuracy of this conjecture some tests were performed upon the impulse distortion
hd(n) obtained from the above MLS simulations, Figures 6a and b indicate the distortion in the time
domain for the 2nd and 3rd order non-linearity models respectively; the distortion appears to be
anything but evenly spread across the measurement petiod. To ¢xamine how uneven the distributions
are, a plot of distortion cnergy distribution Ed(n) for cach of the simulations is presented in Figures
6c and d. Ed{n) is obtained by calculating error energy accumulation across the sequence as a
proportion of total error encrgy:

)5 hd(R)?
Ed(n) = :";—_ ' (8)
Y, hdeky?

10

Hence for a perfectly smooth and even distribution Ed(n) should plot as a straight line from (sample
0, 0%) 1o (sample L, 100%). The distribution for the 2nd order non-linearity shown in Figure 6c shows
about 40% of the total emor energy concentrated around the lincar impulse response (at approximately
140 samples inw the mcasurement period), although the remaining error power is fairly evenly
distributed. Hence if hd(n) were truncated at 256 samples 10 just include the linear part of the impulse
response then the increase in SDR would only be 4 dB rather than the 9 dB expected from Equation
(7). The 3rd order distortion distribution is shown in Figure 6d and indicates an even morg severe ermor
concentration around the linear impulse position. Such a distribution would present an SDR increase
of only 0.2 dB if truncated at 256 samples and is a far ¢ry from Rife and Vanderkooy's evenly
distributed distortion model.

Why is there such a discrepancy between the even distontion distribution model and these resulis? Rife
and Vanderkooy speculate that for the distortion 10 be evenly distributed the MLS stimulus should be
quasi-Gaussian in order for non-lincaritics to be exercised over a wide range of levels. Figure 7 shows
the pdf of the MLS driving signal Di(n) used in the simulations of Figures $ and 6, where (he raw
binary signal has been lowpass filiered with a 20 kHz FIR filter. The amplitude probability distribution
of this signal is evidently nor Gaussian. In an atiempt to make the stimulus more Gaussian the
simulations werwe repeated using a 1 kHz lowpass FIR filler, rsulting in the near-Gaussian MLS
stimulus pdf shown in Figure 8a. The corresponding distortion distributions for 2nd and 3rd order non-
lincarities are indicated in Figures 8b and 8c respectively. The 1 kHz and 20 kHz filtered distributions
are surprisingly similar for the 2nd order non-lincarities but for the 3rd order distortions the 1 kHz
filtered MLS-derived error is cleary better distributed with only 65% of error power distributed at the
linear impulse position (representing a 1.9 dB improvement in SDR if truncated at 256 samples).

Another simulation example is shown in Figure 9, this time using an MLS period length L of 16383
samples. This example uses a measured loudspeaker impulse response (Celestion SL700) with a fairly
flat frequency response to filler the raw MLS stimulus. Since the loudspeaker transfer function has
many poles and zeroes then the pdf of he fitiered MLS driving signal shown in Figure 9a is very
ncarly Gaussian. The corresponding error distribution for 2nd order distortion plotted in Figure 9b is
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more or less even indicating an 8.2 dB improvement in SDR for truncation at 2048 (L/8) samples.
However, Figure 9¢ shows that cven for Guassian stimulus the 3rd order distontion distribution is far
from cven with 75% of error cnergy concentrated in the first 2048 samples,

A final example used 1o illustrate the efficacy of truncation schemes is similar 1o the example used
by Rife and Vanderkooy in their atiempt to justify the cven distortion distribution model. Here h(n}
is a bandpass filter of passband 14 to 18 kHz, specified in Table I and illustrated in the frequency
domain with lincar frequency scale in Figure 10. Two MLS of length 1023 and 16383 samples are
filtered with h{n} yiclding the pdf plots of Figurcs .11a and 12a respectively, indicating pscudo-
Gaussian behaviour, These MLS driving signals are then distoried with 2nd and 3rd order non-
linearities at -12 dB with respect to peak driving levels. The corrupted frequency responses exiracted
from the distoried MLS signals arc shown in Figures 11b, 11c, 12b and 12¢. Note how the distortion
error appears 10 be similar in both nature and magnitude for both measurement lengths. Plois of
distortion distribution for 2nd and 3rd order non-linearitics arc shown for L = 16383 in Figurcs 12d
and 12¢; truncating at 1024 samples should yield SDR increases for the longer length sequence of 10
and 1.5 dB for 2nd and 3rd order errors respectively, However, when the truncated impulse responses
are plotted in the frequency domain they indicate a larger than expected increase in SDR over the 1023
point MLS plots for 3rd order non-lincarity (¢compare Figure 12g to 11c). This contradiction is solved
when the error is plotted in isolation (Figures 11d, 11e, 12h, 12i), showing that most of the crror due
to the 3rd order non-lincarity is of fundamental nature and hidden in the earlier plots. A comparison
of the 3rd order ermor curves (Figures 11¢, 12i) also indicate the modest increase in SDR for the
truncated 16383 point sequence predicted from the distortion distribution curves, ceriainly smaller than
the figure of 12 dB predicled from the even distribution model.

Table If Tncrease in SDR for truncated MLS-derived impulse respanses.

