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ABSTRACT

One of the most difficult things in underwater acoustics is to see wood for trees. The most
straightforward approach is often a computer-intensive numerical solution. Frequently this does
not lead to much insight inte the physics. This paper discusses some simple underwater
propagation models with improving understanding in mind. We start with some simple laws for
flat bottoms and range-dependent environments, and rapidly drift into three dimensions. In
particular we look at three-dimensional effects with variable bathymetry and describe them with
analytical models. These are useful as benchmarks for numerical models and for providing
insight into acoustie behaviour. It is often also important to be able to generalise these effects for
operational research purposes and system design. Above alt we must be able to tell whether the new
effects are important, or not, in practice.

1. INTRODUCTION

One might imagine that the advent of extremely powerful ‘number crunchers’ means the end of all
our problems in medelling underwater sound propagetion. Although we could have made little
progress without them there will always be fundamental dependencies on alternative methods to
understand the behaviour of the mechanisms. Often a fully comprehensive correctly run
numerical propagation loss plot is no more enlightening than trials data despite the fact that the
basie equations for the treatment are obviously known. The alternative, on which we concentrate
in this paper, is the construction of analytical formulae. There ate several benefits that & simple
or analytical approach can provide, and these can be grouped as follows.

Understanding
Analytical formulae are useful for showing the essence of the problem through the dependence of

the output on the various inputs. However it is important that the formulze are relatively simple so
that dependencies are either explicit or can be easily and quickly evaluated.

Benchmarks

Quite apart from the problem of matching theory with experiment there is the problem of checking
that computer-intensive approaches provide correct solutions to the pesed mathematical problem.
Analytical solutions, whether simple or otherwise, provide useful checks on benchmarks.
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Ockham's Razor
There are several distinct applications for propagation modelling:

- Modelling the physics in its own right
- Providing an input to the design of sonar systems
- Real time predictions.

In all cases there is more to it than just modelling intensity, but the level of complication and detail
needs to be commensurate with application. Therefore simplification is justified and, in many
cases, necessary.

A variation on achieving better understanding by using analytical formulae is the ability, in
design studies, to check that you are barking up the right tree. It is often easier to see which
mechanisms are most important for the application and to make generalisations.

2. GENERAL APPROACHES
2.1 Acoustic Components

A fruitful basis for a simple model is to treat the various acoustic components such as bottom
reflection, bottom refraction, Lloyd's mirror, and so on, separately and then add the powers or
simply take the largest. This approach has been adopted in the model INSIGHT (Ref 1,2) where
full benefit is taken from this extra information. The formulae for each component simplify
because they occupy narrower bands of angles where behaviour, whether in deep or shallow water,
is more easily predicted. For instance, bottom reflections are steep enough to ignore the water
column’'s velocity profile. The formulae are also selected to reproduce important effects such as
slow spatial interference beats (see Fig 1) but to ignore very rapid fluctuations. Because there is
only a limited set of angle (or wavenumber) bands it is easy to see that a limited set of component
types will cater for all eventualities.

2.2 Variants of ‘Mode Siripping’

2.2.1 Range-independent models

In shallow water the dominant loss mechanism is the boundary losses. In normal mode terms

each mode spreads cylindrically and decays exponentially, but with faster decay for higher order

modes. In ray terms each ray spreads spherically and undergoes one extra boundary Yoss for each

ray cycle. By inserting a grazing angle {¢) dependence on the dB loss per radian per bounce L of
L=oab (1)

and using a simple law for cycle distance r_ in terms of depth H, e.g.

I, = 2Hcot 0 (23
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one obtains a gaussian dependence of ray intensity on angle over which to integrate. The result if
we assume angle limits of zero to effectively infinity is the same using rays or modes and is
known as ‘mode stripping’ (Ref 3). Intensity I is given by

_ el 2
I=er“H"a {(3)
where

© £ = (20n/log.10)'? = 5.22.

A numerical demonstration of the associated 15logr law is shown in the comparison with a
SAFARI plot for an intermediate depth environment in Fig 2.

