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ABSTRACT

One of the most difficult things in underwater acoustics is to see wood for trees. The most
straightforward approach is often a computer-intensive numerical solution. Frequently this does
not lead to much insight into the physics. This paper discusses some simple underwater
propagation models with improving understanding in mind. We start with some simple laws for
flat bottoms and range-dependent environments. and rapidly drift into three dimensions. In
particular we look at three-dimensional effects with variable bathy-metry and describe them with
analytical models. These are useful as benchmarks for numerical models and for providing
insight into acoustic behaviour. It is often also important to be able to generalise these effects for
operational research purposes and system design. Above all we must be able to tell whether the new
effects are important, or not, in practice.

1. INTRODUCTION

One might imagine that the advent of extremely powerful ‘number crunchers' means the end of all
our problems in modelling underwater sound propagation. Although we could have made little
progress without them there will always be fundamental dependencies on alternative methods to
understand the behaviour of the mechanisms. Often a fully comprehensive correctly run
numerical propagation loss plot is no more enlightening than trials data despite the fact that the
basic equations for the treatment are obviously known. The alternative, on which we concentrate
in this paper, is the construction of analytical formulae. There are several benefits that a simple
or analytical approach can provide, and these can be grouped as follows.

Understanding

Analytical formulae are useful for showing the essence of the problem through the dependence of
the output on the various inputs. However it is important that the formulae are relatively simple so
that dependencies are either explicit or can be easily and quickly evaluated.

Benchmarks

Quite apart from the problem of matching theory with experiment there is the problem of checking
that computer-intensive approaches provide correct solutions to the posed mathematical problem.
Analytical solutions, whether simple or otherwise, provide useful checks on benchmarks.
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There are several distinct applications for propagation modelling:

- Modelling the physics in its own right
- Providing an input to the design of sonar systems
- Real time predictions.

In all cases there is more to it than just modelling intensity. but the level of complication and detail
needs to be commensurate with application. Therefore simplification is justified and, in many
cases, necessary.

5. .E

A variation on achieving better understanding by using analytical formulae is the ability, in
design studies, to check that you are barking up the right tree. It is often easier to see which
mechanisms are most important for the application and to make generalisations.

2. GENERAL APPROACHES

2.1 Acoustic Components

A fruitful basis for a simple model is to treat the various acoustic components such asbottom
reflection. bottom refraction, Lloyd's mirror, and so on. separately and then add the powers or
simply take the largest. This approach has been adopted in the model INSIGHT (Ref 1.2) where
full benefit is taken from this extra information. The formulae for each component simplify
because they occupy narrower bands of angles where behaviour, whether in deep or shallow water,
is more easily predicted. For instance, bottom reflections are steep enough to ignore the water
column's velocity profile. The formulae are also selected to reproduce important effects such as
slow spatial interference beats (see Fig 1) but to ignore very rapid fluctuations. Because there is
only a limited set of angle (or wavenumber) hands it is easy to see that a limited set of component
types will cater for all eventualities.

2.2 Variants ofMusic Stripping

2.2.1 Range~independent models

In shallow water the dominant loss mechanism is the boundary losses. In normal mode terms
each mode spreads cylindrically and decays exponentially, but with faster decay for higher order
modes. In ray terms each ray spreads spherically and undergoes one extra boundary loss for each
ray cycle. By inserting a grazing angle (0) dependenoe on the dB loss per radian per bounce L of

L = a8 (1)

and using a simple law for cycle distance r: in terms ofdepth H. e.g.

1'c = 2Hcot 9 (2)
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one obtains a gaussian dependence of ray intensity on angle over which to integrate. The result if
we assume angle limits of zero to efl'ectively infinity is the same using rays or modes and is
known as 'mode stripping (Ref 3). Intensity I is given by

.3n . .l=er H'fla'” (3)

where

~ 5 = (201:/log.10)”z = 5.22.

A numerical demonstration of the associated 5on law is shown in the comparison with a
SAFARI plot for an intermediate depth environment in Fig 2.

