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1. INTRODUCTION

In underwater acoustics, an important problem is to localize and identify a source from
acoustic signals received on an antenna. But the propagation of acoustic waves in the
ocean cannot always be considered as fully deterministic because of the influence of
oceanic fluctuations on the acoustic field. The aim of this paper is to characterize the
effects of these fluctuations on sound propagation, and to present some numerical
results.

Propagation in a deterministic medium is now well known and several methods to
investigate the sound field in such a case are available (geometric rays, normal modes,
parabolic approximation). These methods consider deterministic sound speed profiles
and very simple characteristics for the boundaries (surface and bottom), But the real
environment is more complex and waves are scattered by fluctuations of the medium or
surface inhomogeneities, and reflection on a complex bottom. This leads 10 stochastic
changes in the amplitude and phase of acoustic signals. The sound field is then
considered as a random function, characterized by its moments: intensity, vertical
coherence, variance of intensity fluctuations...

The problem studied here is two-dimensional.

Environmental phenomena are first reviewed in order to characterise the random data,
then Itd’s formalism is used to generalize the derivation of parabolic equations for all
the moments of the sound field. The equation of the second-order moment is solved
numerically. The numerical results obtained are compared with those obtained by
statistical method,
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2- MEDIUM FLUCTUATIONS

Environmental phenomena are presented in the following table in decreasing order of

importance [1]:

Oceanic
phenomena

Spatial scales
H:horizontal
V; venical

Time scales

Magnide of sound
speed variations

Ocean climate
: 1 ciakion)

H: oceanic basin
V: few 100m

seasonal

10 m/s

Mesoscale
{(Meteorolopy)

H: 50 10 500 km
V: ocean deep

days = month

1m/s

Internal waves

H: 100m to 10 km
V:lw 100m

20mn — 1 day

0.1m/s

Fine structures

H: few 10m
V: 1o 10m

Microstructures

H: few meters
V! centimeters

< 20mn

< 0,01m/s

Tidal

H: variable
V: <10m

diurne semidiume

The first two phenomena which have the most important effects are generally handled
by deterministic modelling. Fluctuations of sound speed resulting from the effects of
internal waves constitute prevailing disturbing effects.

Fluctuations in the medium due to intemal waves are taken into account in the index of
refraction:

r: horizontal propagation axis, z: vertical axis

n : index of refraction defined by: n (r.z) = —_C(Croz)

C(r,z) = C{z)+8C(r,z)
C(z): deterministic sound velocity, Cg: reference sound speed, 8C(r,z):
fluctuations of velocity

The square of the index of refraction is written as a sum of a deterministic part np? and
a random part &
n2(r,z) = ng2(z) + €(r,z).
with  erz) ~ 202
C
£(r,z) is supposed to be gaussian, It is determined by its first two moments, chosen as:
-mean sound speed fluctuations: < e(r,z) > =0
- autocorrelation function of sound speed:
-(r-r')2 ~(z-z)?
exp [ - exp [ ]

uz) :
2 Lp? (48 2L2 (50

<e(r2) e(r'2) > = U5
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When the propagation range becomes very large (=100km) compared with the

horizontal spatial correlation lengh (= 2 km), the assumption of delta-correlation is
. . 1 -(r-r')2

reasonable and the gaussian function [ Toaly e g2 ] is approached by a Dirac

function 8(r-r'). The autocerrelation function is then:

<&(r.2)e(r,2)> = 8(r-r') A(z-z, z-l-_z)

, Z+2' 202’ -(z-z')2
with A (22, 757) = Varlp X o5 exp [ 2]_,.,2(:;_1.)]
This simple analytic function can be introduced in propagation model more easily than
the more realistic, but more complex too, spectrum of internal waves (Fourier

transform of sound speed autocorrelation function) established by Garrett and Munk
from in-situ measurements {2].

3 - STATISTICAL APPROACH

In this paragraph, the moments of sound pressure are obtained by a Monte-Carlo
approach.

The sound pressure P(r.z) in the ocean satisfies the Helmholtz equation:
AP(r.z) + kg2 n2(r.z) P(r.2) = 8(z-z2) S(ZL)
xr

We also assume a free surface condition at the surface (z=0), a Neumann condition on
the bottomn (z=H) and conditions at infinity.

Let the sound field be written u with: P(x,z) = %_E u(x,z)
x

The parabolic approximation is still valid when the fluctuations are caused by internal
waves [2]. For a point far from source, u is the solution of the Standard Parabolic
Equation (SPE);

2iko % A, B4 4 ko2 (o) + 1) - D) =0 (S.P.E)

This equauon is then solved numerically by a clagical finite-differences method for any

profile e(r,z).
A program have been used to generate random sequences of &, from the expression of
the autocorrelation function and its Fourier transform (autospectrum) [3] [4}.
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For each sequence of e(r,z), the solution is u(r,z) is computed and stored. The statistical
moments of the sound field are then obtained by summing and averaging the results
obtained for a large number of sequences. In particular, the mean sound level is
calculated by: PP(rz) = -10 log | <u(r.z)> |2+ 1030g [ r
and the mean intensity level by:

PP(rz) = -10 log< |u(r. z) | 25+ 10 log l t |
Figure (1) presents some numerical results for the second-order moment. The
drawback of this method results in that it requires to solve the parabolic equation for a
large number of realization €, it is then highly time-consuming. It is then very
interesting to develop equations satisfied by the successive moments of the sound field.

