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1 . Introduction

The Davies Beamformerh] has attracted considerable inter-each] in the area

of adaptive array recently, mainly because it is possible to steer independent

nulls in the directional pattern by simple variation of the setting of sets of

phase shifters. Thus, an adaptive array based on this beamformer may be

expected to have better performance in tracking moving jammers than the conven-

tional real-and-quadrature-weights system. Furthermore, the number of variables

that need to be controlled is halved, although the total number of phase shifters

required is increased.

Since it is not clear how a feedback algorithm, eg. the steepest descent,

can be applied to the beamformer, perturbation algorithms have been considered

instead. Another reason for using perturbation algorithms is the system sim—

plicity allowed by such algorithms. _

The paper begins with a general discussion of the beamformer. The 'basic

updating step', which is the building block of all the perturbation algorithms,

is then discussed and followed by a description of the various algorithms.

Some simulation results are then given and these verified the theoretical results

derived. When compared with perturbation algorithms based on the real-and—

quadrature-weights system, the algorithm described are shown to be considerably

faster.

2. General Discussion of the Davies Beamformer

The narrowband Davies Beamformer treated is shown in Fig 1. For broadband

application, the phase shifters should be replaced by a variable length delay

line. The equivalent weights, w , i-l, ..., “+1 for the beamformer can be

found from the equation for the d rectional pattern of the array,

ml 1 1 M

Na) = 2 v1 2 ' a 11 (z - EH) (1)
i=1 i=1

where z = epr a?! sine)

Withoutloss of gen r l ty, let the noise environment be represented by H

jammers with powers ismlg, m=l, .... H at directions em with respect to the

normal of the array. The output power can then be shown to be _

   

H H -—M+l
T -0

Iyl2 = I Isml2 ll 4 sin2 —mz—L+ Inolzz lull (2)
H-l iBl i=1

21rd 2 '
where ya = T sin en. Inol a receiver noise power

If all the jammers have powers much greater than receiver noise ( the case when

this is not so will bediscussed later), the receiver noise component in (2)

can be assumed, for mathematical simplicity, to be constant and equal to

11.].
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Incl 12L Iwil = Iyoptl :1 optimal output power after convergence (3)

From this assumption. it is obvious that the phase settings are optimal when

equal to the set of y , m=l, ..., H. For convenience, it is further assumed that

o1 converges to 11, igl, ..., h, without loss of generality.

3. The Basic Updating Step

Essentially, all perturbation algorithms involve a series of small updating

steps as building blocks. ' stated generally, the updating of a certain control

variable is accomplished by finding the corresponding output power gradient by

perturbing the variable concerned. The variable is then updated by an amount

proportional to and with direction opposite to the gradient estimated. Thus,

various algorithms are different because

(i) The use different sequences of updating steps. For the steepest descent
algorithm. the basic updating step is applied sequentially, one at a time,

to each control variable in turn. Contrary, in the relaxation algorithm, a

fixed number of basic updating steps .1. applied'to one control variable

until convergence is roughly achieved. This is then repeated for another

phase setting and so on. Clearly, various other sequences are possible.

(ii) The method of etimating the perturbed powers are different. In a 'one-

receiver' system where only one output powermeasurement can be made per
sampling instant, the perturbed powers havefi be measured using independent

samples. Alternatively, in a 'two-receiver ' system, the perturbed

powers can be measured at the same instant.

(iii)'rhe feedback factors and perturbation sizes associated with the basic updating

steps are different.

For the Davies Beamformer, the basic updating step for updating the ith phase

setting can be written as

c

  

ai(k+l) = (110:) - {Iy+(k)|2- Iy‘tknz} (4)
sin Gui

where k denotes the kth updating, Iy+(k) I2 are estimates of the average perturbed

powers when a (k) is perturbed to 010:) + 6n and oiflt) - 6a respectively, c1 is

the feedback actor for the updating step and Go is the perturbation size.

From (4) , the asymptotic time constant, 11, for the ith phase setting can be

shown to be

 

2 2
1'1 l/4cilsil Idil updating steps (5)

H M

where d = 11 (e“1 — Juno”) 8 n (e371 - en") near equilibrium
1 m=l mu].