There are many possible variants on this theme, all of which result in perfectly viable analytical
solutions (Ref 4). One possibility stems from the realisation that all realistic retracting
environments will have a non-zero lower angle limit 6,“ associated with the largest possible cycle
distance. This results in an erfc dependence (see also Ref31)

I = en”2 11"” (1'1" erfc [6... (a r e1/H)m]

and a, = (log,10)/20 = we ’ (4)

At long range this reverts to

_ -l .2 -1 -l _ zI—slr a emexp[0mur51/H] (5)

and this can also be seen in Fig 2.

In addition it is possible to deal with single mode propagation (Ref 3), critical angles, boundary
loss laws ofthe form L = a9+|3, and linear surface or bottom ducts (Rafi) where the cycle distance is
of the form

r: = 2(d(dc/dz))iane. (6)

A lesser known variation is apparent from the mode sum derivation. if the source and receiver, at
depthsz” z, are close to the surface relative to the wavelength A then the dipole effect associated with
the mode shape results in an extra sin‘B in the angle integral. We then have a 35logr law.

1 = 48 1:2 e’ 23 z} A" H'" {7" (1'5" (7,

An example of this behaviour is seen in the SAFARI plot in Fig 3. Clearly variations in between
lologr and SSlogr are possible.
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2.2.2 Range-dependent models

Finally it is possible to use the same angle integral approach to tackle range dependent media and

even 3D effect as we shall see later. The ray invariant

J’ sine
dz = constant

' c (a)

 

where the integral is taken over one complete ray cycle, dictates that ray grazing angles become

steeper in shallow water in a reversible fashion provided the environment changes slowly (Ref 5).
In an isovelocity medium this simplifies to

Hsine = constant (9)

and so the varying 6’ inthe exponent of the original made stripping integral is still handleable
despite the varying depth. The result for a (range-independent) minimum angle 6,, with water

depth at source HI and receiver H1' is

I m -l -l -m m7: rI-I, A erfc[9mA ] (m)

where
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and the loss law a is allowed to vary with range.

In an isovelocity medium where 9,“ = 0 this reduces to a range dependent equivalent of mode
stripping (Ref 6).

r -1I2
__ ,I 0: dr'

1 - e(rl-I,H,) Hoar]
o (11)

The first term in brackets is simply the geometric spreading effect, and this is offset by the integral
that contains all the boundary loss and cycle distance dependence. It turns out that the effect of
changing water depth H, at the receiver can be exactly compensated by boundary losses leaving a
net cylindrical spreading if the bottom profile is linear with an upward slope. This inverse
problem of calculating the bottom profile responsible for a particular loss law was investigated in
Ref 6, but a slightly neater formula with some examples is given in the Appendix.

Another interesting set of cases has the same water depth at the source and receiver (HT = H.) but

variations in between. It is fairly obvious from eq (11) that the intensity will fall slowly for trough-
like bathymetry but rapidly for ridge-like bathymetry. These effects have been clearly

2‘ Proc.l.0.A. Vol 15 Part 3 (1993)

 



  

Proceedings oi the Institute of Acoustics

A SIMPLE 3D MODEL?

demonstrated in some laboratory scale experiments with a 500KB: source and an ‘ocean' several
centimetres deep (Ref 7). Figure 4 results from a more or less parabolic ridge and Fig 5 resultsfrom a parabolic trough levelling out at each end. In both cases an appropriate IFD plot is
superimposed. Note that we only reach the point where H, = H. at either end of the plot, so the
difference caused by the boundary loss alone is evident in comparing the right hand end of Fig 4
with Fig 5. A simple calculation with some example dB losses based on eq (11) are given in the
Appendix.

2.3 Empirical Models v 'I‘rained' Models

There are a number of well known empirical models for shallow water Refs (8-10). These have the
obvious advantage that they are based on reality. but on the other hand this ‘reality’ is only the truthat the time and place ofthe experiment. For any other conditions, e.g. water depth, bottom loss, sea
state, source/receiver depth etc we always rely on some theory to interpolate. or more dangerously,
to extrapolate. Typical loss laws are of the form

TL=Alogr+Br+C (12)

where the coefiicients are frequency dependent (Ref 10).

