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1., Introduction

The Davies Beanformer[i] has attracted considexrable 1nterest[2ﬂ in the area
of adaptive array recently, mainly because it is possible to steer independent
nulls in the directional pattern by simple variation of the setting of sets of
phase shifters. Thus, an adaptive array based on this beamformer may be
expetted to have better performance in tracking moving jammers than the conven-
tional real-and-guadrature-weights system, Furthermore, the number of variables
that need to be controlled is halved, although the total number of phase shifters
required is increased.

Since it is not clear how a feedback algorithm, eg. the steepest descent,
can be applied to the beamformer, perturbation algorithms have been considered
instead. Another reason for using perturbation algorithms is the system sim-
plicity allowed by such algorithms. ]

The paper begins with a general discussion of the beamformer. The ‘basic
updating step', which is the building block of all the perturbation algorithms,
is then discussed and followed by a description of the various algorithms.

Some simulation results are then given and these verified the theoretical results
derived. When compared with perturbation algorithms based on the real-and-
quadrature-weights system, the algorithm described are shown to be considerably

- faster.

2. General Discussion of the Davies Beamformer

The narrowband Davies Beamformer treated is shown in Fig l. For broadband
application, the phase shifters should be replaced by a variable length delay
line, The equivalent weights, w,, i=l, ..., M+l for the beanmformer can be
found from the equation for the dlrecticnal pattern of the array,

M+l M
p) = § w2 =2 T @-edy (1)
i=l i=]l

where z = exp{] Z;E sind)

Witheut losas of generaljity, let the neise environment be represented by M
jammers with powers |agy|<, m=l, ..., M at directions em with respect to the
normal of the array, The output power can then be shown to be

M—M M+l
Y~
I = I la l® masin® Bhsn |2] Ju| (2)
M-1 1=l i=]
wherely - 24 sin @ In |2 = receiver noise power
m ) m' "o po

If all the jammers have powers much greater than receiver noise ( the case when
this is not so will be discussed later), the receiver noise component in (2)
can ba assumed, for mathematical simplicity, to be constant and equal to
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|no| 121 ]wi| = Iyoptl = optimal output power after convergence (3)

From this assumption, it is obwvious that the phase settings are optimal when
equal to the set of v , n=l, ..., M, For convenlence, it is further assumed that
a, converges to Yi' isl, ..., M, without loss of generality.

3. The Basic Updating Step

Essentially, all perturbation algorithms involve a series of small updating
steps as building blocks. Stated generally, the updating of a certain control
variable is accomplished by finding the corresponding output power gradient by
perturbing the variable concerned. The variable is then updated by an amount
proportional to and with direction opposite to the gradient estimated. Thus,
various algorithms are different because

(1) Theruse different sequences of updating steps. For the steepest descent
algorithm, the basic updating step is applied sequentially, one at a time,

to each control variable in turn, Contrary, ln the relaxation algorithm, a

fixed number of basic updating steps is applied to one control variable

until convergence 1s roughly achieved. This is then repeated for another
phase setting and so on. Clearly, various other sequences are possible,

{(1i) The method of estimating the perturbed powers are different. 1In a ‘cne-
receiver' system where only one output power measurement can be made per
sampling instant, the perturbed powers have be measured using independent

samples. Alternatively, in a 'two-receiver ' system, the perturbed
powers can be measured at the same instant.
(11i)The feedback factors and perturbation sizes associated with the basic updating -

steps are different.
For the Davies Beamformer, the basic updating step for updating the ith phase
setting can be written as .

o (k+l) = a, (k) - {|y+(k)|2- |y'(k}|2} (4)

i
sin Gai
where k denotes the kth updating, |y+(k)|2 are estimates of the average perturbed
powers vwhen a, (k) is perturbed to a, (k) + 8a, and a, (k) = da, respectively, ey is
the feedback factor for the updating step an& 8a, 18 the perturbation size.
From {4), the asymptotic time constant, ri,'for ﬁhe ith phase setting can be
shown to be

2 2
T, = 1f4ci|si| ldil updating steps (5)
M M
where a, = I (@371 - %K)y o (@31 - 30y pear equilibrium
m=1 m=1
Ai ¥l

The one- and two-receiver systems associated with the Davies Beamformer are
-ag shown in Fig 1 and 2. One drawback about the much simpler system of Pig 2b
as well as some of the faster algorithms to be discussed is that it is necessary
to interchange the ith and Mth phase settings before the perturbed powers can be
measured. Agsuming that the frequency+of adjustment °5 the phase settings is
the same and S5 samples are used for ly (k)lz orly [k)l ¢ the misadjustments
(defined as the ratio of total excess output power due to the variances and per-
turbaticns of the phase settings to optimal ocutput power) for the one- and two-
recelver systems are found to be
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respectively. Detailed derivation of the results can be found in [4].