There are many possible variants on this theme, all of which result in perfectly viable analytica}
solutions (Ref 4). One possibility stems from the realisation that all realistic refracting
environments will have a non.zero lower angle limit 8,, associated with the largest possible cycle
distance. This results in an erfe dependence (see also Ref 31)

I = e ®HRg 12 fc [G,,, (ar |-:1/H)m]

and £ = (log,10)/20 = /e? @
At long range this reverts to

= ) o2 1 gel Al
I=gr‘a Bmexp[ﬂmc(rl-:]ﬂ-l] )

and this can also be seen in Fig 2.
In addition it is possible to deal with single mode propagation (Ref 3), critical angles, boundary

loss laws of the form L = a9+, and linear surface or bottom ducts (Ref 4) where the cycle distance is
of the form

r. = 2(c/(dc/dz))tan8. ' (6)

A lesser known variation is apparent from the mede sum derivation. If the source and receiver, at
depths z,, z_ are close to the surface relative to the wavelength A then the dipele effect associated with
the mode shape results in an extra sin*d in the angle integral. We then have 2 35logr law,

1= 48R0 2 2RI g ™

An example of this behaviour is seen in the SAFARI plot in Fig 3. Clearly variations in between
10logr and 35logr are possible.
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2.2.2 Range-dependent models

Finally it is possible to use the same angle integral approach to tackle range dependent media and
even 3D effect as we shall see later. The ray invariant

sin@
dz = constant
- ¢

(8)

where the integral is taken over one complete ray cycle, dictates that ray grazing angles becoma
steeper in shallow water in a reversible fashion provided the environment changes slowly (Ref 5).
In an isovelocity medium this simplifies to

Hsin® = constant (9

and so the varying 62 in the exponent of the original mode stripping integral is still handleable
despite the varying depth. The result for a (range-independent) minimum angle 8, with water
depth at source H, and receiver H, is

I=a"rH"' AV erfc [em A"’]

(10)

where

r
odr
A=gH | —5
1 lJon(r,)a

and the loss law « is allowed to vary with range.

In an isovelocity medium where 8, = 0 this reduces to a range dependent equivalent of mode
stripping (Ref 8).

r -112
_ 1 a dr’
I =e{rH, H,) {J H(r’)3]

]

(11

The first term in brackets is simply the geometric spreading effect, and this is offset by the integral
that contains all the boundary loss and cycle distance dependence. It turns out that the effect of
changing water depth H, at the receiver can be exactly compensated by boundary losses leaving a
net cylindrical spreading if the bettom profile is linear with an upward slepe. This inverse
problem of calculating the bottom profile responsible for a particular loss law was investigated in
Ref 6, but a slightly neater formula with some examples is given in the Appendix.

Another interesting set of cases has the same water depth at the source and receiver (H, = H,) but

variations in between. If is fairly ocbvious from eq (11) that the intensity will fall slowly for trough-
like bathymetry but rapidly for ridge-like bathymetry. These effects have been clearly
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demonstrated in some laboratory scale experiments with & 500KHz source and an ‘ocean’ several
centimetres deep (Ref 7). Figure 4 results from & more or less parabolic ridge and Fig 5 results
from a parabolic trough levelling cut at each end. In both cases an appropriate IFD plot is
superimposed. Note that we only reach the point where H, = H, at either end of the plot, so the
difference caused by the boundary loss alone is evident in comparing the right hand end of Fig 4

with Fig 5. A simple calculation with some example dB losses based on eq {11} are given in the
Appendix.

23 Empirical Models - ‘Trained’ Medels

There are a number of well known empirical models for shallow water Refs (8-10), These have the
obvious advantage that they are based on reality, but on the other hand this ‘reality’ is only the truth
at the time and place of the experiment. For any other conditions, e.g. water depth, bottom loss, sea
state, source/receiver depth etc we always rely on some theory to interpolate, or more dangerously,
to extrapolate. Typical loss laws are of the form

TL=Alogr+Br+C (12)

where the coefficients are frequency dependent (Ref 10).