4 - PARABOLIC EQUATIONS FOR THE MOMENTS

Taken ensemble average of the (S5.P.E) leads to:
kg 2SUE2> | FUED | 2 () - Icu(ra)> + kol <e(r) Uz = 0

that points out a coupled term in € and u. Tatarskii has solved the problem under the
assumption of white gaussian noise for the index of refraction. It8's formalism is used
here to generalize the derivation of parabolic equations for all the moments of the
sound field under the same hypotheses. To present simple calculations, we first use a
semi-discretized versus of the (§.P.E.) in the z-direction:

(w1 Y\ fd1b 0 \{u Y\ fuo o V)
w2 b d2 . u2 0 u2 o2
0b . ; . 0 ’

d ] . . A
dn . .. . .
Um .. 0 um .o ' Om
\um /(0 0 M f\w /) \0 0 M Nom /
dB(r)=g= l%()‘;—:(r) &(n)=(£1(r), £2(r), ..., eM(r))
du(r) = f(u(r))dr + G(u(r)). dB(r)dr ,t>0(S.DE))

with u(0) = ud
dB : is proportional to E(r), so it is a gaussian white noise, and this equation is a
stochastic differential equation of the It&'s form. Formally, u(r) is solution of the
integral equation:
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T r

u=pp+ [ faE)ds+ [ Gues) aBes)
0 0

The peculiar point is then the definition of the stochastic integral [5]. The choice of
Itd's definition implies mathematical solutions where u and € are decorrelated
2
{ie< j G(s) dB(s) >=0  V 0<ry<r). Stratonovitch's choice implies physical
1
solutions, and consist in adding a corrective term which is simple in this cases and the
equaticn (S.D.E.) can be written as:

dum(n) = - “-AQzmumdr  +  fm@uMXMr+3, GmidBj®)  (E1)
i

corrective term ] R
. Classical calculus of It

of Stratonovitch

This is still a new It6's equation for which we can use It8's stochastic calculus to obtain
equations for the moments. For example to determine the equation of the first moment,
we have to evaluate the quantity:

400 oo
<upr = I Iui pu(r)) duj...dup

Using Itd's formula, we obtain a discrete versus of the Tatarskii's equation:
2%% + él;-:ﬂ__uz + ke2(ng2(z)- 1)<u> + %‘EA(O,z) <«w>=0  (MPE)
This formalism allows one to obtain by the same way equation of all the moments,
Further more, the Ité's formalism is well adapted for relaxing the hypotheses of
gaussian white noise; the application of the Papanicolacu-Kohler theorem allows one to
extend the validity of the numerical results for the more realistic hypothesis on a
gaussian large band noise (with finite energy) for various estimated ranges of
propagation [6].
£(r,z) is modelised by eV(r,z) which becomes a gaussian white noise when v tends to 0
du(r) = f(u(n) dr + G(u(r).eV(r)dr
Papanicolaou-Kohler theorem's conclusion is that: when v tends to 0, u tends to u#
which is solution of (E1).
We make then the following choice for €V :

(E.V(r,z)e"(r'.z'))=l—2 (E(%.z)(—:(%.z')): £02(z) N 2nLp —Loe o T2 o-2)2
) v WV v

v2y2aLp 2Lp2vé 2Ly
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o =egXz) V2 Lh V2 Ly.
after variable changement r — _1; S.P.E becomes:
v
u _ i 12 v kg o
5 = 3ligaz tRoWX@D) 17 + oA
where v is a little parameter whose unity is m-}/2. The second result of the theorem is
that: if the first term of the right side is of the order of one, and the second of one

divided by v, then the parabolic equation of the first moment in case of white noise is a
good approximation for propagation ranges of order of one by v2,

Vanance is:

The next table gives some numerical examples:
kvd 106 10-4 4106
Lh 50 000m 2 000m 10 000m
Ly 1 000m 100m 500m
£) 5104 10-3 5104
F 100Hz S00Hz 300Hz
D 850km 40km 200km

The parabolic equation of the second-order moment is solved numerically by modal
expansion leading to the mean intensity, the vertical mutual ccherence, and by taking
the spatial Fourier transform of the vertical mutual coherence function, to the angular
spectral density (figure (2)). This method takes phase into account, it is then possible to
observe the coherent effects [4].

5 - CONCLUSIONS

Two methods have been used to obtain the moments of first and second order. The
stochastic method is based on the Ito's forralism, leading to equations for all the
moments of the sound field. These equations are of course those previously obtained by
other means but the interest of this calculus is that it can take into account the more
realistic hypothesis of a gaussian large band noise (with finite energy). Further more
the Papanicolaou-Kohler theorem provides an estimation of the validity domain of the
equations.

The numerical results of the both methods have been compared. They have also been
compared with those obtained with experimental profiles (in-situ measurements). All
the results are in good agreement. Fluctuations on the sound intensity level can go up to
8dB.

The statistical method must be further developed, although it is time-consuming. It is
still a convenient way to calculate the fourth-order moment (the stochastic equation is
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quite difficult to solve) and it must be noted that the computing time and the storage
size are not very highly increased between the computations of the second-order and
the fourth-order moments.
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(step of 10km) and arrival angle on an antenna (length:200m,
‘\QQ depth: 50m). F = 50 Hz, Source: Hs= 50m, Bottom = 300m.

Stochastic resolution
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Random sound speed profiles have been numerically generated
from specific characteristics of fluctuations, calculated from
in-situ measurements.
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