In between the empirical models and the entirely theoretical is an area with scope for more formaldevelopment. One is used to the idea of using a model such as SUPER-SNAP (in a regime where it
is valid) to explain trials data. Usually one or more parameters need to be ‘tweaked' to achieve a
match, and given a reasonably large trials database it is possible to convince oneself that
systematic corrections to some of the environmental inputs are justified. The separated
components type of model that INSIGHT uses is ideal for this because it is much easier to home inon the most suitable parameters to change. Rather than dismissing this approach as just a
convenient fudge one could regard it as the equivalent of the training session that is required in
applications of neural networks and in this respect is a perfectly valid exercise.

Without going into details one can envisage many techniques with or without humans in the loop
for essentially improving the data that goes into models rather than the models themselves. These
include optimisation methods such as linear programming in conjunction with a model like
INSIGHT to minimise the discrepancy between prediction and experiment by choice of input,regression analysis and even neural networks themselves. The trick is not to expect thesemethods to out-perform human physicists in anything but mental stamina.

3. EFFECTS IN 3D

In three dimensions the additional effects include refraction out of plane by horizontal velocitygradients due to large scale features such as eddies or small scale features such as internal waves
or wakes. Here we restrict ourselves to bathymetric effects where the bending effect can beunderstood several ways, the simplest being that the bottom slope systematically tilts each reflectedray slightly towards deep water. Since the medium is still nearly stratified one can image localsets of vertical normal modes that have a position-dependent horizontal wave number given by k2 -(n nIH)2 where k = iii/c, H is local water depth and n is mode number. Thus in the horizontal plane
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each vertical mode behaves like a ray bending towards regions of high wavenumber as predicted

by Snell’s law. InadditionI of course. one can treat the problem as one of solving the 3D Helmholtz

equation. and solutions arepossible.

3.1 Ray Paths

By considering the three dimensional geometry of reflected rays it is possible to see that there are

two ray invariants (Ref 11). one (seen already in eq 8 and 9) defining ray elevation angle a in

terms of water depth H, the other defining the change in ray azimuth at each bottom reflection.

Thus in isovelocity water we have

Hsine = constant 5 A (13)

and for bathymetry with translational symmetry (i.e. depth is a function ofy but not it) with ray

heading o measured relative to upslope

cose sin¢ = constant E B (14)

The second invariant is a horizontal equivalent of the Snell invariant Kaino in a stratified

medium. Here the horizontal wavenumber K is, from eq 13 with k=wlc

K = kcose = k(i-(A/H)1)“2 (15)

This is a constant along the depth contour lines and only varies up or down slope. Consequently

eqs (13) and (14) can be used to trace rays in the horizontal plane. In particular there are a number

of functional forms of troughs and ridges for which analytical solutions are possible (Ref 11). The
simplest of these is the wedge for which ray trajectories are hyperbolic.

In bathymetries with rotational symmetry (Le. depth is a function ofp = (x2 + y”)m only) the second

invariant becomes

p c059 sino = constant (16)

and analytical solutions are again possible for a conical seamount and the basin defined by

Hon) = H., (1 + Mani)m (17)

So far there has been no restriction on initial ray angles, but if we intend to follow a particular

vertical mode as in Ref 12 the initial elevation angle is fixed through

(n + m = Zl-lsine (18)

Note that because ofthe ray invariant this remains constant for one mode at all water depths. This

is no coincidence. If we hadstarted with the mode number being invariant as required by the
adiabatic approximation then the WKB phase integral for that mode, given by
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l "T 2 21/1— = k -K d("+2)“ L( ) z (19)

provides another derivation of the ray invariant in eq 8 which reduces to eq (13) and eq (18) for
isovelocity water.

Using eq (18) as the definition of the initial elevation angle 9I corresponding to the nth mode at
water depth H, we can then trace out therays starting at the arbitrary initial ray headings as in Fig
6. Inevitably, an approaching shallow water, the rays turn towards deep creating the ‘fountain'
effect seen in Fig 6. The envelope of these curves is clearly a caustic with a shadow on the far side.
and behaviour is familiar from the effects of refraction in the vertical plane in range~independent
environments.

