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1 Introduction

In this paper we propose a new algorithm for field extrapolation and inverse scattering by rough sur-
faces. The method is based on the method by Potthast [7] for inverse scattering by a bounded obstacle
and requires measurements of the acoustic field on a finite line above the scattering surface. Formulae,
based on reciprocity arguments, and requiring solution of a first kind integral equation by Tikhonov
regularization, are proposed for constructing the acoustic field up to the boundary, in the time and
frequency domains. Theoretical results justifying these formulae are summarised and the effectiveness
of the algorithms demonstrated by numerical simulations. We explain how extrapolation of the field
up to the boundary can be used as the basis of an inverse scattering algorithm, identifying the surface
position from measurements of the scattered field, and illustrate this with numerical experiments.

2 The Surface Scattering Problem

We adopt Cartesian coordinates Ox1x2x3 and assume throughout that the scattering surface, denoted
by Γ, is invariant in the x3-direction, having the equation x2 = f(x1) for some given bounded and
continuously differentiable function f . To illustrate the principle of the method we propose, we consider
in this paper the 2D case in which the acoustic source is an incoherent line source, parallel to the x3-
axis, so that both incident field and scattering surface are invariant in the x3-direction. We will present
results later for the case of an impulsive source, but for the moment consider the behaviour of a single
mono-frequency component, so that the source is time harmonic (e−iωt time dependence). The method
we propose in Section 3 for extrapolating the measured field up to the boundary is independent of
the boundary condition. To make things specific, however, we describe the method for the case when
the scattering surface is sound soft, so that the pressure vanishes on Γ. The acoustic pressure satisfies
the wave equation in the region D where x2 > f(x1) above Γ. With these assumptions, and letting x
and y denote the vectors x = (x1, x2) and y = (y1, y2), the acoustic pressure at (x1, x2, x3) when the
source occupies the line x1 = y1, x2 = y2, will be denoted by G(x, y). Then the function u, defined by
u(x) := G(x, y), satisfies the inhomogenous Helmholtz equation,

∆u+ k2u = −δy (1)

in D, with k = ω/c and c the speed of sound. Further, u = 0 on Γ and u satisfies the Sommerfeld
radiation conditions (equations (2) and (3) below).

Let Φ(x, y) := i
4H

(1)
0 (k|x−y|). Then Φ(·, y) is the field at x when the line source is at y in free-field

conditions, and so is the field incident on the scattering surface. Let U s(x, y) := G(x, y) − Φ(x, y)
denote the scattered part of the acoustic field. Then v(x) = U s(x, y) satisfies the following Dirichlet
boundary value problem (the direct problem): find v ∈ C2(D) ∩ C(D) such that

∆v + k2v = 0 in D,

v = −Φ(., y) on Γ,

v(x) = O(r−
1

2 ), (2)

∂v(x)

∂r
− ikv(x) = o(r−

1

2 ), (3)



as r := |x| → ∞, uniformly in x̂ = x/|x|. From [3] and [2, Theorem 5.1], we have that this boundary
value problem has exactly one solution.

For some h ∈ R let Uh be the region where x2 > h and x1 ∈ R, and define

G1,h(x, y) := Φ(x, y) + Φ(x, y′h) + P (k(x− y′h)), x, y ∈ Uh, x 6= y,

where

P (z) :=
ei|z|

π

∫ ∞

0

t−
1

2 e−|z|t(1 + γ(1 + it))√
t− zi(t− i(1 + γ))2

dt, z ∈ U0,

with γ := z2/|z|, and y′h := (y1, 2h− y2) the reflection of y in the straight line Γh := ∂Uh. Thus G1,h

is the Green’s function for the Helmholtz equation in the half-plane Uh which satisfies the impedance

boundary condition,
∂G1,h(x,y)

∂x2

+ ikG1,h(x, y) = 0. From [1], G1,h also satisfies the bound

|G1,h(x, y)| ≤ C(1 + x2 − h)(1 + y2 − h)|x− y|− 3

2 , x, y ∈ Uh, x 6= y, (4)

for some constant C > 0 depending only on k, and so G1,h decays faster than required by the Som-
merfeld radiation conditions if x2 and y2 stay close to the boundary Γh.

