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ABSTRACT

Maximum length sequences (MLS) are becoming widely used as an accurate method of deter-mining
the t‘rnpque response of audio transducers Although MLS techniques offer an enhanced immunity to
noise and distortion compared to periodic impulse testing, non-linearity in the measurement chain .rtill
results in t'mpque response errors. This paper examines the nature of such error: within typical
measurznrent environments.

0 INTRODUCTION

Historically the determination of the linear transfer function has been the most fundamental evaluation
of an audio system, defined by the impulse response (IR) in the time domain from which the
frequency response can be calculated. The design of modem audio equipment requires ever more
accurate methods of determining the linear transfer function. An example that illustrates such a need
is equalisation of loudspeakers in the digital domain; digital signal processing allows equalised on-axis
frequency response deviations of better than +l- 0.5 dB across wide regions of the audio spcclmm
[1]. Such high perfennance requires a similarly accurate measurement technique to ensure that the
equalisation performed is the correct one; it is imponant to eradicate measurement anifacts at the
beginning of the design cycle since errors can forth a closed system whereby their effects remain ‘
unnoticed in the final measurement of the equalised system. Another application that requires highly
accurate linear transfer function measurement is a technique proposed by the Authors to measure low
level errors within audio systems [2].

There are three basic methods of transfer function measurement; periodic impulse excitation (PIE),
maximum length sequences (MLS) and time delay spectrometry (TDS), PIE reveals the periodic
impulse response (FIR) of the device under test (DUT) directly by applying a periodic short duration
impulse to the DUT and averaging the output over several measurement periods [3]. The main
problem encountered in PIE is poor noise immunity due to low excitation signal p0wer. this drawback
is overcome to a large degree by using MLS which, compared to periodic impulses of similar
repetition rate. have a much higher excitation power for the same peak output (Le a 10wcrcresr factor).
MLS are essentially pseudo-random binary sequences which yield a unit impulse upon circular auto-
conelation. This property a1l0ws the PR of a test system to be obtained by applying an MLS to the
DUT and cross-correlating the system output with the input. An excellent introduction to MLS
techniques is due to Rife and Vanderkooy [4). Whereas PIE and MLS initially reveal the transfer
function in the time domain. TDS yields transfer function information as a complex frequency
response (which can of course be convened to the time domain by using the inverse Fourier
transform). TDS techniques utilise swept sine waves which are input to the DUT and reveal the
complex frequency response at the system output after hardware and/or software processing [5].
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TDS is similar in many ways to MLS in the way Uta: noise and distortion immunity is increased over
simple PE techniques, even tltough the measurements are perforated in different 'domains‘. However.
it can be shown that irt achieving a similar frequency resolution to an MLS measurement. TDS will
typically take considerably longer to execute unless a complicated postprocessing operation is
performed [4].[5].[6]. The additional disadvantage that TDS suffers in terms of hardware and
sofiware complexity {7] also helps to explain the growing popularity of ms [81.[9],

Noise and distortion present in any practical measurement system reduces the accuracy of transfer
function determination. For example Figure 1 shows an fit of an MLS-derived impulse response
simulation of a 1 kHz lowpass FIR filter with less than 0001 dB passband ripple. The excitation has
been distoned by a second order non-linearity at a peak level of 20 dB below the driving signal which
causes the uansfer function to appear much more ragged over the filter's passband than its linear
specification would suggestr

This paper concentrates upon a comparison of the noise and distortion immunity of PIE and MLS
techniques. Alter basic behaviour has been established. MLS distortion behaviour is more closely
examined leading to some general conclusions concerning M‘LS applications.

