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Within the context of efficient and sustainable design of buildings, a trend towards lightweight
structures, e.g. timber structures, is recognizable. This trend implies the necessity of being able
to predict serviceability and comfort as well as sound transmission in order to fulfill building
requirements. To generate reliable prediction methods, the transfer of energy between building
components has to be investigated. The Finite Element Method (FEM) is a convenient tool to
predict the vibroacoustic behavior. However, without appropriate post-processing it is limited due
to the sensitivity of the results at higher frequencies. In the mid-frequency range a sufficient num-
ber of modes per band enables the use of statistical methods like the Statistical Energy Analysis
(SEA). It delivers averaged results and thus copes with the sensitivity. But the SEA is always
limited to the governing partial differential equation related to wave types of the structures. E.g.
through-thickness effects of plate-like structures at high frequencies are not modeled. As both
techniques have a restricted validity regarding the frequency range, averaging techniques of the
SEA are applied in the post-processing of the FEM to obtain an adapted hybrid approach. In case
the load is unknown a robust estimation of the energy flow is needed for a general prognosis. The
SEA delivers an ensemble average, but only within a limited frequency range, whereas one reali-
zation of the Energy Flow Analysis (EFA) simulates one specific load case. By averaging over
varying random load cases, the EFA is able to predict the energy flow - which is robust regarding
the load - inside a certain confidence interval. This contribution will focus on the statistical be-
havior of the energy flow due to variation of the number of loads and realizations. Furthermore, a
comparison with a SEA model will be performed.
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1. Introduction

A trend towards lightweight structures within the context of efficient and sustainable design of
buildings, e.g. timber structures, is recognizable. This trend implies the necessity of being able
to predict serviceability and comfort as well as sound transmission in order to fulfill vibroacoustic
requirements. To generate reliable prediction methods, the transfer of energy between building com-
ponents has to be investigated.

In the low frequency range, the Finite Element Method (FEM) is suitable for structural dynamic
predictions. As the frequency rises, the number of modes per frequency band increases, whereby the
classical FEM is limited by the sensitivity of the results and the application of statistical methods be-
comes necessary. The Statistical Energy Analysis (SEA) provides robust results for the mid-frequency
range for a sufficient number of modes per band, but generally allows only restricted resolution in
space and frequency. Furthermore, the SEA is typically not able to represent through-thickness ef-
fects of plate-like structures at high frequencies. Hence, for the prediction averaging methods of SEA
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[1] are applied within the framework of an Energy Flow Analysis (EFA) in the subsequent evaluation
of the FEM for the aforementioned structures [2, 3]].

In case the load is unknown a robust estimation of the energy flow is needed for a general prog-
nosis. The SEA delivers an ensemble average, but only within a limited frequency range, whereas
one realization of the EFA simulates one specific load case. By averaging over varying random load
cases, the EFA is able to predict the energy flow - which is robust regarding the load - inside a certain
confidence interval. This contribution will focus on the statistical behavior of the energy flow due to
variation of the number of loads and realizations. Furthermore, a comparison with a SEA model will
be performed. The investigations are part of the joint research project "Vibroacoustics in the planning
process for timber constructions" (18726N) funded by the German Research Foundation (DFG) and
German Federation of Industrial Research Associations (AiF).

2. Energy Flow Analysis

For the application of the EFA, the structure is divided into subsystems in accordance with their
subdivision into components whereby, in contrast to the SEA, the prerequisite of the so-called weak
coupling is not imperative and the subsystem definition is independent on wave types.

First of all, a harmonic analysis is performed, whereby the subsystems are excited separately.
Therefore, pressure is applied on selected elements, instead of using nodal loads, to be able to build
up planar excitations like air-borne sound pressure more realistically and especially to avoid that
singularities affect the resulting input power. The latter is calculated by integrating over the product of
the applied pressure p and the resulting velocity v, ; at the nodes k& connected to the loaded elements e.
Therefore, both values as well as the coordinates = and y are approximated across the element’s area
by the n = 8 quadratic ansatz functions NN, ;. In case of the velocity this leads to:

Ve = %ve,i : Ne,i (1)
=1

As the ansatz functions are expressed in dependency on the element coordinates s and ¢, the coordi-
nates of the integral have to be transformed from x,y to s,¢ by means of the Jacobian matrix J. It
results equation for the injected power into subsystem j averaged with respect to time which is
marked by an overline. Hereby, the integral can be solved analytically in advance and then evaluated
elementwise. The * states the conjugated complex value and 77, the number of loads.
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The temporal average of the kinetic and potential energy is initially calculated on the basis of
elements and added together via each subsystem with respect to the load case. By means of the total
energy in the m subsystems as well as the applied power injected into the individual subsystems, the
matrix A of the energy influence coefficients can be determined (see Eq. (3)). In the following, the
used parameters are averaged over time and space, which is not explicitly marked by an overline for
readability.
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Here, the matrix entry A;; = % represents the energy in the subsystem ¢ normalized to the applied
power due to loading of subsyjstem j. It describes the energy flow inside the system and can be
calculated for different load cases by Eq. (3).

Applying the Power Injection Method, another way to express the relation of the diagonal input
power matrix P with the energy content of the subsystems E in the steady state is:

P = QLE “)

In Eq. (4) L defines the matrix of coupling and damping loss factors known from SEA. Comparing
Eq. (3) with Eq. (@), the loss factor matrix L can be calculated by the inversion of A. Therefore the
prerequisites for an application of the SEA have to be fulfilled.

3. Robust estimation of the energy influence coefficients

In the following, the statistical behavior of the energy flow due to variation of the load will be
investigated. The evaluations are performed at an L-shaped structure out of cross laminated timber -
consisting of a wall and a ceiling (subsystem 1 and 2), which are modeled by volume elements [5].

3.1 Rain-on-the-Roof

The EFA offers the possibility to compute either the energy influence coefficients for a specific
load scenario or - in case the load is unknown - for a so-called Rain-on-the-Roof (RotR) excitation.
The latter shall lead to robust energy influence coefficients which are as representative as possible for
an unknown load. Therefore, RotR shall ensure the participation of all modes in the system response.
Furthermore, the excitation shall be statistically independent to avoid a coherent modal response and
to fulfill the SEA assumption of equipartition of modal energy. Therefore, RotR consists of several
single loads with unity magnitude and a random phase. [4]

The direct field of vibration due to a point excitation is dominating over the reverberant field within
the reverberation radius. From a modal point of view the direct field is described by resonant and non-
resonant modes. In contrast to the SEA the EFA directly copes with non-resonant transmission. If a
sufficiently large number of nodes within a subsystem is excited with a random phase, the subsystem
energy can be represented by the reverberant energy by taking two times the kinetic energy according
to the SEA assumption. On the one hand, to do a comparison with the SEA it is convenient to fulfill its
assumptions. On the other hand, the consideration of the non-resonant transmission states a benefit of
the EFA as it models vibroacoustic problems more realistically. E.g., by modeling plates with several
layers of volume elements the location of the load across the thickness can be taken into account and
consequently thickness modes might be excited. Furthermore, its effect on the energy flow containing
non-resonant transmission can be shown [3]].

To perform a RotR excitation, different approaches have been presented in literature. Mace [6]
proposes a load vector whose amplitude is proportional to the local mass density of the corresponding
subsystem. Hence, all subsystem modes are excited by equal modal forces, such, that the direct
wavefield receives a uniform power input. To make the excitation incoherent, it is spatially delta-
correlated. This modal approach is part of a component-mode synthesis [2], which is convenient for
problems with a limited number of subsystem modes.

3.2 Averaging per frequency band and over realizations

Above the first antisymmetric mode of thickness-shear the number of modes is increasing sig-
nificantly. Especially for wooden plates this limit already occurs at comparatively low frequencies
as its Young’s modulus perpendicular to the fiber is about one thirtieth of the one in fiber direction.
In this case it is computationally more efficient to perform a harmonic analysis where the complex
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Figure 1: Coefficients of variation of A5 (- -) and Ay, (—) based on 100 realizations for different
numbers of loads ny; ny=max. corresponds to loading each element per subsystem.

dynamic stiffness matrix is inverted and solved for certain frequencies of excitation f. To cover the
whole frequency range of interest - e.g. the extended one for building acoustics from 50 to 5000 Hz
- a logarithmically equidistant spacing between the excited frequencies is proposed. This leads to an
identical number of evaluated frequencies n s for each one-third octave band.