#i #1

The one- and two-receiver systems associated with the Davies Beamformer are

-as shown in Fig 1 and 2. one drawback about the much simpler system of Fig 2b

as well as some of the faster algorithms to be discussed is that it is necessary

to interchange the ith and nth phase settings before the perturbed powers can be

measured. Assuming that the frequency+of adjustmgnt o the phase settings is

the same and 5 samples are used for ly (k) I2 orIy (MI , the misadjustments

(defined as the ratio of total excess output power due to the variances and per-

turbations of the phase settings to optimal output power) for the one- and two-

receiver systems are found to be ‘

11.2  
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respectively. Detailed derivation of the results can be found in [4].

4 . The Algorithms

Five algorithms are investigated and will now be described.

(1) Algorithm SDCl (steepest Descent with constant feedback factor on the one-

receiver system): The feedback factors and perturbation sizes for all the phase

settings of Fig l are constant and equal to o and 6:: respectively. The basic

updating step is applied sequentially to ea ase ng, one s at a time,

in turn. In cases of severe jamming where Elia» Is ' .... >> s and the

Idilz's do not vary over a wide range, c and 6a can ge deter-mined Infrom (6a)

as ——
2

M51 [’9ch
5° = T ' —-z 2 W

lsll Idll

2
(M51) S '2 (7b)

where Isl] in (7a) can be approximated by [V I (see Fig 1), IY I can be

meaured and Id [2 calculated from the phase ettings when conveo shoe is

roughly achieved. From (5) and (7), the asymptotic convergent time constant,

rp, of the output power curve as determined by the weakest jammer is

I 2

r = “lei! Idll data samples (8)
p —w—

404an lam] lamlz

Thus. the asymptotic time constant of the output power curve is proportional to

the number of element, the jammer power ratio and inversely proportional to

the square of misadjustment. Note that equation (8) is very imilar to the

results derived for the steepest descent one-receiver algorithm on the real-

and-quadrature- weight system in [5]. The two algorithms actually have roughly

the same convergence time constants for the same misadjustment.

(ii) algorithm SD01 (Steepest Descent with optimal feedback factor on the one-

receiver system): Algorithms with optimal feedback factors are inspired by the

tactzthat after convergence, the power VM 2 (see Fig 1) is roughly equal to

IBM] ldfllz. This algorithm is similar to Tmhmmegt that the ith and mth

phase settings are interchanged to obtain s1 Idtl before updating for the

iith phase setting. With this easurement, c and Gui are then normalized as

11.3
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2 y '2 .
. 5‘“1 a % . #9“t 2 , (9a)

lsil Idil

2Ci = (M51) 5 (9b)
2Mlsilildil

The asymptotic time constant for the ith phase setting is thus given, from (5)
and (9), by

11 = “2/2 (5451)2 data samples (10)

Thus, the time constants for the phase settings have beenequalized and the time
constant for the output power curve becomes

1P = Mia/40451)2 data samples (ll)

Comparing (11) with (8) , it is obvious that under severe jamming conditions where
the jammer power ratiois large, this algorithm can be very muchfaster than
SDCl.

(iii) Algorithm RLl (Relaxation on the one-receiver system): Because the phase
settings have the same convergence time constants in 5001, it is possible to
apply a fixed number. N. of updating steps to one phase setting until it is
roughly 'relaxed‘ before repeating the updatings for the next phase setting.
Apart from this difference, this algorithm is the same as $001 and (9) - (11)
are valid. Comparing with SD01, however, this algorithm has the advantage that
the number of phase setting interchanges is decreased by a factor of N. In this
paper,-N is chosen, for convenience, so that, according to (5), the phase
setting converges to within 50 of its final value or

u a M1nzo/4 (usl)25 updating steps ' (12)

(iv) Algorithm SD02 (steepest Descent with optimal geedback factor on the two—
receiver system): This algorithm is the two-receiver counterpart of SD01.
Mezthat if the more complicated two-receiver system of Fig 2a is used,
[all lot] can be measured in the subsidary beamformer instead and it is not
necessary to interchange phase settings in the primary beamformer. From (613)
and (5), c1, 1: and rp are given by

i

c = StHSZ)
‘- __—'"—' (1.3)

Mumsmls1 2[all2

11 = M2(1+MSZJ/41452) data samples ‘ (14)

1p 3 M2(1+M52)/82452) data samples (15)

(v) Algorithm RL2 (Relaxation on the two-receiver system): This is exactly
the same as SD02, except that N updating steps are applied to one phase setting
before adjustment of the next phase setting. Similar to RLl, (Ln-(15) still
apply and N is chosen to be '

u = M(1+Msz) 1nzo/4 (M52)s updating steps (16,
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Note that for the same misadjustment, the ratio of the time constants (11) and
(15) for the one- and two-receiver systems respectively is 2/misadjustment.
Thus, the two-receiver systemis faster than the one-receiver system by factor of

tens.