3.2 Vertical Mode Path in the Horizontal

From a modal point of view there are shadows in the horizontal plane which are a three-
dimensional manifestation of the mode cut-off. and it is interesting to calculate their shape. it
turns out that analytical solutions are possible for some of the earlier trough, ridge, basin and
seamount geometries (Ref 12). One example is the wedge (Fig 7) where the envelopes are again
hyperbolae. However, as will be discussed later, it must be remembered that these shapes are for
loss-free bottoms. and introducing bottom losses can make important differences particularly in
the upslope direction, Nevertheless, whether dominated by geometric effects or losses the onset of
mode cut-off generally occurs earlier (Le. in deeper water) than one would expect if thinking in
terms of the vertical plane joining source and receiver.

3.3 Ray/Mode Intensity

There are many ways of tackling intensity in three-dimensions. These include solving the wave
equation analytically for the wedge (Ref 13) and evaluating the resulting integral with the
stationary phase method (Ref 14), reducing the wave equation to vertical modes with a horizontal
eikonal equation (Ref 15). using the adiabatic approximation (Ref 16), using the WKB
approximation in the horizontal plane (Refs 17. 18) and the 3D parabolic equation (Ref 19). The
horizontal ray behaviour means that it is possible to use straightfoward flux arguments to construct
an intensity for each mode using ray invariants (Ref 17). This is most simply a depth-averaged
intensity akin to the adiabatic incoherent mode sum. It is also possible to calculate an intensity
taking phase into account by considering rays with phase, Harrison showed in Ref (17) that
Buckingham’s solution for a wedge can be reproduced by this method.

By considering adjacent rays separated initially by de. in elevation angle and do. in azimuth we
can write a relative intensity 1 (such that transmission loss TL = ~1010gl) as

it
1-2]

0

dl‘ d8, 0059.

dy H sin ocosfl

 

(20)
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Here 9, is a limiting angle at the source where the elevation angle is 6., and other subscript-less

variables are at the receiver. No particular geometry is implied provided y is the local upslope

direction and o is measured relative to y. This equation can be turned into the equivalent of an

incoherent mode sum by substituting the difl'erential ofeq (18) at the source

fl = 2H,cose,/x
d9. (21)

giving N

1. 2 lg ___}_
..=. dy HH.sm¢w59 (22)

Whether this formula’s solution can be made explicit now depends on whether I‘M-My and sino can

be evaluated at the receiver.

For a wedge with x along the wedge axis and y pointing horizontally to deep water the ray equations

relating x. y to x_, yI and 9., o. are known (Ref 12), and one can separate out dolldy to give an

intensity for the nth mode of

fly sino‘

HH, x (x5086. 001$. - y.) cos 9. (23)
I..=

 

One can also eliminate on which typically has two values, one for the more or less direct path, the

other for the horizontally 'reflected' path (akin to horizontal Lloyd’s mirror, see Ref 18). and the

result is

 

n = — y (i +1)H H. d cos 9. s. s. (24)
Here

. 2 m
d = (y2 - y,’ sm 9, - xz lanzei) (25)

is a ‘Pythagorean' distance from the caustic or shadow boundary (since cl=0 is the equation for the

caustic from Ref 12). and 5,, s_ are the total ray lengths for the two paths» A theorem from Ref 11

shows that '

s, = x secB. cosoco,x (26)

or eliminating o.

5,2 = $100529, + x2 secze. + d2 :l: 2y. dcose. (27)

Equation (21) combined with eq (24) completely defines the intensity in terms of initial angle 9. or

mode number n. As one would expect +l- values converge at the caustic when d=0. In addition one

has the usual problem with ray formulae at caustics (d=0) that the intensity tends to infinity.