To obtain the band averaged energy influence coefficients the time averaged subsystem energies
and the corresponding input power are summed up within each band and inserted into Eq. (3). Equa-
tion (??) shows the resulting matrix entries where the average per frequency band is marked by a
second overline. Inverting the resulting matrix leads to the band averaged coupling loss factors ac-
cording to section [2] If a structure is characterized by energy influence coefficients the energy flow
into the different subsystems can be predicted for a certain input power. Hence, this relation is only
true for band averaged values if the subsystem energies and the input power were summed separately
before computing the energy influence coefficients. This corresponds to the weighted arithmetic mean
of the energy influence coefficient with respect to the input power:
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As mentioned in section [2] in the present examinations, instead of using nodal loads, pressure is
applied on selected elements to avoid singularities. Loading each element (n;=max.) perpendicular
to the surface with the same pressure and a random phase results in an approximation of a spatially
delta-correlated excitation. Hence, due to loading at the surface and unlike SEA a non-resonant
excitation of thickness modes is induced [5]. To quantify the influence of the random phase on the
energy influence coefficient its statistical behavior is investigated by comparing different realizations
of the above mentioned loading. Figure ?? shows the coefficient of variation c4 which is a relative
measure as it normalizes the sample standard deviation s, by the sample mean A (cf. Eq. (§) to
(7). Therefore, the notation of the band averaged energy influence coefficient of one realization r (cf.

Eq. (??)) is first complemented and then purified: A_z] = A_fj =A".

E[A}:ZZEZAT (6)
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Figure 2: Power vs. energy (n=100, ny=max.): A (—), A weighted by power (- -); from right to left:
100 Hz (p12 = 099, P22 = 10), 630 Hz (plg = 061, P22 = ].O) and 3150 Hz (p12 = 025, P22 = ]_O)
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ca = %A ®)

Hence, unlike the weighted averaging per frequency band, the average over n different realiza-
tions is performed unweighted. The latter technique is chosen due to reasons of simplicity regarding
further statistical evaluations. If the power is used as a weighting factor, this will lead to an addi-
tional correlated random variable in Eq. (??). Equation shows the relationship between the two
averaging techniques by an second order Taylor series expansion, where pgpp denotes the Pearson
correlation coefficient between energy and power. The expression in the inner brackets scaled by cp,
the coefficient of variation of the power, makes the difference. As cp becomes small with increasing
frequency the two averaging techniques differ only slightly at low frequencies comparing the standard
deviation and the mean (cf. Fig. [I).

~
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3.3 Confidence interval of the true mean - number of realizations

The upcoming question is, if the true mean of the energy influence coefficient 114 can be estimated
with a certain precision by averaging over an affordable number of realizations 7,,;,. One possible
measure is the confidence interval which potentially includes the true mean. If the execution of
nmin realizations is repeated, the confidence level describes for how many cases the interval will
include the true mean. A certain confidence level of (1 — «) is related to a confidence interval I by
Pr(ua € I) =1 — «. Hence, the 100 (1 — «) % confidence interval for the true mean results in [[7]:

— S — S
A- t(l_g)\/—’% <pa < Attgoay—a (10)

NG

whereat the variance of the sample mean A is estimated by:

. o 2
Var[A] = VaZ[A] - %A (11)
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In Eq. @) z(1-q) describes the (1 — §) quantile of Student’s t-distribution with n — 1 degrees of
freedom. Equation [J]is based on the assumption that the mean value follows a normal distribution
with A ~ N (pi4, i’/—%) This holds accordingly to the central limit theorem as the energy influence
coefficient can be considered as independent and identically distributed random variable. As the
sample standard deviation is used to replace the true one, the quantile values are taken from the t-
distribution instead of the normal distribution. Inserting Eq. in Eq. (9) leads to the following
limits of the confidence interval:

€A

AllFty e 12
There are different possibilities to characterize the uncertainty. As the energy influence coefficient

shows a high variation in magnitude over the entire frequency range, a relative, logarithmic deviation

is chosen as a measure. Hence, the level difference between the sample and the true mean should be
smaller than the relative error D:

ref

A
|L5—L,,| <D with L, = 101g ( ) and A= 10712 (13)

Expression (L1]) can be rewritten as:

A
<D & —D<10lg— < D
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After some transformations the following interval results:
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If expression should be fulfilled with a probability of (1 — «), it holds equivalently:

Pr(]LZ—LMA] <D):1—04
s Prity<T<t,)=1-a
s Fr (tu) — Fr (tl) =1—« (14)

Expression (12) either delivers 7,,;, by solving it numerically or is evaluated for explicit values of
n, D and c4 to be depicted in contour plots like in Fig. 2] These curves are calculated based on the
maximum coefficient of variation in Fig. ??, c4 = 0.5, considering the entire frequency range and an
excitation with greater or equal 5 loads. Choosing e.g. a maximum deviation of D = 1 dB from the
true mean a simulation consisting of a minimum number of n = 37 realizations has to be performed
that - repeating the simulation several times - in 99 % of the repetitions the true mean lies within
the corresponding confidence interval. In case the required number of realizations becomes small the
prerequisites of the presented procedure might be violated.

