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ABSTRACT

Computer intensive models such as SAFARI and IFD are introduced. A brief discussion of their
shortcomings especially when applied to realistic environments leads to the need for
propagation loss benchmarks. The techniques used to establish these benchmarks are discussed
and the resulting analytical formulae provide the basis of several simple models, one of which
is INSIGHT.

The high speed and analytical components in INSIGHT result in a real ‘feel’ for the physics by
providing the ability to carry out sensitivity analysis and reconcile trials data with theory.
There is also scope for dealing with finite beamwidth and bandwidth.

Simple models are therefore most useful for sonar designers, operational analysts and sonar
operators because frequently robustness, sensitivity and speed are more important to the user
than detail.

1. INTRODUCTION

To a sonar engineer transmission loss is just another term in the sonar equation that can be
simply tabulated and then forgotten about. One might even take the wealth of propagation
models as proof that calculating transmission loss is straightforward. However, nothing could
be further from the truth. Transmission loss is well known to depend in a complicated way on
the water column, sediment and the boundaries, but it also depends significantly on signal
processing and sonar parameters such as bandwidth, pulse length and beam width because these
influence the predominant paths and the potential for interference between them.

Despite the sound physical basis of the mathematical models their limited regimes of validity
often result in disagreements between otherwise correctly run implementations (see Fig 1).
These problems are well understood (Harrison [1]) but are, nevertheless, an unnecessary
burden for the uninitiated. In addition most advanced models rely on choice of some non-
acoustic parameter that requires experience or multiple runs to home in on a mathematically
‘correct' solution. Most assessment problems, by their very nature, already require multiple
runs with one or more parameters changed, possibly in the sonar or, more likely, simply to
describe a range of environments.
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2. APPROACHES

There are various approaches to these problems, with pros and cons depending on application.

One is to set up somerules for where each model can be used (the logic tree of an expert system).
Because there are may input parameters this is non-trivial but anapproach is discussed in the
next paper (Ainslie [2]).

An alternative is to construct some benchmark transmission loss plots in realistic

environments against which one can check'a program’s performance. In this context a
benchmark is a plot from a computer intensive model such as SAFARI, SUPERSNAP or IFD in
whiclfwe have a lot of confidence because ' '

a) the model was used in a valid regime
b) all disagreements between models are fully understood
c) various acoustic components can be validated against simple analytical calculations.

The last approach is to construct a simple model (most likely analytical) that can not only fill in
the gaps between benchmarks but can provide a reasonable prediction in its own right. The ,_
advantage of such analytical formulae is that they are robust, well understood, and they range
from fast to infinitely fast, which means they are useful for sensitivity analysis. An example of _
such-a simple model is INSIGHT which evolved from the diagnostic ‘back-of—the-envelope’

calculations used to establish the benchmarks. This will be described later.

It is worth pointing out thatempirical models are usually fast and robust, and of course they are
in some sense ‘the truth’. However they do not help at all with insight or interpolation in sonar
or environmental parameters because the data on which they are based can never be extensive
enough.

3. COMPUTER INTENSIVE MODELS

Before describing some simple models it is worth briefly reviewing some of the more well
known numerical models and their limitations. A more detailed discussion with references is
given in Harrison '[1] and Jensen [3]. Operational models such as FACT and RAYMODE are
not discussed because they leave the user little control over the physics.

One cangroup the models into several types as follows, although the first four arein more
common usage than the subsequent ones. ‘

1) Ray- tracing, e.g. GRASS
2) Normal mode, e.g. SUPERSNAP

3) Green’s function evaluation, e.g. SAFARI
4) Parabolic equation, e.g. IFD

5) Coupled-mode
6) Finite element
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It is natural to use whichever approach is computationally most efficient for the circumstances.
and so in shallow water or in a duct where there may be vast numbers of reflected rays it is more
convenient to think in terms of modes. Conversely at short range or in deep water there may be
only a few ‘eigen rays’ connecting the source and receiver but a very large number of modes, so
it is advantageous to think in terms of rays. It goes without saying that all groups are relatively
slow to run, but it should be remembered that although some may be extremely slow, they may
provide more output. For instance the parabolic equation automatically provides solutions at all
depths out to the maximum range.