28 Proc.l.0.A. Vol 15 Part 3 (1993)
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Despite this it is shown in Ref (17) that eq (24) is identical with the spatially averaged modulussquare of Buckingham's first order stationary phase solution (eq 24 of Ref 14) which is valid away
from the caustic. In the vicinity of the caustic Buckingham's approach requires a second orderstationary phase solution although one might guess by analogy with the study of caustics inrefracting media that there would be an Airy function dependence at right angles to the caustic.This is explored in conjunction with the associated horizontal WKB solutions in Ref(18),

8.4 Boundary Limes

Equation (24) like the equivalent wave solutions gives a loss-free intensity, and away from thecaustic where y - d the only difference between it and the adiabatic incoherent mode sum is the
distinction between straight horizontal range and the two ray lengths s‘. This implies that apart
from interference effects and the shadow the only major three dimensional geometric effects thatany wave solution can produce is the dependence on water depth H! With lossy boundaries. of
course, the story is different. but then three-dimensional eiTens have less time to develop before all
rays are lost.

The essence of the bottom loss problem is incorporated in eq (1!), but there are some subtle
differences in three dimensions (Ref 20). When there is a critical angle 8, the ray invariant (eq
13) shows that for a given initial elevation angle the point where that angle is reached is the contourline for depth 1-!‘ where

l'lc = H, siniysinec (28)

For instance, in Fig 6 the efi'ect is simply to truncate all rays that attempt to pass I-lg into shallower
water. In efi'ect, only rays thatundergo relatively small azimuth changes survive. In addition the
caustic structure is eliminated in the shallow water and can only exist for depths greater than H:
(at the side in Fig 6).

Reference 20 shows that the cumulative bottom loss L (equivalent to the integral in eq 11) can be
calculated for loss per bounce R proportional to sine

R(9) = a sine (29)

L _ I a sin2 e dy

2 H °°5 4’ (30)
Using the ray invariants this can be evaluated for several cases. One is a ray travelling upslope
from the source and back out w infinity in a wedge of angle 1. where

(31)

A parameter-ised version of this function is shown in Fig 8. Clearly the heaviest losses are for
initially low grazing angles travelling directly upslope. For example, putting a = ldB/radian and
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a bottom slope of 1 in 50 (1‘) gives SOdB under these conditions or 25dB for o. = 60’ (a bistatic angle of

120'). in practice this loss will be very much understated because the linear loss assumption

means that even at a grazing angle of 90’ where the upslope ray turnsround and heads downslope

the loss per bounce is only a, i.e. MB in the case! If the linear law operates up to a critical angle

then rays can only survive by. at worst, grazing the critical depth contour. At this point o = 90'. and

the second ray invariant (eq 14) provides a lower limit on o. (below which losses are infinite) of

sinos = cosec/coses (32)

Thus if the critical angle were 30' with initial elevation angle close to zero. the minimum angle o.

relative to upslope would be 60'.

3.5" Wave Solutions

Analytical wave solutions for the loss-free wedge and conical seamount_ are well known (Refs 13.

14 and 21). There are also some solutions taking losses into account (Refs 22, 23). Taking the loss-

free wedge case the Helmholtz equation is written in polar coordinates (x along the wedge axis, r

orthogonal to it and polar angle 0, not to be confused withray angles) with a source at (O, 6., r'.) and

wavenumber k = 0/1: as

Q
)

Q
)1 Z 2

a_"’+%a—‘”+1——‘2V+—:§'+k1w = - éao-msmsw - e.)
9:1 r Fee a (33)

This is solved by taking a sine transform in 9, a Hankel transform in r and a uplace (or Fourier)
transform in xi The result for a wedge of angle 1 is

w = 4—” Z sin(me.)sin(me)1,,.
7 n=0 (34)

and .. :1”

I,“ = J.“ 0(a)]... (Kr) K — dk

o p (35)
where

P = (K2 . k2)1/2 (36)

m = n 1W (37)

with n being an integer for pressure release boundaries.