5. Comments on situations where the number of degrees of freedom of the array
is not fully utilized

The theoretical results derivedso far have assumed that all the jammers'

powers are greater than receiver noise. The case when this is not so is highly
complex. Consider, for simplicity, a three-element one—jammer situation. In

this case, one of the optimal phase settings corresponds to steering a null in

the direction of the jammer while the other is determined so that the output

power contribution from receiver noise is minimized. It is found that the

former phase setting converges very much faster than the latter one. Further-
more, the additional output power reduction due to the latter phase setting is
minimal. Thus, to avoid wasting valuable processing time on this phase setting.

the power rejected by each level of phase setting can be measure and adjustment
is carried out only on those phase settings which give a rejection of power

greater than a certain threshold. The rest of the phase settings will simply be

set to a convenient value (which may be constant or depend on the phase setting

adjusted). If 'intelligent' schemes like the one described are used, the

assumption on jammers and reciever noise power will be valid to some extent and

the theoretical results derived will apply with perhaps some slight modification.

Such schemes are not investigated in this paper which treats the more basic
consequences of applying perturbation algorithms to the Davies Beamformer.

6. Simulation Results

As an example, Fig 3-5 show the convergence behaviour of different pertur—

bation algorithms on a three element array underthe some noise environment of

-20 d5 receiver noise, with two jammers of powers 0 and —lS dB at directions

20° and -10° respectively. The misadjustment for all three cases are roughly
10‘. The smooth curves arethe ensemble average curves, while the randomly

fluctuated ones are due to typical samples. The curves of Fig 3 and 4 are due

to algorithms SD01 and RLZ of secti1314 respectively, while a two-receiver

perturbation (relaxation) algorithm has been used on the conventional real-

and- quadrature-weights array for Fig 5. The efficiency of the Davies Beamformer

is clearly demonstrated by comparison. Note that only one time constant is

evident in Fig 3a and 4, whereas twovery different time constants can be seen in
Fig 5.

Next, for all combinations of jammers' angle of arrival on a three-element
two-jammer situation, tables 1 and 2 show the number of data samples required

for the SD02 algorithm to converge to a threshold output powerof -22dB when the

receiver noise is at -30 dB. Both jammers have powers of -3d3 for table 1, while
jammer l and 2 have powers 0 and —15dB respectively for table 2. The indepen-

dence of the convergence behaviour with jammers' directions and powers is

clearly illustrated. Except for algorithm snc1.this independence has been found

with the other algorithms of section 4.

7. Conclusions

The basic consequences of applying various perturbation algorithms to the

Davies Beamformer have been investigated. If the feedback factors used in

updating the phase settings are 'optimized', it is found that the beamformer

has more uniform and much faster convergence behaviour than the conventional

11.5
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real-and—quadrature-weights system. However. various practical aspects
associated with the beamformeqeg phase setting errors and unequal element
powers, have to be investigated as well before any real implementation. These
practical problems are obviously avoided in an all digital software approach.
In this context, the algorithms offer a compromise between the poor-performance
low computation-rate steepest descent algorithm and the various high-performance
high computation-rate accelerated algorithms.
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  Fig 3a A typical output power convergence curve
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(algorithm SD01).

PHASE SEITIIHII‘S)

 

  
Pig 4 A typical output powerconvergence curve for

the two-receiver Davies Beamformez

(algorithm RLZ) .
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Fig 3b Convergence of the phase settings
corresponding to the situation of Fig 33.

Fig 5 A typical output power convergence curve for
the two-receiver perturbation (relaxation)
algorithm on the conventional real—and-quadratux‘e—

weights system.
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