3.1 Ray Tracing
A ray trajectory can be calculated in a two- or three-dimensionally varying medium by using
Snell’s law and allowing for boundary reflections. The intensity is then calculated at any point '
by including the losses at the boundaries (which may be angle and frequency dependent) and
volume absorption as well as the geometric spreading term. The latter can be calculated either
from the local spacing of two initially adjacent rays or by counting the number of rays arriving
in a vertical bin or window at the depth and range in question. There are obvious
‘housekeeping’ problems with both approaches. Pros and cons are as follows:

Pros Cons

* No symmetry required * Corrections required at caustics
* Familiar concept * No diffraction effects
“ Beam patterns straightforward * Choice of ray spacing

It is worth adding that one nearly always has to resort to ray tracing when scattering from one or
more targets is involved (for instance reverberation calculation) because the scattering
coefficients are defined in terms of arrival and scatter angle.

3.2 Normal Mode
The Helholtz equation can be separated in range and depth assuming cylindrical symmetry
and vertical stratification. The solution of the resulting one-dimensional equation in depth can
be expressed as the sum of the discrete normal modes and one or more branch cut integrals. The
acoustic pressure is given by

p=fi 2 ¢n(z§)¢(z,)H0<D(Knr). (1)
n- I .

where on are the normal modes evaluated at the source and receiver depth zs and zr and Kn are
the eigenvalues. The modes represent up- and down-going rays travelling at an angle defined
by the horizontal wavenumber Kn = k(z) cos 9 (z), and they can be calculated by standard _
shooting methods such as Runge-Kutta or reformulated as a more stable algebraic eigenvalue
problem. Weak variations of velocity profile and water depth are incorporated into
SUPERSNAP via the adiabatic approximation. The modes are evaluated at the source and
receiver ranges, and the wavenumber in the Hankel function is interpolated between the values I
at source and receiver. Brekhovskikh and Lysanov [4] show that the Hankel function or
complex exponential turns into a WKB type integral which requires the horizontal wavenumber
at various ranges for it evaluation.

15
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Pms .Cons

v * Diffraction effects v * Stratified medium
* Low frequency * Short range effects missing
* Adiabatic approximation
* Surface roughness
* Shear wave effects
* Relatively robust

3.3 Greens’ Function Evaluation -
Again in cylindrical coordinates the Helmholtz equation can be separated (by taking a two-
dimensional or Bessel transform) into a one dimensional problem in depth. The complete
solution of the inhomogeneous Helmholtz equation for a stratified medium can be written as the
Bessel transform of the vertical Green's function.

¢(r.2r) = i: G(K,z,, 25) J0 (Kr) KdK (2)

This is the basis of SAFARI. The Green’s function G is calculated for the given source and
receiver depths and all possible horizontal wavenumbers by a matrix method, and then the above
Bessel transform is approximated by a Fourier transform.

The distinction between the Green’s function and the normal modes can be visualised by the
analogy with a violin string stretched across the water column. The normal modes are the
shapes of the violin string at its many resonances (the violin frequency corresponds to the
horizontal wavenumber). Between resonances the amplitude is zero, and so the sequence is
discrete. The Green’s functions are the shapes of the violin string when driven by a harmonic
source at some particular position along the length (i.e. the source depth). These exist for any
frequency of the harmonic source, although there will be a large amplitude at each resonance.
The effect of introducing losses into the medium or boundaries is to broaden the resonance peaks
and this manifests itself in each mode as an exponential decay with range.

Since the method has to take the discrete Fourier transform of this resonance curve to get back to
range space it is clear that sampling will be a problem unless the spikes are broadened. In
practise broadening may have to be introduced artificially with acomplimentary superimposed
exponential increase with range. A rigorous description of this process is given in Schmidt [5]
and the choice of broadening clearly requires some user expertise. Because of the usual Fourier
transform relation between wavenumber and range there is an inverse relation between
maximum range and maximum wavenumber (for a fixed transform size N). Therefore large
velocity contrasts result in attaining only a small maximum range, and vice versa.

Pms Cons

* Complete solution * Stratified medium
* Shear effects “ Limited range or angle capability
* Surface rou hness * Sampling problem

g .
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3A Parabolic Equation
The parabolic equation takes a different starting point from SAFARI or SUPERSNAP. For
waves travelling predominantly within a small range of angles the elliptic wave equation can
be approximated to a parabolic equation by taking out the main oscillating part of the solution in
a function S(r). Thus the velocity potential It can be written in terms of a slowly varying
function V of range and depth

¢ = whose) ' (3)

and the parabolic equation is

g + 2ikoéflr + k: (n2-l) w = 0 (4)

where the range and depth dependent wavenumber k is written in terms of a refractive index n
and reference wavenumber k0, k = kon. Ifw is completely defined over a vertical line at some
given range then B2w/822 is known and consequently div/Br is known, so \V can be calculated at
the next range step r + dr, and so on. This marching solution clearly allows for diffraction in
an arbitrary medium provided angle changes are small. Two implementations of the parabolic
equation are IFD whose solution uses finite differences, and PAREQ which relies on a simple
algebraic relationship between the vertical Fourier transform of w at one range point and the
next.