4, The Algorithms

Five algorithms are investigated and will now be described,

(1) Algorithm SDC1 (Steepest Descent with constant feedback factor on the one=-
recelver system): The feedback factors and perturbation sizes for all the phase
settings of Fig 1 are constant and equal to ¢ and éa respectively. The basic
updating step is applied sequentially to ea ase ng, one 8 at a time,
in turn. In cases of severe jamming where ialig>> |s IE vere > |8 and the
|di[23 do not vary over a wide range, ¢ and do can ge determined Derom (6a)
as ——

so = ML, v "-]2 (7a)
2 2 2 .
|3,1% 19,1
2
(MS1)"S Iz (7b)
ja, 12 la,!
where |al| in (7a) can be approximated by |v ] (see Fig 1), |y __|° can be .

meagured” and ]d |2 calculated from the phase Settings when convegasnce'is
roughly achieveé. From (5) and (7), the asymptotic convergent time constant,
1t , of the output power curve as determined by the weakest jammer is

Y 2
« = Ms,! Idll__ data samples (8)
2 2. 12
ams))” s |“(a |

Thus, the asymptotic time constant of the output power curve is proportional to
the number of element, the jammer power ratio and inversely proportional to
the square of misadjustment, Note that equation (8) is very similar to the
results derived for the steepest descent one-recelver algorithm on the real-
and-quadrature- weight system in [S]. The two algorithms actually have roughly
the same convergence time constants for the same misadjustment,

(i1) algorithm SDOl (Steepest Descent with optimal feedback factor on the one-
receiver system): Algorithms with optimal feedback factors are inspired by the
£n::2:hat after convergence, the power |vM|2 (see Fig 1} is roughly equal to
la, | Iqulz. This algorithm is similar to Tng*szcegt that the ith and mth
phase settings are interchanged to obtain 8, ldil before updating for the
ith phase setting. With this measurement, ci and Gui are then normalized as
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¢, = (Ms1) %s (9b}
2
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The asymptotic time constant for the ith phase setting is thus given, from (5)
and (9); by 7
T - M2/2Ms1)° data samples (10)
Thus, the time constants for the phase settings have been equalized and the time
constant for the output power curve becomes

Tp = M2/4(M51)2 data samples (11)

Comparing (11) with (B), it is obvious that under severe jamming conditions where
the jammer power ratio is large, this algorithm can be very much fasater than
SDCl. ‘

(i1i) Algorithm RL1 (Relaxation on the one-receiver system): Because the phase
settings have the same convergence time constants in SDOl, it is possible to
apply a fixed number, N, of updating steps toc one phase setting until it is
roughly 'relaxed' before repeating the updatings for the next phase setting.
Apart from this difference, this algorithm is the same as SDOL and (9} - (11)
are valid. Comparing with SDOl, however, this algorithm has the advantage that
the number of phase setting interchanges is decreased by a factor of N, In this
paper,- N is chosen, for convenience, so that, according to (5), the phase
setting converges to within 5% of 1ts final value or

N = M1n20/4(Msl)25 updating steps . (12)

(iv) Algorithm SDO2 (Steepest Descent with optimal geedback factor on the two-
receiver system): This algorithm is the two-recelver counterpart of SDOL.
Nnnazthat if the more complicated two-receiver system of Fig 2a is used,

[sil ldil can be measured in the subsidary beamformer instead and it is not
neCessary to lnterchange phase settings in the primary beamformer. From (&b)
and (5}, Cir Ty and Tp are given by

€. = 5(MS2)

i Ry Y (13)
M(L+1S2) |3, |d1|2

T = M2(1+M52)/4M52) data samples ' (14)

Tp = M2(1+MSZ)/ahsm data samples (15)

{v) Algorithm RL2 (Relaxation on the two-receiver system): This is exactly
the same as SDO2, except that N updating ateps are applied to one phase setting
before adjustment of the next phase setting. -Similar to RLl, (13)-(15) still
apply and N is chosen to be

N = M(1+#MS2) ln20/4(Ms2)s wvpdating steps (16)
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Note that for the same misadjustment, the ratioc of the time constants (11) and
{15) for the one- and two-recelver systems respectively is 2/misadjustment.