In between the empirical models and the entirely theoretical is an area with scope for more formal
development. One is used to the idea of using a model such as SUPERSNAP (in a regime where it
is valid) to explain trials data. Usually one or more parameters need to be ‘tweaked’ to achieve a
match, and given a reasonably large trials database it is possible to convince oneself that
systematic corrections to some of the environmental inputs are justified. The separated
components type of model that INSIGHT uses is idea) for this because it is much easier to home in
on the most suitable parameters to change. Rather than dismissing this approach us just a
convenient fudge one could regard it as the equivalent of the training session that is required in
applications of neural networks and in this respect is a perfectly valid exercise.

Without going into details one can envisage many technigues with or without humans in the loop
for essentially improving the data that goes inta models rather than the models themselves. These
include optimisation methods such as linear programming in conjunction with a model like
INSIGHT to minimise the discrepancy between prediction and experiment by choice of input,
regression analysis and even neural networks themselves. The trick is not to expect these
methods to out-perform human physicists in anything but mental stamina,

3. EFFECTS IN 3D

In three dimensions the additional effects include refraction out of plane by horizontal velocity
gradients due to large scale features such as eddies or small seale features such as internal waves
or wakes. Here we restrict ourselves to bathymetric effects where the bending effect can be
understood several ways, the simplest being that the bottom slope systematically tilts each reflected
ray slightly towards deep water. Since the medium is still nearly stratified one can image local
sets of vertical normal modes that have a position-dependent horizontal wave number given by k2 .-
(r n/H)® where k = w/e, H is local water depth and n is mode number, Thus in the horizontal plane
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each vertical mode behaves like a ray bending towards regions of high wavenumber as predicted
by Snell’s law. In addition, of course, one can treat the problem as one of solving the 3D Helmholtz
equation, and solutions are possible,

3.1 Ray Paths
By considering the three dimensional geometry of refiected rays it is possible to see that there are
two ray invariants (Ref 11), one (seen already in eq B and 9) defining ray elevation angle 8 in <

terms of water depth H, the other defining the change in ray azimuth at each bottom reflection.
Thus in isovelocity water we have

Hsinfl = constant = A (13)

and for bathymetry with translational symmetry (i.e. depth is a function of y but not x) with ray
heading ¢ measured relative to upslope

cos0 sing = constant= B (14)

The second invariant is a horizontal equivalent of the Snell invariant Ksing in & stratified
medium, Here the horizontal wavenumber K is, from eq 13 with k=w/c

K = keos8 = k{1-(A/H)2)1/2 (15)

This is a constant along the depth contour lines and only varies up or down slope. Consequently
eqs (13) and (14) can be used to trace rays in the horizontal plane. In particular there are 8 number
of functional forms of troughs and ridges for which analytical solutions are possible (Ref 11), The
simplest of these is the wedge for which ray trajectories are hyperbolic.

In bathymetries with rotational symmetry (i.e. depth is & function of p = (3% + y?)!? only) the second
invariant becomes

p cosO sing = constant (16)

and analytical solutions are again possible for a conical seamount and the basin defined by

H(p) =H, (1 + pZip )12 an

So far there has been no restriction on initial ray anglies, but if we intend to follow a particular
vertical mode as in Ref 12 the initial elevation angle is fixed through

(n+ ;-‘l)l = 2Hsin8 _ (18)

Note that because of the ray invariant this remains constant for one mode at all water depths, “This
is no coincidence. If we had started with the mode number being invariant as required by the
adiabatic approximation then the WKB phase integral for that mode, given by
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+ Ve = [T (k- k)4
(" 2) L( ) z 19

provides another derivation of the ray invariant in eq 8 which reduces to eq (13} and eq (18} for
isovelocity water.