3.4 Number of loads - coefficient of variation

Loading each element (n,=max.) at each frequency step leads to a high computational effort
which is attempted to be minimized. Therefore, the number of loads shall be reduced. To be able to
quantify its influence on each of five different numbers of loads 100 realizations are performed. The
criteria for the RotR excitation are still fulfilled as the forces are statistically independent to produce
an incoherent modal response and subsequently equipartition of modal energy.
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Figure 3: Number of realizations n for the deviation D from the true mean 4 based on c4 = 0.5.

Figure ?? shows the coefficient of variation for different numbers of loads. An increasing number
of loads leads to a lower coefficient of variation for the energy influence coefficients Ay, and Ass.
The single load leads to a significantly higher deviation between the individual realizations over the
entire frequency range. For several loads per realization the first thickness-shear resonances of the
excited plate 2 at 1370 and 1823 Hz state the lower limit of different levels according to the number
of loads [S)]. Hence, at the first thickness-stretch resonance of 3860 Hz the curves are already well
separated. At low frequencies one-third octave bands with few or none resonant modes might also
lead to deviations. The coefficient of variation of the power P, decreases with increasing frequency as
the locations of the loads become less decisive for shorter wavelengths. As P, is fully correlated over
the entire frequency range with the energy in the excited subsystem FEbs its coefficient of variation and
the one of A, behave analogously. Due to a decreasing correlation coefficient p5 of P, and E5 the
variation of A, behaves different. It remains in the same magnitude below the thickness resonances.

Figure [I] presents the relationship between the input power and the energy in the excited and the
adjacent subsystem, respectively, for 100 realizations with a varying excitation pattern (n;=max.).
Three selected one-third octave bands are depicted. The global modes in the 100 Hz one-third octave
band lead to a high correlation of the input power with the energy in the excited and the indirectly
excited subsystem, too. This definite relationship holds for the higher one-third octave bands only in
the excited subsystem. It seems that in the non-excited one the energy behaves nearly independent of
the injected power as the individual realizations form a cloud instead of a line. This indicates that the
subsystems are weakly coupled. Compared to the excited subsystem the energetic level is orders of
magnitudes smaller. It is assumed that the latter is influenced by the varying excitation pattern.

3.5 Sample mean - comparison to SEA

Whereas the arithmetic sample mean of the energy influence coefficients Ay, and A; shows at
low frequencies some small deviations for different numbers of loads, the thickness modes lead for
the latter one to slightly different levels at high frequencies (cf. Fig[3).

In addition, the structure is investigated by SEA whereat the rigid connection of wall and ceiling
is modeled by a line coupling. Exciting the bending waves in subsystem 2 leads to an almost identical
ensemble average for the normalized energy in the excited subsystem (Asy). The normalized energy
in the adjacent subsystem A;5 is overestimated at low and high frequencies as the assumptions of the
SEA and of the Mindlin wave approximation are not fulfilled, respectively [8].
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Figure 4: Sample mean value of A5 (- -) and Ay, (—) based on 100 realizations of different numbers
of loads n;, compared to the ensemble average from SEA.

4. Conclusion

In case the load is unknown a robust estimation of the energy flow is needed for a general predic-
tion of sound transmission. The SEA delivers an ensemble average within a limited frequency range.
The EFA can also be applied at low frequencies with a small amount of modes as well as at high
frequencies taking thickness modes into account. One realization of the EFA delivers a prediction for
one specific load case. By averaging over varying random load cases a robust energy flow with re-
spect to the load can be predicted. A procedure is shown to find a minimum number of realizations to
compute energy influence coefficients within a certain confidence interval. Furthermore, it can be ap-
plied to other random variables like coupling loss factors by considering their statistical behavior. In
addition, other uncertainties can be covered like choosing the material data as random input variables.
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