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1. INTRODUCTION

In underwater acoustics, an important problem is to localize and identify a source from
acoustic signals received on an antenna. But the propagation of acoustic waves in the
ocean cannot always beconsidered as fully deterministic because of the influence of
oceanic fluctuations on the acoustic field. The aim of this paper is to characterize the
effects of these fluctuations on sound propagation. and to present some numerical
results.
Ptopagation in a deterministic medium is now well known and several methods to
investigate the sound field in such a case are available (geometric rays. normal modes.
parabolic approximation). These methods consider deterministic sound speed profiles
and very simple characteristics {or the boundaries (surface and bottom). But the real
environment is more complex and waves are scattered by fluctuations of the medium or
surface inhomogeneities. and reflection on a complex bottom. This leads to stochastic
changes in the amplitude and phase of acoustic signals. The sound field is then
considered as a random function. characterized by its moments: intensity. vertical
coherence. variance of intensity fluctuations...
The problem studied here is twodimensional.

Environmental phenomena are first reviewed in order to characterise the random data.
then It5‘s formalism is used to generalize the derivation of parabolic equations for all
the moments of the sound field. The equation of the second-order moment is solved
numerically. The numerical results obtained are compared with those obtained by
Statistical method.
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2- MEDIUM FLUCTUATIONS

Environmental phenomena are presented in the following table in decreasing order of

Time sales Magnitude of sound
speed variations

unportance 1 .
' Spatial scales

phenomma thorizontal

rum-n31 waves H: [0011: toll) km 0.1me
V: 1 to 100 m

l

V: valid

Fne structures H: in! 10m
V: I to 10m

: diurne iemidiurne
V: <l0m

The first two phenomena which have the most important effects are generally handled

by deterministic modelling. Fluctuations of sound speed resulting from the effects of

internal waves constitute prevailing disturbing effects.
Fluctuations in the medium due to internal waves are taken into account in the index of

refraction:
r: horizontal propagation axis. 2: vertical axis

  

  

 

    

       

 

  

    

 

n : index of refraction defined by: n (r.z) = C502)

C(m) = C(z)+5C(r.z)

C(z): deterministic sound velocity. Co: reference sound speed. 5C(r.z):

fluctuations of velocity

The square of the index of refraction is written as a sum of a deterministic part no2 and

a random part 8'.
n2(r.z) = n02(z) + e(r.z).

with e(r.z) 4125:"

e(r.z) is supposed to be gaussian. It is detemtined by its first two moments. chosen as:

- mean sound speed fluctuations: < c(r.z) > = 0
- autocorrelation function of sound speed:

. . .-2 _ _'2
<er.z er',z' >= 2 £ ex ex(H ) ao( 2 Huge?) pIZLv2(z_+21)]
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When the propagation range becomes very large (=100km) compared with the
horizontal spatial correlation lengh (= _2 km), the assumption of delta-correlation is

 

_ . - 2
reasonable and the gaussian function 1 e m] is approached by a Diracm. 214:1
function 8(r-r’). The autocorrelation function is then:

<e(r.z)t~:(r',z')> = 5(r-r') A(z—z'. #)

wtth A(z—z, 2 ) —‘/Z_nLn efl z ) eprZLv2(“T,-)]

This simple analytic function can be introduced in propagation model more easily than
the more realistic. but more complex too, spectrum of internal waves (Fourier
transform of sound speed autocorrelation function) established by Garrett and Munk
from in-situ measurements [2],

3- STATISTICAL APPROACH

In this paragraph. the moments of sound pressure are obtained by a Monte-Carlo
approach.

The sound pressure P(r.z) in the ocean satisfies the Helmholtz equation:

AP(r.z) + 1:02 n2(r.1)P(r.z) = tau-25) 5%)
M

We also assume a free surface condition at- the surface (2:0). a Neumann condition on
the bottom (FH) and conditions at infinity.

‘flfiLet the sound field be written it with: P(x.z) = NI— u(x.z)
x

The parabolic approximation is still valid when the fluctuations are caused by internal
waves [2]. For a point far from source. it is the solution of the Standard Parabolic
Equation (SPE):

2am 313+ 3% + k02(n02(z)+e(r.z)-1)u(r.z)=o (53.15)
This equation is then solved numerically by a claical finite-differences method for any
profile e(r.z).
A program have been used to generate random sequences of e, from the expression of
the autocorrelation function and its Fourier transform (autospectrum) [3] [4].
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For each sequence of e(r.z), the solution is u(r.z) is computed and stored. The statistical
moments of the sound field are then obtained by summing and averaging the results
obtained for a large number of sequence . In particular. the mean sound level is
calculated by: PP(r.z) = -lO log r<u(r.z)> I 2 + 10 log Ir I
and the mean intensity level by:

PP(r,z) = -IO Iog< Iu(r, z) I 2> + 10 log I r I
Figure (1) presents some numerical results for the second—order moment. The
drawback of this method results in that it requires to solve the parabolic equation for a
large'number of realization a; it is then highly time-consuming. It is then very
interesting to develop equations satisfied by the successive moments of the sound field.