I COMPUTER SIMULATED COMPARISON OF PIE AND MLS NOISE AND DISTORTION
IMMUNITY

Any system with a weak non-linearity can be modelled as a linear filter h(n) representing the linear
transfer function and a non-linearity described by a distortion polynomial dltt). possibly followed by
a further filter haa(n) (see Figure 2). When the system is excited by either a PIE or an MLS then the
impulse response ho(n) obtained after post-measurement processing will in general contain the linear
component h(n) plus a non-linear component hd(n) due to Mid:

ho(n) = h(n) + hd(n) (I)

In order to calculate the nature and magnitude of hd(n) we can calculate ho(n) with acertain dirt) and
subtract fmm this h(n) (which is estimated by setting dlx) to zero), The following simulations
generate such information by convolving the periodic driving signal (either a PIE or an MLS) with
a known system impulse response h(n). If h(n) is non-zero for a time less than the period of the
driving signal then Lime aliasing is avoided and just one period is required in the simulations to
accurately describe the periodic system behaviour.

The convolved driving signal is distorted by polynomial dlx) and after appropriate poseprooessing
has been performed to extract the distoncd DUT impulse response ho(n). the error component hd(n)
can be calculated by subtracting the known h(n) from ho(n). Note that haa(n) in Figure 2 models the
anti-aliasing filter found in die ADC of a physical measurement system. with a cutoff frequency close
to half the system sampling frequency. Its presence only marginally effects the results obtained below.
hence it has been omitted fmm the simulations for clarity.

The generalised simulation process can be summarised thus:
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Di(n) a 000 G h(n)

Do(n) r: [l + d[Dt'(n))] Di(n) (2)

hoot) = ID[Do(n)l

MOI) = ho(n) - h(n)

where mm is the raw driving signal applied to the system (i.e. either PIE or MLS of period L and
unit amplitude); ‘

8 represents convolution;

Di(n) is the filtered driving signal input to the non-linearity model d(x);

Do(n) is the distorted driving signal;

ID[x] mpresents the post-processing operation required to yield an impulse response from the

driving signal.

Uttlcss otherwise Specified. dlx) is calibrated at -20 dB relative to the peak value of the driving signal.
For example a third order non-linearity could be written:

3
I Di(n) . (3)Do(n) = l _.— D()o 10 Di(n) Lu] tn

A more detailed description of the simulation processfor both PIE and MLS will now follow.

Ll PIE Distortion Immunity

Periodic impulse testing reveals the periodic impulse response of the DUT directly; no post-processing
is required since the driving signal is itself an impulse. though averaging several impulse periods can
improve random noise immunity (see section 11.1). Hence lD[x(n)] = x(n). and the PIE simulation

process can be summarised as:

Di(n) = h(n) (4)

mm) = Do(n) = [I'o arm)” h(n)

In the following simulations the raw driving signal D(n) is a unit impulse with aperiod L of 2048
samples. This signal is convolved with a system impulse response h(n) formed by a 20 kHz lowpass
FIR filter and representing. say. a DAC reconstruction filter driving a system with a perfectly flat
frequency response. The specifications or this and other lowpass FIR filters used in the simulations
are listed in Table 1. h(n) is illustrated in the frequency domain in Figure 3 (for this and other
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examples the fit results have been scaled so that an unfiltered periodic unit impulse has an amplitude
of 0 dB across the spectntm: further note that all ffis are unwindowed since they transform periodic
signals).

Table l Specifications for HR film used in the simulations (“‘1 kill sampling frequency).

Passband Staph-rid
Cltlo" Culal'l

Frequency Frequency

 

PIE. distortion immunity is now examined by distoning rlte filtered driving signal with a 2nd order
non-linearity of relative level -20 dB. The distorted component hd(n) of the impulse response distortion
is plotted in isolation in Figure 4a, and can be seen to be smoothly distributed in the frequency
domain. This occurs because PlE errors due to non-linearities will generally be concentrated around
the linear impulse in the time domain and hence will be impulse-like in nature (Figure 4b) Figure 4c
shows the same measurement as Figure 4a but this time with the driving signal distorted by a 3rd
order non-linearity. The distortion is distributed in the frequency domain in a similar fashion to that
of the 2nd order distortion but at a slightly lower level: this discrepancy is accounted for by the
difference between 2nd and 3rd order distortion characteristics and the peak calibration of distortion
levels.