One undesirable effect of running the parabolic equation in a medium where there are
significant steep angle returns is that these returns are mapped into a smaller angle. Typically
one see features shifted outwards in range.

Pros Cons

* Range-dependent * Choice of reference sound speed
* Diffraction * Range offsets

“ Angle limitation
* Compression wave only
* Choice of range/depth step size

4. SIMPLE MODEIS

Simple models have been around for some time; Weston [6], in a paper of 20 years ago quotes
references to the three-halves mode stripping law back to 1943. In the meantime computer
intensive methods appear to have shifted emphasis away from analysis. The problem now is
that computers provide detail but not necessarily accuracy, and this is the logic that led to the '
benchmarks already mentioned. - '

4.1 Shallow Water and Ducts
In shallow water or in a shallow duct it is relatively straightforward to construct a simple model
(starting from a ray or a mode standpoint) For instance, in a surface duct with surface

17
ProchoiA. Vol 12 Part 2 (1990)



 

Proceedings of the Institute of Acoustics

FROMADVANCED T0 SIMPLE PROPAGATION MODELS

reflection coefficient R and velocity gradient c‘ one can disregard the effects of refraction on

intensity (but not on cycle distance). As a result there are a number of rays with different

numbers of surface bounces, all spreading as 20 log r, The resulting geometric series in R has

upper and lower limits in bounce number (N, M respectively) that depend on the minimum and

maximum cycle distance It is then easy to show that the intensity is

I: ID % RM (l-RN'M“)/(1-R) (5)

where the maximum number of bounces is

N = r/rc (6)

rc = 2 (2c zmlc')”2 (7)

and zr's is the depth of the deeper of source and receiver. The minimum number of bounces is

M = r/rm (8)

rm = 2 (2 c H / c‘)“2 ‘ (9)

where H is the depth of the duct. I

This formula accounts quite naturally for the transition between spherical and cylindrical

spreading as can be seen by taking R close to unity. Formula (5) reduces to

41:10 ,2 (N-M+l) (10)

which is

1:105[i.i+ 1) (11)
1' Tc rm 1'

Using a similar approach but converting the sum over arrivals into an angle integral Weston's

mode stripping formula can be derived, on the assumption that reflection loss is proportional to

grazing angle (RL = a9 = - 10 log R).

II = Io (20Mog010)m H“ a '1’? r 3’3 (12)

Thislaw relies on the freedom of rays to travel almost horizontally (strictly isovelocity

environment). In reality, of course, there will be a lower angle limit 9m corresponding to the

maximum cycle distance in a refracting environment. The effect of this is to introduce a

significant decay with range through a complimentary error function.
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1 = In (20 1r/logc10)"1 H-m a-W r M erfc (9mm r H—1 loge 10/20) 1’2) * (13)

In a similar manner it is just as easy to incorporate a boundary loss law of the form RL = (x9 + B,
and, even range-dependence by including the adiabatic approximation.

4.2 Deep Water L
In deep water behaviour is more complicated because there are a number of different types of
arrival including convergence zones, and the source and receiver are usually relatively close»
to the surface so that there are some large scale interference effects. The diagnostic analytical
formulae thatpwere used to check the benchmarks .provide the basis ofa deep water simple model
(which incidentally also workslin shallow water) called INSIGHT, Refs. [7-8].

The components in INSIGHT include Lloyd's mirror, surface duct, bottom reflection, bottom
refraction, and convergence zone, as shown in Fig 2. For each component a coherent and an
incoherent formula is available, and the components themselves may be added coherently or
incoherently.

The'mea'nin‘gof coherent is clear from Fig 6. As is well known, the, standard Lloyd’s mirror
formula represents beats resulting from two rays connecting source and receiver (direct and
surface reflected). In this respect it is 'coherent'. The version in INSIGHT includes the
distortion due‘to refraction in a linear surface duct. One can also construct an ‘incoherent’
Lloyd's mirror formula by setting the sin2 term to lgfor large argument but the (argument)2 for
small _.argum_ent.