Here K is a dummy variable corresponding to wavenumber in the vertical r, 9 plane. Because the

integrand of I"l is highly oscillatory it is only possible to make further progress analytically by

employing such techniques as stationary phase. As we have shown above there is much more
insight to be gained from the simpler ray invariant or adiabatic approach (eq 24). and an
incoherent version of eq (34) is identical to it.
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A new approach yielding ‘nearly exact' solutions in many more bathymetries with translationalsymmetry is explored in Ref (18). Although the results are similar to those given by the adiabaticapproximation, where one would simply insert a position dependent wavenumber, as in eq (15),into a horizontal two-dimensional Helmholtz equation, the adiabatic approximation is notinvoked in this treatment Instead the environment is transformed into a flat bottomed one wherenormalised depth( is the vertical coordinate rather than physical depth 1 (see Fig 9). This issimilar to the 'wedge mode’ idea in Ref 24. The Cartesian x. y, z coordinate system is replaced bythe orthogonal system é, I1, C with 11 running along the ‘flow lines' in Fig 9 and l; running at rightangles to them. The water depthh(n) is also measured along the curved line. The Helmholtzequation becomes

4
——-— —+—+——+—+kzv = -—" 5(C-Ct)5(n-n.)5(§)n h (as)

where dashes represent differentiation with respect to 1|.

For the special case ofa wedge with h=~m we findthat this equation reduces to the polar coordinatesof eq (33) (fi—px, 11—", (—rely). Generally. if we neglect bottom curvature h" a number of newsolutions are possible by carrying out a sine transform in C. a Fourier transform in § and amodified transform in I]. We find that there are two classes of solution, those that are bounded onboth sides in n (i.e. ‘troughs'l. and those that are either unbound or bounded on one side only (Le.‘ridges').

The former trough equations are described by a double sum of modes in the vertical (index n) andhorizontal (index 1').

W = 2 b“ “j (111)1-11' (71:) en“

'| l K: (as)where . _ .
bn = 41nsm(v,. C.) sm(v,.§,) (40)

V“ = m:
(41)

and the 115 represent a discrete set ofhorizontal eigenfunctions with eigenvalues of the equation

2. ' .11;.tfl.[k2_:§_sz)uj=o
an hat] h

(42)

In the case of ridges there is a similar equation except that the sum over j becomes an integral overa continuous spectrum of modes.

Interestingly, solutions are possible for most of the profiles that provided ray trajectories throughuse of ray invariants. The troughs include:
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1) ‘Lorentz‘: hm) = h‘,/(1+11’lr,2)m

This reduces eq (42) to the ‘simple harmonic oscillator' with a solution in terms of Hermite

polynomials.

2) The ellipse: hm) = hn (l-n’lru?)m

Solution are in terms of Mathieu functions.

3) ‘Epstein' h"(n) = -A sech’ (n/ru) + B tanh (mfg) + C

Solutions are in terms of Jacobi polynomials

The ridges include:

1) The wedge: h(1'|) = m
The solution is in terms of mth order Bessel functions and is identical to eq (35)

2) ‘Curved shelf: ham) = An + B

The solution is in terms ofAiry functions

3) ‘Inverse parabolic': h = hO/(l - 112/52)m

Behaviour is analogous to that at a velocity maximum in a range-independent reflecting

medium, and the solution is in terms of parabolic cylinder functions.

4) ‘Hyperbolic‘: h = 1:0 (1 + 112/52)“:

The solution is in terms of modified Mathieufunctions.

In addition one can transform eq (42) to

1.
fl+[Kfil-y—fi+1.:]uj=0
d n1 h2 (43)

where e is small, possibly negligible,

5 = 1E3 _ 1L"
4 h2 2 h (44)

and

an = k2 _ KjZ (45)

This has yet a new set of solutions. We can employ the WKB solution (and for that matter, an Airy

function near to horizontal caustics)

I1 ' m -m

uj(n)=sin- K3, +2 dn+n/4 K31.V_%+E N-m

h hz (46)
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where N is a normalisation constant. The 3D solution for a WKB trough is

= u.- (m) u,- (11.) 6")"
W b" K. (h m.) h m)“ (m

The discrete mode eigenvalues are given by the ‘phase integral’

. v2 m(J+%)K=J[K31-h—;+E)dn
(48)

where the integral is taken between points where the integrand is zero.

4. EXPERIMENTS

4.1 Questions

There are a number of questions on real life 3D propagation that have not been convincingly
answered yet. Amongst these are

1) Are there significant out of plane effects as far as intensity is concerned?
2) Are there significant out of plane effects as far as angle. coherence and delay time are

concerned?
3) Under what conditions is the adiabatic approximation valid in a refracting environment?