PIE noise immunity is simulated by adding to the driving signal a noise signal with an amplitude
probability density distribution (pdi) shown in Figure 4d. indicating near Gaussian characteristics. This
signal is scaled such that it has an nns value 60 dB below the peak value of the driving signal to
which it is then added. Subtracting the corrupted impulse response from the linear mponsc will of
course simply reveal the attenuated noise signal (Figure 4e) indicating flat frequency response.

1.1.1 Optimum PIE Excitation Level

We have seen that distonion immunity of PIE-derived measurements is approximately equal to the
relative peak level of the distortion for low order non-linearities. Noise immunity is equal to the rms
level of the system noise below the nns level of the driving signal. i.e. no additional noise rejection
is offered by PIE measuremean The total error level in a PIE measurement will equal the sum of
distortion en'or and misc error. and it is obviously desirable to minimise this total error by careful
choice of driving signal amplitude. Generally. if the driving signal amplitude is increased then for a
fixed system distom'on and noise characteristic the proportion of total error due to distonlon will
increase and that due to noise will decrease. The opposite will occur when the driving signal amplitude
is decreased. Therefore the optimum driving signal level occurs when the total cnor contributions from
noise and distonion are equal. With some knowledge of the noise and distortion perfortnanee of the
system under test it is possible to make a fairly accurate estimation of the optimum driving signal
amplitude that will result in minimum total error. Averaging the results of N measurements will reduce
the noise contribution by a factor of \IN while the deterministic error due to distortion will remain
constant. Thus averaging also reduces the optimum driving signal amplitude.
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1.2 MLS Distortion Immunity

In the following simulations the driving signal is a binary maximum length sequence s(n) of period
L = 2047 samples and unit amplitude; this is generated in sofiware by an ll-stage shift register with
an appropriate exclusive-0R feedback structure [10]. Tire driving signal is then convolved withthe linear impulse response of the simulated system. again a 20 kHz lowpass FIR filter, The
convolution is most efficiently performed in the frequency domain over 4096 samples to avoid periodictime aliasing (see chapter l2 of [ll]). Distorting the convolved driving signal will corrupt theimpulse response obtained from the measurement but the nature of the distortion will be different fromthat of HIC'PIE derived measurement since MLS techniques involve a post-processing operation.crosscorrelating the input driving sequence s(n) with the system output [4]. Hence

[DIXON = 5(I!) 0 1(n)

L-l (5)
)3 :00 AM)
run

I
L¢I

 

Here 0 concsponds to a circular crosscorrelation operation across the measurement period L. hereafterrcfened to simply as a croSScorrelation. lf s(n) is of unit peak amplitude then the crosscorrelationsimply consists of additions and subtractions and can be efficiently performed by fast Hadamardtransfomt [lO].[l2]. Now crossconelation is an associative process hence impulse distortion hd(n)can be calculated by crosscorrelating s(n) with the driving sequence distonion Dd(n), The MLSsimulation sununary is thus:

Di(n) = s(n) 8 h(n)

000:) = [1 + d(Dt'(n))] Di(n)

0.10;) = 0000 — Di(n) (6)

h0(rt) = s(n) 0 Do(n)

hd(n) = s(n) 0 Dd(rt)