Therefore, echoing earlier notation we define U s
1 (x, y) := G(x, y) −G1,h(x, y) for x, y ∈ D, so that

Us
1 (·, y) is the solution to the above Dirichlet BVP for boundary data −G1,h(·, y) on Γ.

3 The Inverse Problem

Let A > 0, H > sup f , and let γ∗ denote the finite horizontal line of height x2 = H for |x1| ≤ A. The
inverse problem we consider is the following:

Given measurements of the total field G(x, z), for x ∈ γ∗ and a single z ∈ D, determine f , i.e. the

location of the infinite surface Γ.

Suppose that x∗ ∈ D\{z} and f0 is a bounded and continuously differentiable function such that
f0(0) < 0. Define the translated function fx∗ by fx∗(x1) := f0(x1 − x∗1) + x∗2, and denote Γx∗ by
having the function x2 = fx∗(x1). Since f is a bounded function it holds that, for some real constants
f−, f+, f− ≤ f(x1) ≤ f+, for x1 ∈ R. Assuming that f− and f+ are known, choose d > max(f+−f−, ε)
where ε := infx1∈R f0(x1). We will solve approximately, by Tikhonov regularization with regularization
parameter α, the equation

∫

γ∗

G1,h∗(x, y)φx∗(y) ds(y) = gx∗(x) := G1,h∗(x, x∗), x ∈ Γx∗ , (5)

where h∗ := x∗2 − d, obtaining the approximate solution φα
x∗ . This equation can be written in operator

form as Kφx∗ = gx∗ , for φx∗ ∈ L2(γ∗). Note that, in view of the bound (4), gx∗ ∈ L2(Γx∗), and further
K : L2(γ∗) → L2(Γx∗) and is bounded, (see [4]). It is shown in [5] that K is injective, has dense range
and following this that ‖Kφα

x∗ − gx∗‖L2(Γx∗ ) → 0 as α → 0, though also ‖φα
x∗‖L2(γ∗) → ∞ as α → 0

since gx∗ is not in the range of K.
Consider the duct-like region G∗ between Γx∗ and Γh∗ i.e. h∗ < x2 < fx∗ and let the residual in

(5) be defined by

u(x) :=

∫

γ∗

G1,h∗(x, y)φα
x∗(y)ds(y) −G1,h∗(x, x∗), x ∈ G∗.

Note we can make u as small as we like in the L2 norm on Γx∗ . Let ψα := u|Γx∗
and hence

‖ψα‖L2(Γx∗ ) → 0 as α → 0. Then u satisfies the following BVP: find u ∈ C2(G∗) ∩ C1(G∗ ∪ Γh∗) ∩
BC(G∗) such that

u = ψα on Γx∗ ,

∆u+ k2u = 0 in G∗,

∂u

∂x2
+ iku = 0 on Γh∗ .



Theorem 3.1 The above boundary value problem has exactly one solution. Given ε > 0, there exists

a constant Cε > 0, depending only on k, f0, d, and ε, such that, for all x∗ ∈ R
2,

|u(x)| ≤ Cε‖ψα‖L2(Γx∗ ), h∗ ≤ x2 ≤ fx∗(x1) − ε. (6)

Now, denoting the region G∗
ε such that h∗ < x2 < fx∗(x1)− ε, provided Γ is contained in G∗

ε , we have
from Theorem 3.1 that

|u(x)| ≤ Cε‖ψα‖L2(Γx∗ ), x ∈ Γ, (7)

so that u is small on the surface Γ if it small on Γx∗ .
Let

w(x) :=

∫

γ∗

Us
1 (x, y)φα

x∗(y) ds(y) − U s
1 (x, x∗), x ∈ D.