Using eq (18) as the definition of the initial elevation angle 8, corresponding to the nth mode at
water depth H, we can then trace out the rays starting at the arbitrary initial ray headings as in Fig
6. Inevitably, on approaching shallow water, the rays turn towards deep creating the ‘fountain’
effect seen in Fig 6. The envelope of these curves is clearly a caustic with a shadow on the far side,
and behaviour is familiar from the effects of refraction in the vertical plane in range-independent
environments,

32 Vertical Mode Path in the Harizontal

From a modal point of view there are shadoews in the horizontal plane which are a three-
dimensional manifestation of the mode cut-off, and it is interesting to calculate their shape. It
turns out that analytical solutions are possible for same of the earlier trough, ridge, basin and
seamount geometries (Ref 12). One example is the wedge (Fig 7) where the envelopes are again
hyperbolae, However, as will be discussed later, it must be remembered that thesa shapes are for
loss-free bottoms, and intreducing bottom losses can make important differences particularly in
the upslope direction. Nevertheless, whether dominated by geometric effects or losses the onset of
mode cut-off generally occurs earlier (i.e. in deeper water) than one would expect if thinking in
terms of the vertical plane joining source and receiver,

33 Ray/Mode Intensity

There are many ways of tackling intensity in three-dimensions. These include solving the wave
equation analytically for the wedge (Ref 13) and evaluating the resulting integral with the
stationary phase method (Ref 14}, reducing the wave equation to vertical modes with a horizontal
eikonal equation (Ref 15), using the adiabatic spproximation (Ref 16), using the WKB
approximation in the horizontal plane (Refs 17, 18) and the 3D parabolic equation (Ref 19). The
horizontal ray behaviour means that it js possible to use straightfoward flux arguments to construct
an intensity for each mode using ray invariants (Ref 17). This is most simply & depth-averaged
intensity akin to the adiabatic inccherent mode sum. It is alsa possible to caleulate an intensity
taking phase into account by considering rays with phase. Harrison showed in Ref (17) that
Buckingham's solution for 2 wedge can be reproduced by this method.

By considering adjacent rays separated initially by d8, in elevation angle and d¢, in azimuth we
can write a relative intensity I (such that transmission loss TL = -10logl) as

L r do.| 8, cos 8, .
. ldyi Hsin¢cosB (20)
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Here 8, is a limiting angle at the source where the elevation angle is 9,, and other subscript-less
variables are at the receiver. No particular geometry is implied provided y is the local upslope
direction and ¢ is measured relative to y. This equation can be turned into the equivalent of an
incoherent mode sum by substituting the differential of eq (18) at the source

48 9H, cos@, /A

de, (21)
giving N
i ldy | HH, sin ¢pcos @ (22)

Whether this formula’s solution can be made explicit now depends on whether d¢,/dy and sin¢ can
be evaluated at the receiver.

For a wedge with x along the wedge axis and y peinting horizontally to deep water the ray equations
relating x, y to x,, y, and 8,, ¢, are known (Ref 12), and one can separate out d¢./dy to give an
intensity for the nth mede of

Ay sin &,

I, =
HH, x (xsec? 9, cot g, - vy, cos 0, (23)

One can also eliminate ¢,, which typically has two values, one for the more or less direct path, the
other for the horizontally 'reflected’ path (akin to horizontal Lloyd's mirror, see Ref 15}, and the
result is

I, = — —+ -
HH, dcos B, \s, s. (24)
Here
.7 IR
d = (y2 - y,z sin“9, - x? tanza,) (25)

is a ‘Pythagorean’ distance from the caustic or shadow boundary (since d=0 is the equation for the
caustic from Ref 12), and s,, s_ are the total ray lengths for the two paths. A theorem from Ref 11
shows that :

sy = X sech; cosecd,® (26)
or eliminating ¢,

5.2 = y,2cos®, + x?sec’®, + d? £ 2y, dcos, @n
Equation (27) combined with eq (24) completely defines the intensity in terms of initial angle 6, or

mode number n, As one would expect +/- values converge at the caustic when d=0. In addition one
has the usua} problem with ray formulae at caustics (d=0} that the intensity tends to infinity.
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Despite this it is shown in Ref (17) that eq (24) is identical with the spatially averaged modulus
square of Buckingham's first order stationary phase sclution {eq 24 of Ref 14) which is valid away
from the caustic. In the vicinity of the caustic Buckingham's approach requires a second order
stationary phase solution although one might guess by analogy with the study of caustics in
refracting media that there would be an Airy function dependence at right angles to the caustic.
This is explored in conjunction with the associated horizontal WKB solutions in Ref (18).