This procedure is followed to obtain Figure 5a which shows a 2048 point fft of the impulse distortioncaused by a 2nd order non-linearity calibrated at 20 dB below the peak amplitude of the filtcrcddriving signal Di(n) (in this and the following ffts of MLS signals the last point is extrapolated withoutsignificantly effecting the accuracy of the plots). This measurement is repeated in Figure 5b for 3rdorder distortion. By comparing Figures Sa and 5b to 4:1 and 4c respectively. it is clear that the MLS—derived un—truncated impulse measurements offer an increase in distonion immunity of between 10and IS dB over equivalent PIE measurements, Figure 5c indicates the random signal immunity of theMLS measurement using the noise signal shown in Figure 4d calibrated at -60 dB with respect to thepeak MLS amplitude. Note how the MLS noise immunity is approximately 33 dB greater than for theconesponding PIE case (Figure 4c). This agrees with the general result that MLS methods achieve aGaussian noise immunity of \IL. where L is the period of the MLS.
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For explanation of these results on an intuitive level. the error let :31 due to additive Gaussian noise is
reduced for the MLS measurement because random noise is unco related to s(n) and hence hd(n) will
tend to sum to zero from sample to sample during the crossco relation operation of Equation (6).
However. this is not the case for non-linearities where distortion will to a degree be conelated with
the unfiltered driving signal s(n). hence distortion immunity does not show the same improvement in
moving from a PIE based measurement regime to an MLS one. This argument is gr‘rfl’] further weight
by the slight improvement in MLS-based distortion immunity shown by 2nd outer non-linearity
(Figure 6a) compared to 3rd order (Figure 6b) since 2nd order distortion will be its ; correlated with
the driving sequence than will 3rd. This is because even order driving distortion Ddtn) will be of the
same sign from sample to sample irrespective of the sign of the driving MLS while odd order errors
are always related to the sign of the driving signal. '

An alternative way of examining the differences between the two measurement strategies is to compare
the various power levels in each system For the same peak driving signal amplitude. the MLS driving
signal has L times the energy that the periodic impulse based excitation docs. Hence for an additive
random noise signal of fixed amplitude. the signal to noise ratio increases by \IL. However. distortion
energy generally increases with driving signal energy, hence in changing from a PIE to an MLS
measurement the distortion energy also increases and signal to distortion ratio does not change by a
great deal. '

1.2.1 Optimum MLS Excitation Level

For the same peak distortion amplitude. MLS excitation offers a to to 15 dB increase in distortion
immunity ovcr PIE for low-order non-linearity and an ‘/L increase in noise immunity. where L is the
measurement period. Hence for the same error conditions and peak driving signal amplitude. MLS
offers a minimum reduction in total error of 10 to IS dB over PIE. However. like their PIE
counterparts. MLS-based transfer function measurements possess minimum total war when the noise
and distortion error contributions are of equal magnitude. and with an optimally chosen excitation
amplitude the total error advantage can be up to ‘IL. Because MLS noise immunity is higher than
distortion immunity then an optimally set up PlE measurement is likely to have a higher peak
amplitude than an optimal MLS an-angemcnt measuring the sarrtc system. Like PIE measurements.
MLS noise immunity is funhcr increased by averaging several measurements. although again distortion
errors remain unaffected, Thus optimum MLS excitation amplitude also decreases as averaging is
effected.

2 NOISE AND DISTORTION IMMUNITY 0F TRUNCATED MLS-DERIVED IMPULSE
MEASUREMENTS

The noise and distonion immunity of MLS—derived impulse responses can be increased by tmncating
the impulse response achieved after cross-correlation. This is because the linear impulse response h(n)
will typically be contained in the first few samples of the measurement while noise and distortion
hd(n) will tend to be spread over the measurement period. Rife and Vanderkooy [4] suggest that non-
linear MLS errors can be viewed as a phase-randomised signal in the frequency domain which should
result in a time domain signal evenly spread over the measurement period. If the error energy is evenly
spread then truncating the distorted impulse response of period L at t samples will result in an increase
in signal to distortion ratio (SDR) ofT dB given by:
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T = 10 logm (7)

 

i]
To investigate the accuracy of tltis conjecture some tests were performed upon the impulse distonion
hd(n) obtained from the above MLS simulations. Figures 63 and b indicate the distonion in the time
domain for the 2nd and 3rd order non-linearity models respectively; the distonion appears to be
anything but evenly spread across the measurement period. To examine how uneven the distributions
are. a plot of distortion energy distribution Ed(n) for each of the simulations is presented in Figures
6c and d. Ed(n) is obtained by calculating error energy accumulation across the sequence as a
proponion of total enor energy:

2.: Mar)“
Ed(n) = 23——

2 “(1‘)!
he

(8)

Hence for a perfectly smooth and even distribution Ed(n) should plot as a straight line'from (sample
0. 0%) to (sample L. 100%). Tire distribution for the 2nd order non-linearity shown in Figure 6c shows
about 40% of the total error energy concentrated around the linear impulse response (at approximately
140 samples into the measurement period). although the remaining error power is fairly evenly
disuibuted. Hence if hd(n) were truncated at 256 samples to just include the linear pan of the impulse
response then the increase in SDR would only be4 dB rather than the 9 dB expected from Equation
(7). "Fire 3rd order distortion dis'tribution is shown in Figure 6d and indicates an even more severe error
concentration around the linear impulse position. Such a distribution would present an SDR increase
of only 0.2 dB if tmncated at 256 samples and is a far cry from Rife and Vanderkooy's evenly
distributed distonion model.

Why is there such a discrepancy between the even distortion distribution model and these results? Rife
and Vanderkooy speculate that for the distonion to be evenly distributed the MLS stimulus should be
quasi-Gaussian in order for non-linearities to be exercised over a wide range of levels. Figure 7 shows
the pdf of the MLS driving signal Di(n) used in the simulations of Figures 5 and 6. where the raw
binary signal has been lowpass filtered with a 20 kHz FIR' filter. The amplitude probability distribution
of thi signal is evidently not Gaussian. In an attempt to make the stimulus more Gaussian the
simulations were repeated using a 1 kHz lowpass FIR filter. resulting in the near-Gaussian MLS
stimulus pdf shown in Figure 8a. The corresponding distortion distributions for 2nd and 3rd order non-
linearities are indicated in Figures 8b and 8c respectively. The 1 kHz and 20 kHz filtered distributions
are surprisingly similar for the 2nd order non-linearities but for the 3rd order distortions the l kHz
filtered MLS-derived error is clearly better distributed with only 65% of error power distributed at the
linear impulse position (representing a 1.9 dB improvement in SDR if truncated at 256 samples).

 

Another simulation example is shown in Frgure 9, this time using an MLS period length L of 16383
samples. This example uses a measured loudspeaker impulse response (Celestion SL700) with a fairly
fiat frequency response to filler the raw MLS stimulus. Since the loudspeaker transfer function has
many poles and zeroes then the pdf of the filtered MLS driving signal shown in Figure 9a is very
nearly Gaussian. The oonesponding enor distribution for 2nd order distonion plotted in Figure 9b is
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more or less even indicating an 8.2 dB improvement in SDR for truncation at 2048 (US) samples.
However. Figure 9c shows that even for Guassian stimulus the 3rd order distortion distribution is far
from even with 75% of error energy concentrated in the first 2048 samples.

A final example used to illustrate the efficacy of truncation schemes is similar to the example used
by Rife and Vanderkooy in their attempt to justify the even distortion distribution model, Here h(n)
is a bandpass filter of passband 14 to 18 kHz, specified in Table l and illustrated in the frequency
domain with linear frequency scale in Figure 10. Two MLS of length 1023 and 16383 samples are
filtered with h(n) yielding the pdf plots of Figures .11a and 12a respectively. indicating pseudo-
Gaussian behaviour. These MLS driving signals are then distorted with 2nd and 3rd order non-
linearities at -12 dB with respect to peak driving levels. The corrupted frequency responses extracted
from the distoned MLS signals are shown in Figures lib, llc. 12b and 12c. Note how the distortion
error appears to be similar in both nature and mayiitude for both measurement lengths. Plots of
distortion disu-ibution for 2nd and 3rd order non-linearitics are shown for L = 16383 in Figures 12d
and 12c; truncating at 1024 samples should yield SDR increases for the longer length sequence of 10
and 1.5 dB for 2nd and 3rd order errors respectively. However. when the truncated impulse responses
are plotted in the frequency domain they indicate a larger than expected increase in SDR over the 1023
point MLS plots for 3rd order non-linearity (compare Figure 12g to lie). This contradiction is solved
when the error is plotted in isolation (Figures lld, lle, l2h, lli). showing that most of the error due
to the 3rd order non-linearity is of fundamental nature and hidden in the earlier plots. A comparison
of the 3rd order error curves (Figures lie. 12i) also indicate the modest increase in SDR for the
tnmeated 16383 point sequence predicted from the distortion distribution curves. cenainly smaller than
the figure of 12 dB predicted from the even distribution model.