Then, recalling the definition of U s
1 , in particular that U s

1 (x, y) = −G1,h∗(x, y), x ∈ Γ, y ∈ D, it is
shown in [5] that w ∈ C2(D)∩C(D), ∆w+k2w = 0 in D, w = −u on Γ, and w satisfies the Sommerfeld
radiation conditions (2) and (3). The following continuous dependence result for the above Dirichlet
BVP follows from [3].

Theorem 3.2 For every c > 0 there exists a constant C > 0 dependent only on c and k, such that,

provided ‖f‖C1,1(R) ≤ c, it holds that

|w(x)| ≤ C(1 + x2 − inf f)
1

2 sup
x∈Γ

|u(x)|. (8)

Combining the bounds (7) and (8) we have that, for x ∈ D, and provided Γ is contained in G∗
ε for

some ε > 0,

|w(x)| ≤ CCε(1 + x2 − inf f)
1

2 ‖ψα‖L2(Γx∗ ) → 0 as α→ 0.

In particular this inequality holds for x = z. Thus, for α small enough,

Us
1 (z, x∗) ≈

∫

γ∗

Us
1 (z, y)φα

x∗(y)ds(y). (9)

Now, using the reciprocity relation, the definition of U s
1 (z, y) and (9), it follows that

G(x∗, z) = G(z, x∗) ≈ G1,h∗(z, x∗) +

∫

γ∗

(G(y, z) −G1,h∗(z, y))φα
x∗(y) ds(y).

This last expression is the approximation to the total acoustic field that we compute, i.e. the approx-
imation we use is

Gα(x∗, z) := G1,h∗(z, x∗) +

∫

γ∗

(G(y, z) −G1,h∗(z, y))φα
x∗(y) ds(y). (10)

Theorem 3.3 For every ε > 0 and c > 0 there exists C > 0, dependent only on k, f0, d, ε, z2 − inf f ,
and c, such that, provided inf(fx∗ − f) > ε, f− ≤ x∗2 ≤ f+, and ‖f‖C1,1(R) ≤ c, it holds that

|G(x∗, z) −G
α(x∗, z)| = |w(z)| ≤ C‖ψα‖L2(Γx∗ ) = C‖Kφα

x∗ − gx∗‖L2(Γx∗ ) → 0 (11)

as α→ 0.

The analysis up to this point neglects the effect of noise in the measured data. In practice we expect to
measure Gδ(y, z) for y ∈ γ∗ rather than G(y, z), with ‖Gδ(·, z)−G(·, z)‖L2(γ∗) = δ. Then we compute
Gα

δ (x∗, z), defined by (10) with G(y, z) replaced by the noisy data Gδ(y, z). From (10) and (11) it
follows that

|G(x∗, z) −Gα
δ (x∗, z)| ≤ C‖Kφα

x∗ − gx∗‖L2(Γx∗ ) + δ‖φα
x∗‖L2(γ∗).

From Theorem 3.3 and [4, Theorem 2.24] we see that the first and second terms of this inequality tend,
respectively, to zero and infinity as α→ 0 with δ fixed.



4 Numerical Results

In this set of numerical experiments we use a pulse of central frequency f = 1808 Hz giving a wavelength
of λ = 0.19m. The incident pulse is approximated by a Fourier series of period 5.5ms, using 24
frequencies, ranging from f = 0 to f = 4339 Hz. The total field is approximated using (10), for 24
equally spaced frequencies from 180 Hz to 4339 MHz, at points x∗ above the surface. Denote Gα(x, z)
by Gα

kj
to indicate its dependance on kj for j = 1 . . . 24. The results are then summed with the

appropriate weights, Aj , and transformed to the time domain giving the approximation to the total
field

Uα
N (x, t) := 2<

(N−1)/2
∑

j=1

AjG
α
kj

(x, z)e−iωjt, x ∈ R
2\(γ∗ ∪ {z}), t ∈ R, (12)

for (N − 1)/2 = 24, (for further details see [4]). For each x∗ = (x∗1, x
∗
2) ∈ R