Thus, the two-receiver system is fagter than the one-recelver system by factor of
tens.

S. Comments on situations where the number of degrees of freedom of the array
is not fully utilized

The theoretical results derived so far have assumed that all the jammers’
powers are greater than receilver noise, The case when this is not so is highly
complex, Consider, for simplicity, a three-element one-jammer situation. In
this case, one of the optimal phase settings corresponds to steering a null in
the direction of the jammer while the other is determined so that the output
power contribution from receiver noise is minimized. It is found that the
former phase setting converges very much faster than the latter one. Further-
more, the add@itional output power reduction due to the latter phase setting is
minimal. Thus, to aveold wasting valuable processing time on this phase setting,
the power rejected by each level of phase setting can be measure and adjustment
13 carried out only on those phase settings which glve a rejection of power
greater than a certain threshold. The rest of the phase settings will simply be
get to a convenient value (which may be constant or depend on the phase setting
adjusted). If 'intelligent' schemes like the one described are used, the
assumption on jammers and reciever noise power will be valid to some extent and
the theoretical results derived will apply with perhaps scme slight modification.
Such schemes are not investigated in this paper which treats the more basic
conaequences of applying perturbation algorithms to the Davies Beamformer.

6. Simulation Results

As an example, Fig 3-5 show the convergence behaviour of different pertur-
hation algorithms on a three element array under the same noise environment of
=20 4B receiver noise, with two jammers of powera O and -15 4B at directions
20° and -10° respectively, The misadjustment for all three cases are roughly
10%, The smooth curves are the ensemble average curves, while the randomly
fluctuated ones are due to typical samples., The curves of Fig 3 and 4 are due
to algorithms SDO1 and RL2 of sectigg 4 respectively, while a two=-receiver
perturbation (relaxation} algorithm has been used on the conventicnal real-
and- quadrature-welghts array for Fig 5. The efficiency of the Davies Beamformer
is clearly demonstrated by comparison. HNote that only one time constant is
evident in Fig Ja and 4, whereas two very different time constants can be seen in
Fig 5.

Next, for all combinations of jammers' angle of arrival on a three-element
two-jammer situation, tables 1 and 2 show the number of data samples required
for the SDO2 algorithm to converge to a threshold output power of =-22dB when the
receiver noise is at -30 dB, Both jammers have powers of -3dB for table 1, while
jammer 1 and 2 have powers O and -15dB respectively for table 2. The indepen-
dence of the convergence behaviour with jammers' directions and powers is
clearly illustrated. Except for algorithm soc1,this independence has been found
with the other algorithms of section 4.

7. €Gonclusions

The basic consequences of applying various perturbation algorithms tc the
Davies Beamformer have been investigated. If the feedback factors used in
updating the phase settings are 'optimized', it is found that the beamformer
has more uniform and much faster convergence behavicur than the conventional
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real-and-quadrature-weights system. However, various practical aspects
assoclated with the beamformer,eg phase setting errors and unequal element
powers, have to be investigated as well before any real implementation. These
pPractical problems are obvicusly avoided in an all digital software approach.

In this context., the algorithms offer a compromise between the poor-performance
low computation-rate steepest descent algorithm and the various high-performance
high computation-rate accelerated algorithms,
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Table 1 Number of data samples required for convergence
against the two jammers' directions for a three-
element two-receiver Davies Beamformer (SDO2
algorithm), Jammer 1 and 2 hoth have powers -34B.
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Table 2 Number of data samples required for convergence
against the two jammers' directions for a three-
element two-receiver Davies Beamforimer (5D02
algorithm). Jammer 1 and 2 have pawers O dB
and -15 4B raspectively.
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