4- PARABOLIC EQUATIONS FOR THE MOMENTS

Taken ensemble average of the (S.P.E) leads to:

2iko + + 1:02 ( n02(z) - l)<u(r,z)> + k02 <e(r,z) u(r,z)> = 0

that points out a coupled term in e and u. Tatarskii has solved the problem under the
assumption of white gaussian noise for the index of refraction. Ito's formalism is used
here to generalize the derivation of parabolic equations for all the moments of the
sound field under the same hypotheses. To present simple calculations. we first use a
semi-discretized versus of the (S.P.E.) in the z-direction:

  
d1 b o u] 0 01
b d2 u2 02
0 b .

. . b . {I .
o 0 dm uM M 0M

_ _ E0 _dam—s:— 2 £0) £(r)—(21(r). 22m. ---.€M(r))

dy_(r) = {(u(r))dr + emu». dB_(r)dr . r > 0 (S.D.E.)

with u(0) = no
d2: is proportional to gr). so it is a gaussian white noise. and this equation is a
stochastic differential equation of the has form. Formally. u(r) is solution of the
integral equation:
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l‘ l'

u(r)=uo+ I {(u(5))ds+ J G(E(S))dfi(s)
0 0

The peculiar point is then the definition of the stochastic integral [5]. The choice of
Ito's definition implies mathematical solutions where u and e are decorrelated

11

(Le < j G(n(s)) dfi(s) > = 0 V 0s r1<r). Stratonovitch's choice implies physical

l'l
solutions, and consist in adding a corrective term which is simple in this cases and the
equation (S.D.E.) can be written as:

dum(r) = - k%2A(0.zm)umdr + fm(n(r))dr + 2 ijdBj(r) (E1)

j
rrective term , A

co Classrcal calculus of Itoof Stratonovitch

This is still a new Ito's equation for which we can use Ito's stochastic calculus to obtain
equations for the moments. For example to determine the equation of the first moment.
we have to evaluate the quantity:

+=o «a

<ui>= juip(n(r)) dulmduM

Using Ito's formula. we obtain a discrete versus of the Tatarskii's equation:

2ikaaa—<‘r°+ 332;" + Mn02(z)- ])<u> + “fig/w.» <u> = o (M.P.E)
This formalism allows one to obtain by the same way equation of all the moments.
Further more. the lté‘s formalism is well adapted for relaxing the hypotheses of
gaussian white noise: the application of the Papanicolaou-Kohler theorem allows one to
extend the validity of the numerical results for the more realistic hypothesis on a
gaussian large band noise (with finiteenergy) for various estimated ranges of
propagation [6].
e(r.z) is modelised by eV(r.z) which becomes a gaussian white noise when v tends to 0

mm) = mm» dr + Qm(r)).£"(r)dr
Papanicolaou-Kohler theorcm‘s conclusion is that: when v tends to 0. 11 tends to nit
which is solution of (El).

We make then the following choice for It" 2 2 2

v v -- =L L '_'v ___ 2 _1__ ‘9'.""2 ‘95(a (me 0 .zi) v2 (6(V2.z)£(v2.z)) eo (z) 2nLi. v2 21% eAW «421:3—
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Variance is: a = 502(2) {2; Lb {2—1: Lv.

after variable changement r —) "L S.P.E becomes:
v2

' ik
5% = giggnomozm—m 3—2 + 706’£V(:-2.z)1;
where v is a little parameter whose unity is mm. The second result of the theorem is

that: if the first term of the right side is of the order of one. and the second of one

divided by v, then the parabolic equation of the first moment in case of white noise is a

good approximation for propagation ranges of order of one by v2.

The next table gives some numerical exam les:

Ira-m

 

   

  “2 850m HEE-
The parabolic equation of the second-order moment is solved numerically by modal

expansion leading to the mean intensity. the vertical mutual coherence, and by taking

the spatial Fourier transform of the vertical mutual coherence function. to the angular

spectral density (figure (2)). This method takes phase into account. it is then possible to

observe the coherent effects [4].

5 - CONCLUSIONS

Two methods have been used to obtain the moments of first and second order. The

stochastic method is based on the Ito's fonnalism. leading to equations for all the

moments of the sound field. These equations are of course those previously obtained by

other means but the interest of this calculus is that it can take into account the more

realistic hypothesis of a gaussian large band noise (with finite energy). Further more

the Papanicolaou-Kohler theorem provides an estimation of the validity domain of the

equations.
The numerical results of the both methods have been compared They have also been

compared with those obtained with experimental profiles (in-situ measurements). All

the results are in good agreement. Fluctuations on the sound intensity level can go up to

8dB.
The statistical method must be further developed. although it is time-consuming. It is

still a convenient way to calculate the fourth-order moment (the Stochastic equation is
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quite difficult to solve) and it must be noted that the computing time and the storage
size are not very highly increased between the computations of the second-order and
the fourth-order moments.
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(step of 10km) nnd arrival angle on In antenna (icnglhdifllm.
depth: 50m). F = 50 [[2, Source: H5: 50m, luuom a 500m.

Smiles“: resolution
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nlen i vels r b st isti a r h.

Random sound speed profiles have been numerically generated

from specific characteristics of fluctuations, calculated from

in-sih: measurements.
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Difference of intensity levels of the two first pictures
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F = 50 Hz, Source: HS= 50m, Bottom =
Iution M
200111, observed at 100m.
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