2, we make the simple

choice fx∗(x) = − 3λ
4 e

−(
x1−x∗

1

8λ
)2 + λ

4 + x∗2, the function defining Γx∗ . The measurement line, γ∗, in
the inverse problem, has length |x1| ≤ 10λ = 1.9m. In the numerical implementation we approximate
the integral in (5) by the trapezium rule with step length h = λ/10 and collocate at equally spaced
points x, with the same spacing h, only on the part of Γx∗ where |x1| ≤ 19λ. This leads to an
approximation of (5) as a square linear system, using α = 10−4, with coefficient matrix K. We
use “measured” values G(x, z) for x ∈ γ∗ computed by the boundary integral equation method and
super-algebraically convergent Nyström method proposed in [6]. The following figures illustrate the
case when f(x1) = 11λ

8 + λ
8 cos( 2x1

λ ) + λ
4 sin( 2x1

3λ ), x1 ∈ R, so that the boundary Γ is a non-sinusoidal
scattering surface. We fix the height of the measurement line as H = 4λ = 0.76m and the source of the
incident field is at z = (0, 4λ) = (0, 0.76)m. In Figure 1 we plot the approximation to the total field
given by (12) as a function of time (the solid lines) and the actual total field, calculated by the method
proposed in [6], (the dotted lines) for x∗ = (0, pλ), for p = 0.5, 1.6, 2.6, 3.5. Clearly, very accurate
reconstructions of the field up to the boundary are obtained by this method, from which the position
of the boundary should become apparent. In Figures 2 and 3 we plot the reconstructed total field at 8
points in time over one time period for |x1| < 5λ and 1/2λ < x2 < 3/2λ, where Gα

kj
(·, z) is calculated

at 9.6 points per wavelength in both the x1 and x2 directions. Finally we propose to locate the surface
Γ as the minimum of

P (x) =
1

T

∫ T

0

(

Uα
N (x, t)

)2

dt. (13)

By Parseval’s theorem,

P (x) = 2

(N−1)/2
∑

j=1

|Aj |2|Gα
kj

(x, z)|2. (14)

Hence in Figure 4 we first interpolate Uα
N (x, t) calculated for |x1| ≤ 5λ and 1/2λ ≤ x2 ≤ 3/2λ at 9.6

points per wavelength (λ), to 19 points per wavelength. On the right hand side of the figures we predict
the location of the surface by colouring in black the square in which P (x) is minimised as a function
of x2. Note that the bottom plots illustrate the case when 5% noise is added to the measurements.

5 Conclusions

We have shown that the total acoustic field can be accurately extrapolated up to the boundary without
any a priori knowledge of the boundary condition. The location of the boundary can then be construed
as the position where the incident and scattered fields merge. For the case when the surface is sound
soft we can see that the surface location can be predicted as the minimum of the function (13), (see
Figure 4). We see that even when noise is added to the measurement data the extrapolated total
acoustic field and the prediction of the surface are still very accurate.
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Figure 1: Comparison of the reconstructed total field and the exact total field are shown. The lower
figure indicates the case when 5% noise is added to the measurements. The total fields are compared
at the points x = (0, 3.5λ), x = (0, 2.6λ), x = (0, 1.6λ) and x = (0, 0.5λ) (from top to bottom), for,
0 < t < T . Note that the surface is at height 1.5λ. Thus the bottom plots show a reconstructed total
field for a point x below the surface.
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Figure 2: The extrapolated total field for t = 0.9ms, 1.4ms, 1.7ms, 2ms, 2.3ms, 2.5ms, 2.8ms and 3.4ms
(from top left to bottom right).
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Figure 3: The extrapolated total field for t = 0.9ms, 1.4ms, 1.7ms, 2ms, 2.3ms, 2.5ms, 2.8ms and 3.4ms
(from top left to bottom right), where 5% noise added to the measurement data.
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Figure 4: A plot of the power content, P (x), of the acoustic field (left hand side). On the right hand
side we predict the surface location from this plot by colouring in, in each column, the square in which
P (x) is minimised as a function of x2. The bottom two plots show the case when 5% noise is added
to the measurements.
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