34 Boundary Losses

Equation (24) like the equivalent wave solutions gives a loss-free intensity, and away from the
caustic where y ~ d the only difference between it and the adiabatic incoherent mode sum is the
distinction between straight herizental range and the two ray lengths g,. This implies that apart
from interference effects and the shadow the only major three dimensional geometrie effects that
any wave solution can produce is the dependence on water depth H! With lossy boundaries, of
course, the story is different, but then three-dimensional effects have less time to develop before all
rays are lost.

The essence of the bottom loss problem is incorporated in eq (11), but there are some subtle
differences in three dimensions (Ref 20). When there is a critical angle 8, the ray invariant (eq
13) shows that for a given initial elevation angle the point where that angle is reached is the contour
line for depth H, where

H, = H; sinBy/sin@, (28)

For instance, in Fig 6 the effect is simply to truncate all rays that attempt to pass H_ into shallower
water. In effect, only rays that undergo relatively small azimuth changes survive. In addition the
caustic structure is eliminated in the shallow water and can only exist for depths greater than H,
(at the side in Fig 6). :

Reference 20 shows that the cumulative bottom loss L (equivalent to the integral in eq 11) can be
calculated for loss per bounce R proportional to sin@

R(8) = & sin® (29)
L= j @ sin® @ dy
ZHcos ¢ @30

Using the ray invariants this can be evaluated for several cases. One is a ray travelling upslope
from the source and back out to infinity in a wedge of angle ¥, where

a ) 12
L=—|cos8 cos¢, + (1 - cos?@, sin?
27[ wsd+ (1 o0, st )] (31

A parameterised version of this function is shown in Fig 8. Clearly the heaviest losses are for
initially low grazing angles travelling directly upslope. For example, putting a = 1dB/radian and

Proc.l.O.A. Vol 15 Pant 3 {1993) 29



Proceedings of the Institute of Acoustics

A SIMPLE 3D MODEL?

a bottom slope of 1 in 50 (1°) gives 50dB under these conditions or 26dB for ¢, = 60" (a bistatic angle of
120%). In practice this loss will be very much understated because the linear loss assumption
means that even at a grazing angle of 90° where the upslope ray turns round and heads downslope
the loss per bounce is only a, i.e. 1dB in the case! If the linear law operates up to a critical angle
then rays can only survive by, at worst, grazing the eritical depth contour. At this point ¢ = 90°, and
the second ray invariant (eq 14) provides a Jower limit on ¢, (below which losses are infinite) of

sind, = cosf/cosb, (32}

Thus if the critical angle were 30" with initial elevation angle close to zero, the minimum angle ¢,
relative to upslope would be 60°.

35  Wave Solutions

Analytical wave solutions for the loss-free wedge and conical seamount are well known (Refs 13,
14 and 21). There are also some solutions taking losses into account (Refs 22, 23). Trking the loss-
free wedge case the Helmholtz equation is written in polar coordinates {x along the wedge axis, r
orthogonal to it and polar angle 6, not to be confused with ray angles) with a source at (C, 8, 1,) and
wavenumber k = w/c as

OJ

AN _M Y ru e 2see. )
™ r2a 32 Ky = r&(r r)8(x)6(0 - 8,) @)

This is solved by taking a sine transform in 8, a Hankel transform in r and a Laplace (or Fourier)
transform in x. The result for a wedge of angle yis

an Y, sin (m#,) sin (m0) I,

n

n=0 (34)
and
- o
I, = o (K} I (KD K — dk
o P (35)
where
p = (K2 - k)12 (36)
m=nnfy (3n

with n being an integer for pressure release boundaries.

