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ABSTRACT

Oceanographic and bathymetrlc range-dependence occurs on many scales in two or three

dimensions. Modelling sound propagation in these environments is hazardous. and different

approaches are valid in different regimes. For instance. the parabolic equation (e.g. lFD) is

most reliable for shallow angle rays whereas the adiabatic normal mode approach (e.g.

SUPERSNAP) is most reliable for steep ray angles. This combined with the abruptness of the

environmental changes defines limits of validity in a subjective way. An attempt is made to

tighten up these limits. and reference is made to comparisons between [PD and SUPERSNAP.

1. INTRODUCTION

An important requirement of propagation modelling is to be able to deal with range—

dependent environments. The motivation originates partly as a simple craving for realism,

but it is also partly due to the promise of new phenomena or regimes that may be put to

tactical use. This. in turn. is inspired by a growing awareness of the detail in ocean

circulation systems as seen through satellites added to the obvious undulations of the seabed.

Ahch all. the available computing power makes it feasible to contemplate more complicated

pro ems.

There are a number of methods for handling range-dependence numerically. and several of

them are also suitable for analytical calculations. The purpose of this paper Is to investigate

the limitations of some of these approaches from a theoretical point of view but adding some

examples in an attempt to narrow down the limits.

2. APPROACHES

A number of approaches spring to mind :

Ray tracing
Ray invariants
Flux
WKB phase integral (for calculating mode number)
WKB approximation applied to horizontal propagation

Adiabatic approximation
Coupled-mode
Parabolic equation
Finite Element methodP
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These are by nomeans independent. and in fact there are many cross-relations. as has

already been noted by Weston [1]. items 2. 3. 4. 5. 6 are closely related and the adiabatic

approximation is. by definition. an absence of mode coupling. Some of the5e approaches are

in practise used solely as computer-intensive numerical methods. These include ray tracing.
coupled-mode solution. parabolic equation and finite elements. However. there is no
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fundamental distinction between the methods: each could be the basis of a computer-

intenstve model or a back-of-the-envelope calculation. in principle. Nevertheless in this

paper we are interested in miles of thumb and simple calculations since these lead ultimately

to reduced computation time. In particular there are various ways of looking at the adiabatic

approximation and ray invariants that lead to some insight into their validity. Some

comparisons will be made later between adiabatic normal mode (SUPERSNAP) and the

parabolic equation (IFD).

In what follows the working example is a duct bounded by reflecting sea surface and ocean

bottom. but as will be seen the arguments are just as applicable to retracting rays in a range-

varying duct. One can often treat the shape of the velocity contours in the same way as the

shape of the bottom boundary.

2.1 Ray invariants
Purely by considering the geometry of successive bottom reflected rays it is possible [Harrison

[2]] to show that in three dimensions with isovelociiy water but arbitrary bathymetry the ray

trajectory is governed by two ray invaflants. The first is

HsinB = Ho sin 8.. [1)

and states that as the water depth H decreases the ray's grazing angle 0 increases (regardless of

ray amnuth) keeping H sin 0 constant. The second is

oosesin¢=ooss.sin¢i. (2)

which states that the azimuth or heading of the ray o(measured relative to the downslope

direction] is dependent on the grazing angle so that rays tend to bend in the horizontal plane

towards deep water. Some interesting trajectories and horizontal shadow zones can be found

in various basin and trough shapes [Harrison I3. 4]).

In the case where the sea bed is a tilted plane forming a wedge it can be easily shown by

considering images [i.e. a kaleidoscope) that the invariants are exact if applied only at

reflection points. For other geometries. though. they are an approximation. and the

derivation in [2] suggests that for validity the first invariant requires

21cm Bros 4) << 1. (3)

in the up- or down-slope direction the my angle must be much bigger than the bottom slope 1.

in other directions the limit is set by the component of slope. which disappears in the across—

slope direction. Thus to first order we need

27 << 9 (4)

which might also be interpreted as the condition that the ray must continue to hit the

boundaries or ‘cycle'. An additional interpretation is found by dividing both sides by 2H.

Now the proportional change in depth with range H" dH/dr needs to be smaller than the

reciprocal of the cycle distance (2 H cot e)". or conversely the cycle distance needs to be

shorter than the characteristic 'scaie of variation' of the sea bed (Brekhovskikh [5] eq

[7.2.27‘”. Whatever the interpretation. it is clear that the adiabatic approximation works best

for steep rays - quite the opposite of the parabolic equation. whose paraxiai approximation

makes it best for small deviations from horizontal.
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An alternative derivation of eq (1] in two dimensions is that the change tn ray angle A9
produced by anadditional bottom reflection (Le. over a distance Ar which is equal to the cycle
distance rJ is just

A0 _ - 21 _ -2dH/dr

4‘ I: r: [5)

 

with dH/dr evaluated at the reflection point. Taylor expanding the bottom profile provides a
formula for the depth change between bounces AH -

dH (Fl-l
=— — éAH dr Ar+ drz A [2+ [6)

Substituting the first order term in eq [5) with rn = 2H cot 9 gives

A9 = - AH tan 9 /H
(7)

Assuming that there are many reflections so that At) —’ d0. AH —i dH this equation can be
integrated. and the result is eq ( 1). On the other hand. if the second order term is also included
there will be an extra term + rc d’H/dr2 on the right of eq (7). Therefore a condition for
validity of eq ( 1) is that this additional term must be negligible. and so there is an upper limit
on the bottom curvature given by

IdzH/dtzl << '27/r=| [8)

The magnitude of the armature must be less than the slope divided by the cycle distance. This
makes good intuitive sense and shows why eq (1) is exact for the wedge.