The final answer will come from at sea experiments, however these are notoriously difiicult to do
(Ref 25), partly because to be convincing, they need angle measurements at the source and receiver
end. This helps to distinguish between the multiple reflection turning mechanism and other
mechanisms such as bottom scattering which may be more effective at smaller bistatic anglesi

It is easier to perform controlled experiments in laboratory conditions. Glegg et al (Ref 26) have
performed experiments at several kHz in a swimming pool size tank. Some experiments with a
more faithful aspect ratio have been performed by Lian Sheng Wang (Ref 27-28) at 500101: with a
one centimetre deep. two metre square ‘ocean‘ above a fine sand bottom. It has been possible to
investigate propagation in a wedge and various troughs and ridges (Ref 7). By separating modes
and monitoring their evolution one can investigate criteria for the applicability of the adiabatic
approximation (Ref 29). Nevertheless these experiments are all done with isovelocity water and
the problem of adiabatic applicability is more difficult with range-dependent sound speed. The
transformation method of Section 3.5 suggests that the adiabatic approximation is only 100% valid
when the new coordinate system is separable. Thus one might expect the adiabatic approximation
to be sufficient for a V—shaped channel provided it only varied with range in width or velocity
contrast. but onewould not expect splitting into more than one duct to be accommodated. In
practice. of course, there may be cases where the adiabatic approximation happens to be a
reasonable compromise despite drastic changes in the profile.

enema. Vol 15 Part a (1993) as
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4.2 Apt-0mm

Another way of looking at the question of the importance of three-dimensional effects is that if one

cannot devise an experiment that is sufficiently accurate to prove that the effect exists then it is

probably pointless worrying about the effect.

Harrison (Ref 30) proposed an experiment designed to prove conclusively that these effects are

significant. He made the point that there were at least two mechanisms that one might find at the

edge of an ocean basin which could give similar azimuthal dependence. One was the multiple

reflection mechanism discussed above, and the other was the backseattering From the basin edge

identified with large shot sources.

With a large bistatic angle 0 the ray elevation angles will not exceed (rt-0m. so if the seabed is

smooth, backscattering will be weak and multiple reflection will be as important as modal

propagation ever is. On the other hand with a small bistatic angle and a rough seabed the multiple

reflection mechanism will be wiped out leaving backscattering. Therefore each mechanism must

at least be dominant in some circumstances.

This suggests that a promising experimental approach is to stick to large bistatic angles, virtually

across slope propagation, and to search for modal shadow zone boundaries, in particular the first

mode cut-olT and the transition from single mode to two modes. A plan view is shown in Fig 10.

The idea is to place a vertical array near the slope and to use it to separate out modal arrivals from

a source which maps out the region as shown.

Although the shadow pattern is shown here as fixed, it should be remembered that the shadow

boundaries all move in towards the shore line as frequency is raised. Therefore a sweep in

frequency is as good as a spatial sweep. Multiple or single tone sources or shots could be used. The

main distinction between multiple bottom reflection and scattering is that the spatial pattern exists

in the former mechanism but not the latter. However, sea surface roughness will provide an

important tool for distinction since increasing roughness will enhance scattered returns but

weaken multiple reflection paths.

The dependence on bistatic angle is automatically included in the experiment by mapping out the

intensity. It is most likely that the multiple reflection mechanism will dominate towards the right

(large bistatic angles) whereas the scattering mechanism will dominate towards the left (small

bistatic angles).

5. CONCLUSIONS

We have looked at the virtues of simple propagation models (including empirical ones) in various

applications and cited some useful examples for range-independent. through range-dependent to

three dimensional models.

The additional efl‘ects of the third dimension were reviewed starting with a ray invariant

approach. This included geometric spreading and boundary losses.
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With the emphasis more on analytical than simple we briefly visited various wave solutions to the
three dimensional Helmholtz equation and} listed geometries other than the wedge for which
solutions are possible.