L MLS Driving Filter | Distertion [ Truncation Increase T in SDR

Order Length due to Truncation
t dB
Even Dismibution Distortion Model L3 9.0
2047 20 kHz Lowpass 2 256 4.0
2047 20 kHz Lowpass 3 256 02
2047 1 kHz Lowpass 2 256 EN)
2047 1 kHz Lowpass 3 256 19
16383 Loudspeaker 2 2048 82
16383 Loudspeaker k] 2048 1.2
Even Diswibution Distartion Model L 12
16383 | Bandpass 14-18 kHz 2 1024 10
16383 | Bandpass 14-18 kHz 3 1024 1.5

These results are summarised in Table II and suggest that for many non-Gaussian MLS stimulus the
impulsc error power due 1o non-linearities is nor evenly distributed across the measurement period.
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Further simulations have suggested that the 2nd order results are representative of all even order
distortions. Similarly the 3rd order results are representative of odd order errors, and are generaily
different from those of the even order simulations. Even order errors tend o be more evenly
distributed than those of odd order which are concentrated in the time domain around the region
occupied by the linear portion of the impulse response. As the MLS stimulus becomes more Gaussian
the even order distributions become more evenly spread over the measurement period. Odd order errors
also spread out but show a marked reluctance 10 a completely even behaviour; the Authars have yet
to experience a 3rd order error distribution where less than 50 % of total error power is concentrated
adjacent (o the linear impulse.

Thus truncating MLS-derived impulse responses will result in an increase in signal 1o distortion ratio
but not generally by the amount indicated by the even distribution model (Equation (7)), This increasc
in distortion immunity is not achicvable by truncating a PIE-derived impulse response since in this
case all distortion is co-incident with the lincar impulse (Figure 4b). However, it should be noted that
although MLS-derived impulse measurements show a VL increase in random noise immunily over PIE
techniques, truncation docs not result in a further increase in MLS noisc immunity advantage, This
is because additive noise is spread evenly over the measurement period for both techniques and hence
lruncating either an MLS-derived or a PIE-derived measurement will result in a similar increase in
SNR.

3 CONCLUSIONS

A simulated comparison of PIE and MLS impulse measurement techniques has shown that MLS
meihods possess superior noise and distortion immunity. MLS distortion immunity advantage was
identified at between 10 and 15 dB for low order non-linearities while the noise immunity advantage
over PIE is approximately cqual to VL where L is the length of the measurcment period. In order to
take advantage of the high noise rejeclion inhcrent to MLS, optimum cxcitation amplitude may be
lower than in an cquivalent PIE measurement, :

MLS distortion immunity can be further increased by truncating the measured impulse response alier
the linear component of the measurement has decayed to zero. However the increase in distortion
rejection due Lo truncation will not in general be as large as that predicted from the cven distortion
distribution model proposed by Rife and Vanderkooy, because non-linear crror cnergy tends 1o be
untevenly distributed across the measurement period. The simulations presented indicate that 2nd order
ermor components become more evenly spread as MLS excitation tends to a Gaussian amplitude
disttibution. Converscly 3rd order errors show a reluctance to conform to an even distribution cven
for Gavssian excitation, accumulating in the vicinity of the lincar componcent of the impulse response
and resulting in ineffective truncation. This behaviour is inherent to odd order errors because of a high
corrclation between MLS excitation and distortion.
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 Figure 6b: 3rd order distortion error in ime domain.
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Figure 6¢: 2nd order distartion distribution.
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Figure 7: Amplinude distribution of 20 kHz filiered
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Figure 8a: Amplitude diswribution of 1 kHz filtered
MLS, indicating more Gaussian-like behaviour compared
1o Figure 7.
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Flgure 8b: 2nd order distonion distribuion.
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Figure 6d: 3rd order distortion distribution,

Figure 6: MLS distortion distributions for 20 kHz
lowpass simutations.
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Flgure 8c: 3rd order distortion disiribution.

Flgure B: MLS ervors for | kHz lowpass simulations,
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Figure 9a MLS amplitude pdf for loudspeaker simulation.

Figure 1¢ Frequency response of filicr used In bandpass
simulations.
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Figure 9b 2nd order distorion distribution.

Figure 112 Amplitude distribution of filiered MLS,
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Figure 9¢ 3rd order distontion distribution,
Figure 9 MLS crrors for loudspeaker simulations.
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Figure 11b  Bandpass response corrupied with 2nd order
distortion.
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Figure 1lc Bandpass response comupted with 3rd order  Figure 12a Amplitude distribution of filtered MLS.
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Figure 114 Isolated 2nd order distortion emor. Figure 12b Bandpass response corrupted with 2nd order
distortion.
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Figure Lle Isolated Jrd arder distortion ermor. Figure 12¢ Dandpass response corrupted with 3rd order
distortion,

Figure 11 Distortion error simulations of bandpass
filtered 1023 point MLS. ;
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Figure 12d 2nd order ermor distribation.

Figure 12g 3rd order corrupiced impulse response truncated
at 1024 samples.
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Figure 12¢ Jrd order emvor distribution.

Figure 12h Isolated 2nd order crror.
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Figure 121 2nd order carrupled impulse response tuncated
at 1024 samples.
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Figure 12§ TIsolateddrd order crvor.

Figure 12 Distortion crror simulations of bandpass
fillered 16383 point MLS.
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