Here K is a dummy variable corresponding to wavenumber in the vertical r, 8 plane. Because the
integrand of I, is highly oscillatery it is only possible to make further progress analytically by
employing such techniques as stationary phase. As we have shown above there is much more
insight to be gained from the simpler ray invariant or adiabatic approach (eq 24), and an
inccherent version of eq (34) is identical to it.
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A new approach yielding ‘nearly exact’ solutions in many more bathymetries with translational
symmetry is explored in Ref (18). Although the results are similar to those given by the adiabatic
approximation, where one would simply insert a position dependent wavenumber, as in eq (15), ‘
into a horizontal two-dimensional Helmholtz equation, the adiabatic approximeation is not
invoked in this treatment. Instead the environment is transformed into a flat bottomed one where
normalised depth { is the vertical coordinate rather than physical depth z {see Fig 9). This is
similar to the ‘wedge mode’ idea in Ref 24. The Cartesian x, ¥, Z coordinate system is replaced by
the orthegonal system £, n, { with 1) runming along the flow lines' in Fig ¢ and { running at right

angles to them. The water depth h(n) is also measured along the curved line, The Helmholtz
equation becomes

13 b3y Py Wiy Py , _ 4m
REYE FC3_C'+W+Fﬁ+a_E+k Vo= -3 85 8m-n,) 3E)

(38}

where dashes represent differentiation with respect to 1.

1 For the special case of a wedge with h=yn we find that this equation reduces to the polar coordinates

of eq (33) E—x, N7, [—64). Generally, if we neglect bottom curvature h” a number of new
solutions are possible by earrying out a sine transform in {, a Fourier transform in £anda
modified transform in n. We find that there are two classes of solution, those that are bounded on

both sides in 7 {i.e. ‘troughs’), and those that are either unbound or bounded on one side only (i.e,
‘ridges’).

The former trough equations are described by a double sum of modes in the vertical {index n) and
horizontal (index j).

v = X, 3 200l e
- 7 i (39)
47i sin(v, &;) sin(v, L)

where

bn

(40)

Vp=1R 41)

and the u, represent a discrete set of horizontal eigenfunctions with eigenvalues K; of the equation

32UJ + h' au, + (kz- Vzn

AR R GRS TR

(42)

In the case of ridges there is a similar equation except that the sum over j becomes an integral over
a continuous spectrum of modes.

Interestingly, solutions are possible for most of the profiles that provided ray trajectories through
use of ray invariants. The troughs include:
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1) ‘Lorentz’: hin) = h A1+n%r, D17
This reduces eq (42) to the ‘simple harmonic oscillator’” with a solution in terms of Hermite
pelynomials.

2) The ellipse: h(n) = h, (1-n%/r 217
Solution are in terms of Mathieu functions.

3)  ‘Epstein’ h¥m) = -A sech? (3/r,}+ B tanh (n/r,) +C
Solutions are in terms of Jacobi polynomials

The ridges include:

1) The wedge: hin) = m
The solution is in terms of mth order Bessel functions and is identical to eq (35)

2) ‘Curved shell: h2(m)=An + B
The solution is in terms of Airy functions

3) ‘Inverse parabolic: h = h /1 - n%r 2
Behaviour is analogous to that at a velocity maximum in a range-independent refracting
medium, and the solution is in terms of parabolic cylinder functions.

4) ‘Hyperbolic: h = h, (1 + n%r, )17
The solution is in terms of modified Mathieu functions.

In addition one can transform eq (42) to

24
d—-ﬁ+(K%-ﬁ+eJuj=0

dn? h? (42

where € is small, possibly negligible,

(45)

This has yet a new set of solutions. We can employ the WKB solution (and for that matter, an Airy
function near to horizontal caustics)

n T A4
u; {n) = sin U (K,z, - g + a) dl]+nl4] [K,z, - :—§+ e] N2
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where N is a normalisation constant. The 3D solution for a WKB trough is

= Uj (ﬂx) U; (nr) ciK,-ﬁ
Y=L X b e “n

The discrete mode cigenvalues are given by the ‘phase integral’
v b
s 1 _ 2 n
(J+5)n: = J [Kn -F+£) dn
(48)

where the integral is taken between points where the integrand is zero.

4. EXPERIMENTS
4.1 Questions

There are a number of questions on real life 3D propagation that have not been convineingly
answered yet. Amongst these are

1) Are there significant out of plane effects as far as intensity is concerned?

2) Are there significant out of plane effects as far as angle, coherence and delay time are
concerned?

3) Under what conditions is the adiabatic approximation valid in a refracting environment?