Similarly it is easy to see that for a fixed order of bottom reflection or refraction there are always
4 rays connecting source and receiver (with O, 1, 1,, or 2 surface bounces), and by considering
source images one can write a coherent or incoherent formula for-these components. Note that
these formulae are strictly true for isovelocity water, but because the corresponding rays are
usually relatively steep when these components are significant the horizontal offsets caused by
refraction in the water are small, and in any case the offsets can be calculated as a correction
term extremely efficiently. '

The surface duct contribution is more difficult to calculate quickly if depth and frequency
dependence are to be retained, and inevitably one must resort to a normal mode solution.
Nevertheless we have developed some approaches in Harrison [8] which enable us to calculate
the surface duct contribution with a formula rather than a numerical sum of modes’. The
incoherent version of this is still valid as receiver depth passes through source depth where one
might expect problems with caustics. ' ‘ '

5. INSIGHT EXAMPLES

An example of the incoherent components is shown in Fig 3, and on a dB scale one can mentally
add them by taking whichever component is greatest. This should be compared with the
benchmark (SAFARI) (Fig 4) for the same case, which was a downward refracting Atlantic-type-
profile at ‘600Hz with source and receiver at a few hundred metres depth. Considering the smooth ‘
nature of the incoherent curves one could not possibly hope for a better fit (except possibly the '
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convergence zone at about 55km which was not. modelled in this case). The Lloyd’s mirror
return is truncated by downward refraction leaving at first bottom reflections then, as grazing

angles reduce at larger range, bottom refracted paths. One important conclusion from this and

many other examples is that even with incoherent addition as is valid for, say, a broad band
receiver, transmission loss certainly does not behave like spherical or cylindrical spreading,

as is often assumed.

The insight and understanding provided by the model is demonstrated in the following coherent
comparisons with SAFARI (Figs 5-9). Examples have been purposely chosen to compare like
with like. Figure 5 (SAFARI) has isovelocity water, 4000m deep with a change in density at the
bottom (to 1.92) providing an angle - independent reflection loss of 10 dB. At first sight it is by no
means obvious why there is a null at about 4 km, and why there is quite deeply modulated
interference out to 60 km. The simple model (Fig 6) firstly agrees extremely well, and secondly
shows straight away that there are three significant components: Lloyd’s mirror (at short range)
and the first and second bottom reflections. Lloyd’s mirror is coherent despite the appearance;

the few lobes are at very short range. The reason for the large lobe shape of the bottom returns is
obvious from the form of the formula and is merely a result ofthe incorporated surface
interference (the four ray paths constituting each component). At higher frequencies there
would be more lobes within the same range. The rapid interference is seen in the SAFARI plot
(Fig 5) when there are two components with comparable amplitude. Modulation is most deep
when amplitudes are the same. Indeed these beats between components could be calculated
without too much effort although modelling them is of less interest than the gross features.

Figure 7 shows a comparable SAFARI example with the reflecting bottom replaced by a
refracting bottom, i.e. a positive gradient of 1s‘1 with continuous velocity at the boundary and
density of one. Again SAFARI gives no clues about the gaps or the interference. The simple
model (Fig 6), on the other hand, shows that predominant contributions are the first and second
bottom refraction and Lloyd's mirror. Again the fit is remarkably good, and- there is
interference when the two components have comparable amplitudes. The reason for the gap out
to about 10 km is that for shorter ranges the bottom refracted ray is forced to dive deeply into the
sediment and the returning rayis shadowed by the boundary between sediment and underlying
rock. The simple model includes an edge diffraction term under these conditions which results
in the slight oscillations at around 15 km. Had the sediment been deeper there would ultimately
have been a caustic at somewhat less than 10 km. This would have been modelled as an Airy
function.

If these two environments are combined so that the bottom partially reflects and refracts the
result given by SAFARI is shown in Fig 8. The more complicated beat pattern can still 'be
explained by superimposing the earlier bottom reflection and refraction components as shown
in Fig 6. Out to 10 km Lloyd’s mirror and the first bottom reflection dominate, but when the
bottom refracted arrival appears it has a comparable amplitude to the reflection and the small
phase difl'erence results in the slow beats seenfrom about 10 to 20 km. From here on the beat
pattern is, not surprisingly, more chaotic because there are now four components with
comparable amplitudes.