Finally we looked at 31') laboratory and sea trial work, and proposed a trial to demonstrate the
existence of modal shadows in a real ocean environment and thereby prove the importance of 3D
efTecta.
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APPENDIX : EVALUATIONS OF THE SIMPLE RANGE-DEPENDENT MODEL

A. 1 Evaluation of Intensiw

Starting with eq(11) in the main text we evaluate the intensity in the vicinity of symmetrical
ridges and troughs ofthe form

1
= A B h2 - /H(r)8 + sec ((r rm) w) (A1)

 

with A > D, A + B > 0. The feature has half width w and is centred at range rm, some way from the

source. Thus the water depth at the source is

13 = A + Bsechzfi'm lw) - A
H. (A2)

 

and the maximum or minimum depth is given by

——13— = A + B
Hm (A3)
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A traugh therefore has negative B whereas a ridge has positive 3.

Equation (11) becomes

e ([A + Bsech’hnI /w)][A + Bsech2((r - 1'.,,)/W)]lma

amt {Ar + wB[(t.1mh(rm /w) + mnh((r - i'.,.)/w))]l"2 (M)

 

When HP is on the far side ofthe ridge or trough at l=2rn| we have

I ___ Etta/2 H.412 a-1/2g (A5)

where g is the factor by which this difi‘ers from flat-bottomed mode stripping (cf eq (3)). given by

a 3 .1/2
E = 1- H” -1 cosech2(r/2w) i-1 cot.h(r/2w)

H3 H’ (A6)

 

rn r m

This simplifies for narrow ridges and troughs 2w5r to

3 .112

g = {1 + (2w/r) - 1]]

(A7)

The corresponding increase in loss AL = -10 logIo g is tabulated in Table A1.

Table A1 :Exira loss AL for ememum depth Hm relative to depth at source 1:1I
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If the extremum depth Hm is between 0.5 and 1.5 H‘ the effects are quite small. There are more
dramatic losses in the ridge case if rays reach the critical angle. as may be the éase in Fig 4. This,
of course. would violate the assumption of linear bottom lose angle dependence. but the ray
invariant analysis can still be followed through with a higherpower lawsuch as (19".

A2 CalculationofdteBomumfilegivenflieIwIaw

It is possible to go slightly further than Ref 6 to obtain an explicit relation for the depth profile H(r)
in terms of the loss law l(r). Starting from eq (11) for clarity we extract the range dependent part
F(I’)

’ dr '1
F2 = [r2 —8

n H (A8)

I

where

e H;1 a' "’5‘ (A9)

After rearranging and differentiating with respect to r this becomes

i _ d [ 1 J

H3 dr F2 r2 H2 (A10)

Defining a new variable I

J = Fr H (All)

this can be written as

[El “ (i)J dr J2 (A12)

ll

a
l
e
.

-1
L.

/
—
\

“a
ls

o
\
_
/

d7 2 (A13)

If the desired law F(r) is to be obeyed from same range r0 out to r then integration ofeq (A13) gives

am - J(r°) = .— j" (Fr)3dr (Am
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which on substitution ofeq (All) gives an explicit formula for H(r) (for r > ro) in terms of F(r)

H“) = F(r.)H(ra) r. - % 1", (Fr)3 dr

F(r) 1' (A15)

Some examples, including those of Ref 6. are given in Table A2. All clearly reduce to Ho (i.e.
H(r,,)) at. r = ru. The third example reduces to the usual flat bottom mode stripping formula ifa2 = H‘
= H" (cf eq (A9) and eq (3)), but the formula shows that the same law can also he obtained for other
profiles.

Table A2 : Example profiles 110') for given loss laws Fh')

I-l‘1 -a’(r-rn)/2

Hun-Ira) -az(r2-r°2)/4rro2

32 + (HB -az) (r/ra)“2

H°(r./r) - az(r‘-r°")/8r

Ha em . r.) _ a: 9.21:: (em: . r.) _ 0/6],

HQ (r/ru)“ - a2 r" (113" '1- r'3" ‘1)/2(3n - 1) form a: 1/3

Hn (r/rn)“3 -(a2r1’3/2)1n(r/ro)
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