The final answer will come from at sea experiments, however these are notoriously diffienlt to do
(Ref 25), partly because to be convincing, they need angle measurements at the source and receiver
end. This helps to distinguish between the multiple reflection turning mechanism and other
mechanisms such as bottom scattering which may be more effective at smaller bistatic angles.

It is easier to perform controlled experiments in laboratory conditions. Glegg et al (Ref 26) have
performed experiments at several kHz in & swimming pool size tank. Some experiments with a
more faithful aspect ratio have been performed by Lian Sheng Wang (Ref 27-28) at 500KHz with &
one centimetre deep, two metre square ‘ocean’ above a fine sand bottom. It hes been possible to
investigate propagation in a wedge and various troughs and ridges (Ref 7). By separating modes
and menitoring their evolution one can investigate criteria for the epplicability of the adisbatic
approximation (Ref 29). Nevertheless these experiments are 4l done with isovelocity water and
the problem of adiabatic applicability is more difficult with range-dependent sound speed. The
transformation method of Section 3.5 suggests that the adiabatic approximation is only 100% valid
when the new coordinate system is separable. Thus one might expect the adiabatic approximation
to be sufficient for a V-shaped channel provided it only varied with range in width or velocity
contrast, but one would not expect splitting into more than one duct to be accommodated, In
practice, of course, there may be cases where the adiabatic approximation happens to be &
reasonable compromise despite drastic changes in the profile,
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42 A Proposal

Another way of looking at the question of the importance of three-dimensional effects is that if one |
cannot devise an experiment that is sufficiently accurate to prove that the effect exists then it is |
probably pointless worrying about the effect.

Harrison (Ref 30) proposed an experiment designed to prove conclusively that these effects are
significant. He made the point that there were at least two mechanisms that one might find at the
edge of an otean basin which could give similar azimuthal dependence. One was the multiple |
reflection mechanism discussed sbove, and the other was the backscattering from the basin edge l
jdentified with large shot sources. J

With a large bistatic angle & the ray elevation angles will not exceed (n-0V2, so if the sesbed is
smooth, backscattering will be weak and multiple reflection will be as important as madal
propagation ever is. On the other hand with a small bistatic angle and a rough seabed the multiple
reflection mechanism will be wiped out leaving backscattering. Therefore each mechanism must
at least be dominant in some circumstances.

This suggests that a promising experimental approach is to stick to large bistatic angles, virtually
across slope propagation, and to search for modal shadow zone boundaries, in particular the first
mode cut-off and the transition from single mode to two modes. A plan view is shown in Fig 10.
The idea is to place a vertical array near the slope and to use it Lo separate out modal arrivals from
a source which maps out the region as shown.

Although the shadow pattern is shown here as fixed, it should be remembered that the shadow
boundaries all move in towards the shore line as frequency is raised. Therefore a sweep in
frequency is as good as & spatial sweep. Multiple or single tone sources or shots could be used. The
main distinction between multiple bottom reflection and scattering is that the spatial pattern exists
in the former mechanism but not the Jatter. However, sea surface roughness will provide an
jmportant tool for distinction since increasing roughness will enhance scattered returns but
weaken multiple reflection paths.

The dependence on bistatic angle is automatically included in the experiment by mapping out the
intensity. It is most likely that the multiple reflection mechanism will dominate towards the right
(large bistatic angles) whereas the scattering mechanism will dominate towards the left (small

bistatic angles).

5 CONCLUSIONS

We have looked at the virtues of simple propagation models (including empirical ones} in various
applications and cited some useful examples for range-independent, through range-dependent to
three dimensional models.

The additional effects of the third dimension were reviewed starting with a ray invariant
approach, This included geometric spreading and boundary losses.
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With the emphasis more on analytical than simple we briefly visited various wave solutions to the
three dimensicnal Helmholtz equation and. listed geometries other than the wedge for which
solutions are possible.