As a demonstration that the effects of refraction in the water column are small Fig 9 is for an

Atlantic profile with otherwise the same parameters as Figs 6 and 8. Comparing with Fig 6 the

fit is equally good except that the noticeable convergence zone return atabout 55 km was not

20
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modelled in this example. The shifts in the detail of the interference patterns are unimportant,

s. SENSITIVITY ANALYSIS

The obvious‘approach to investigating sensitivity to the many environmental and acoustic
parameters with conventional models is a daunting task because without the benefit of hindsight
one is forced to try out and tabulate vast numbers of combinations. To see the magnitude of the
task the very basic parameters to be varied might include frequency, source depth, receiver
depth, water depth, sediment density, absorption, initial sediment sound speed, velocity
gradient, bedrock velocity, sea surface sound speed and a velocity gradient every 100m down to.
1000m. ' If these 20 parameters are allowed three values each (high, middle, low), which is
extremely crude then 3 2° = 3.5 109 runs are required!

Simple models, and in particular, the model INSIGHT provide a neat way round this problem
since the components generally have analytic form. This means that ,for a given set of
conditions, as we have seen, one can easily find the dominant component or mechanism at
ranges of interest. A glance at the formula then immediately shows what dependence to expect
on any variable. For instance, returning to Fig 6, it is obvious from the simple model (but not at
all obvious from SAFARI) that the section between about 3 and 10 km does not depend at all on
sediment absorption whereas from 15 km onwards there is a strong dependence on absorption
and frequency but only little on density. Out to 3 km there is no dependence on the bottom at all.
Thus'the number of cases that 'would actually require multiple runs to deduce sensitivity is
already drastically reduced.‘ As a bonus the simple evaluation of formulae means that multiple
runs are feasible virtually in real time.

An example of the spread in transmission loss (incoherent formulae) produced by varying
several parameters simultaneously is shown in Fig 10. Lloyd’s mirror has source depth
varying between 305 and 610m. Bottom reflections have density varying between 1.92 and 3.84.
Bottom refracted paths have absorption varying between .045 and .09 dB per wavelength.

7. APPLICATIONS

Aside from straightforward calculation of loss and sensitivity there are a number of other
applications of INSIGHT. One is the reconciliation of trials or exercise transmission loss data
with the 'nominal acoustic parameters'and environment. Inevitably there will be discrepancies,
but the new approach to sensitivity means that it is relatively straightforward to find out which
parameters can explain them.

A frequent problem with trials design is that one does not know beforehand which are the most
important parameters to measure. Again the approach to sensitivity means that one can say
immediately what is or is not important. More significantly one can immediately. see that there
may be parameters 'which, if not measured (e.g. sediment absorption) may completely
jeopardise any comparisons of theory with experiment.
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The INSIGHT model also allows areliability or margin of error to be attached to predictions of
quantities such as Probability of Detection (POD) This should bring out thedangers of using
performance metrics such as detection range.

Finally INSIGHT clearly has uses in educating sonar operators, OR analysts and research
physicists alike. ' ' ' '

' 8. CONCLUSIONS

There are many computer intensive propagation loss models that are capable of detailed and
accurate 'mathematical solutions given sufficient environmental detail. Reconciliation of
these models is a surmountable problem, and indeed some benchmarks for realistic
environments have been constructed.

A much better understanding of thermany mechanisms and components is provided by simple
models. These have the obvious advantage of explicit dependence on input parameters and
rapid computation. Usually new mechanisms can easily be added. Provided there is
reasonable agreement with the benchmarks one can rely on simple models for sensitivity
analysis. ' ' ' '

The model INSIGHT evolved as'a predictive tool from the diagnostic calculations used for
checking benchmarks. INSIGHT is designed for sensitivity analysis, and its speed and
robustness suggests a number of applications, other than simple loss calculation and range
prediction, where most models would be impractical or impossible. Such applications include
broad band sonar (finite pulse length) and reconciliation of trials data with models.
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Fig 1 : Typical discrepancies between wave treatments : (a) SAFARI, (b) SUPERSNAP, (c) IFD,
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Fig 5 : SAFARI plot for isovelocity water with abottom reflection loss of 10 dB.
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Fig 8 : SAFARI plot for isovelocity water with a reflecting and refracting bottom.
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Fig 9 : SAFARI plot for the bottom environment as in Figs 7 and 8 but with substitution of an
Atlantic profile in the water.
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