Table ll Increase in SDR for truncated MLSderivad impulse responses.
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Distortion Truncation
Order
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Thcse msulu are summarised in Table ll and suggest that for many non-Gaussian MLS stimulus the
impulse error p0wcr due to nonAlinearities is not evenly distributed across the measurement period.
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Further simulations have suggested that the 2nd order results are representative of all even order
distortions. Similarly the 3rd order results are representative of odd order enors, and are generally
different from those of the even order simulations. Even order errors tend to be more evenly
distributed than those of odd order which are concentrated in the time domain around the region
occupied by the linear portion of the impulse response. As the MLS stimulus becomes more Gaussian
the even order distributions become more evenly spread over the measurement period. Odd order errors
also spread out but show a marked reluctance to a compleme even behaviour. the Authors have yet
to experience a 3rd order error distribution where less than 50 % of total enor power is concentratedadjacent to the linear impulse.

Thus truncating MLS—derived impulse responses will result in an increase in signal to distortion ratio
but not generally by the amount indicated by the even distribution model (Equation (7)). This increase
in distortion immunity is not achievable by tnrncau‘ng a PIE-derived impulse response since in this
case all distortion is co-incident with the linear impulse (Frgure 4b). However. it should be noted that
although MLS-derived impulse measurements show a \/L increase in random noise immunity over PIE
techniques. tnrncation does not result in a funher increase in MLS noise immunity advantage. This
is because additive misc is spread evenly over the measurement period for both techniques and hence
truncating either an MES—derived or a PIE-derived measurement will result in a similar increase in
SNR.

3 CONCLUSIONS

A simulated comparison of PlE and MLS impulse measurement techniques has shown that MLS
methods possess superior noise and distonion immunity. MLS distortion immunity advantage was
identified at between to and rs dB for low order non-linearilies while the noise immunity advantageover PIE is approximately equal to 4L where L is the length of the measurement period. In order totake advantage of the high noise rejection inherent to MLS. optimum excitation amplitude may belower than in an equivalent PIE measurement. .

MLS distortion immunity can be further increased by truncating the measured impulse response afterthe linear component of the measurement has decayed to zero. However the increase in distortionrejection due to truncation will not in general be as large as that predicted from the even distortiondistribution model proposed by Rife and Vandcflcooy. because non-linear error energy tends to beunevenly distributed across the measurement period, The simulations presented indicate that 2nd order
error components become more evenly spread as MLS excitation tends to a Gaussian amplitudedistribution. Conversely 3rd order Errors show a reluctance to conform to an even distribution even
for Gaussian excitation. accumulating in the vicinity of the linear component of the impulse responseand resulting in ineffective truncation. This behaviour is inherent to odd order errors because of a high
con-elation between MLS excitation and disronion.
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Figure lid 2nd order :rmr dislrihulinn‘ Figure 123 3rd order corrule impulse response unncawd
n 1024 samplu.
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“gun: I: Dislorlhn trmr slmulnllons of bandpass

i

Figure Ill 2nd order corrupr impulse response truncated Figure III lsolaleflm order mar.

'illcfld I633] pair“ “[5.
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