Finally we looked at 3D laboratory and sea trial work, and proposed a trial to demonstrate the
existence of medal shadows in a real ocean environment and thereby prove the importance of 3D
effects.
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APPENDIX : EVALUATIONS OF THE SIMPLE RANGE-DEPENDENT MODEL

A.1  Evaluation of Intensity

Starting with eq (11} in the main text we evaluate the intensity in the vicinity of symmetrical
1 ridges and troughs of the form

1
H(ry

= A + Bsech®({r - rp M/ w)

(Al}

with A > 0, A + B > 0. The feature has half width w and is centred at range r_, some way from the
source. Thus the water depth at the source is

1
Hi

= A + Bsech®(r, /fw) ~ A

and the maximum or minimum depth is given by

—l-=A+B

Hi
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A trough therefore has negative B whereas a ridge has positive B.
Equation {11) becomes

_ elfA + Bsech®(r, /w)j[A + Bsech? ((r - ry )/ w)V?
aV?r {Ar + wB[(tanh (r, /w) + tanh ((r - ra Y WHY2 44

When H, is on the far side of the ridge or trough at r=2r_ we have

I =cer¥2H, V2gltg (AS)

where g is the factor by which this differs from flat-bottomed mode stripping (cf eq (3)), given by

3 3 -y2
g =41- i-1 cosech? (r/2w) +[EJ ﬂ—-1 coth (r/2w)
HR, r ) \Hh (A6)

This simplifies for narrow ridges and troughs 2wgr to

3 -v2
g = {1 + (2w/r) [:—'3: - 1}]

The corresponding inerease in Joss AL = -10 log,, g is tabulated in Table Al

Table Al : Extra loss AL for extremum depth H_ relative to depth at source H,

2w/ir . AL(dB)

7.56
3.26
0
-.94
-1.25
-1.47
791
3.55
1]
-1.16
-1.57
-1.88
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If the extremum depth H,, is between 0.5 and 1.5 H, the effects are quite small. There are more
dramatic losses in the ridge case if rays reach the eritical angle, as may be the éase in Fig 4. This,
of course, would violate the assumption of linear bottom loss angle dependence, but the ray
invariant analysis can still be followed through with a higher power law such as agn,

A2 Calculation of the Bottom Profile given the Loss Law

It iz possible to go slightly further than Ref 6 to obtain an explicit relation for the depth profile H(r)
in terms of the loss law I{r). Starting from eq (11) for clarity we extract the range dependent part

F(r)
T dr 1
o H (A8)

I =eH le¥F (A9)

where

After rearranging and differentiating with respect to r this becomes

i _ d [ 1 )
H® dr \F2r2H? (A10)
Defining & new variable

J=FrH (A11)

this ean be written as

5) - %)
J dr \J? (A12)
’ - 3(2)
T odr \J?
ﬂ = -1 (Fl")3
dr 2 (A13)

If the desired law F(r) is to be obeyed from some range r_ out to v then integration of eq (A13) gives

J(r) - J(r,) = -—; I: (Fr?dr

(Al14)
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which on substitution of eq (All) gives an explicit formula for H(r) {for r > r_} in terms of Fir)

Fr,}H@xo) Ty - %I,’u (Fr)? dr

H{r) =
F F(r)r (A15)

Some examples, including those of Ref 6, are given in Table A2. All clearly reduce to H, (i.e.
Hir,))atr =r,. The third example reduces to the usual flat bottom mode stripping formula if a2 = H,

=H, (cf eq (A9) and eq (3)), but the formula shows that the same law can also be obtained for other
profiles.

Table A2 : Example profiles H(r) for given loss laws F(r)

F(r) H(r)

ar H, -a%(r-r,)/2

afr? Hy(r/rey-a%(r?-r,%)/4rr,?
afr3 ‘ a? + (H,-a?%) (r/ryV?

a H, (ro /1) - a®(r*-1,*)/8r
aebrr H, eb(r -Te) 82 e-2hr (eah(r S P} . 1) /6b
L H, (r/r )" -a? e (v, % o304 1) /2030 - 1) forn 2 1/3
rin H, (r/r)'? - (a®r¥3/2) In (r/1,)

1 “BEKCHMARK COMPARISON-
A
NU:HOm
.é. ' :‘-A‘I\SD!I\
* ”'i
1
80 «
1 B T T T T "
o 10 20 30 L 5
Flarge (im)

Figl A comparison of the simple model INSIGHT with a rigorous
treatment, SAFARI.
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