This condition can also be expressed in terms of the Fourier components of the reflecting
surface. If eq (6) is extended to include all Taylor temrs and then the individual terms are
Fourier transformed in range [denoted by a bar) the depth change due to the slope term needs
to be greater than the sum of the depth increments due to the higher derivatives. Thus

_ - 1m
lam 2" ,0.

“.1 1"

 

<<

  

Eur) um) I (9)

The condition clearly relaxes for absent high sanal frequencies [i.e. lTitKl —i 0) but otherwise
the condition is true provided

KAr - < 0.5 [10)

(since the series is equal to exp (iKAr)-l). This means that the undulation wavelength must be
at least 12 my cycle distances or altemativelythe undulatian correlation length must be twice
the cycle distance. I
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2.2 Mode coupling
The sound field can also be represented formally as a system of local normal modes that are

dependent on local water depth and sound speed profile. but the modal excitation at one range

must be dependent. in general. on the excitation of all other modes at neighbouring ranges

because the mode equations are coupled. in effect energy is scattered out of one mode into

another. The coupling coefficients (Rutherford and Hawker (6]) express the degree of modal

scattering. and Milder [7] has provided a criterion for the validity of the adiabatic

approximation. namely that one of the coefficients which is defined as

3....(r) = i: own (a wand: (11)

has an upper limit determined by a jump to an adjacent mode (Le. n = m + l). The criterion is

|B...,....I X...| << I: (12)

where x,“ is the ray cycle distance for the mth mode. This may be compared with the earlier

criterion for ray invariant validity by evaluating Em and X," for isovelocity water where.

with perfectly reflecting boundaries. the nonnaiised mode shapes are

q»... = (21W sin (um/H) (13)

inserting this in the earlier formda (with density p = l) and integrating for O to H we obtain

B... =————
H n+mn-m dr

-de
B .5__
ln.m+l Hdr (14)

Remembering that the cycle distance x“ = 2 H cot 9 the criterion is

tany << n time
2m (15)

Comparing this with eq (4) and ignoring the n/2 factor there is a discrepancy of m". For large

mode numbers (high frequencies. deep water) this condition is more stringent than the my

condition. In fact. bearing in mind that for the mth mode

ml: 2Hsin8 . (16)

film is just the angular separation of the modes (or M2H). So it is the mode angular

separation rather than the ray angle that should be bigger than the bottom slope.

Whether this criterion is correct or over-stringent depends on your view point. At high

frequencies a single ray is represented by many neighbouring modes with very similar

eigenvalues and similar numbers of zero crossings. indeed this spread of modes with its
slowly changing vertical wavelength is essential to provide the ray with a 'width' or vertical
localisation. The Milder/adiabatic criterion is the condition that there is no significant

jumping from one mode to adjacent ones. This makes sense if we are interested in detailed

Proc.l.O.A. Vol 13 Part 3 (1991)

69



  Proceedings of the Institute of Acoustics

 

  

   
RANGDDEPENDENT PROPAGATION

  

 

Interference patterns. but makes no sense if we are only interested in incoherent ray
intensities. because the original mode and the mode into which it scatters both constitute the
same ray. There are therefore two adiabatic crileria. One is the Milder stringent one; the
other the weaker one. more akin to the ray invariant criterion.

 

    

   

   

  
   

  
   

  

    

 

    

  

  

Remembering the earlier curvature criterion it is interesting to note that in the case of a
wedge shaped ocean the Cartesian mode solution is approximate and requires mode coupling.
However. in the polar coordinate system with axis along the wedge axis the solution is
separable with the vertical modes defined in terms of angle about that axis (Buckingham [7])
and no coupling or approximation is required. This is consistent with the ray invariant
becoming exact under these circumstances.

2.3 WK'B Phase Integral
The WKB approximation can be used as a means of calculating the normal modes provided the
sound speed changes slowly with depth. in a retracting duct the mode shape approximates to
Airy functions at the outer edges. and marrying these with the WKB middle portion results in
the 'Phase Integral (Morse and Feshback l8], 5).

(n + i)” = foal r) . mania

 

(17)

This formula is just a refractlng equivalent of eq (16) since k is the range and depth-
clependent wavenumber (k = 2n: f/c) and K is the horizontal wavenumber. The integral limits
are the upper and lower point where Klr] = k (z. r]. As the duct varies with range the nth mode
always fills out the space between these two points stretching and shrinking like a
concertina. The horizontal wavenumber K can be thought of as Kir) = kiz. r) cos 9 (z. r]. Here
the angle 0 is equivalent to a ray angle locally determined by Snell‘s law. but from one range
to the next the horizontal wavenumber is determined by the mode number n and the
variations of the sound speed k. Explicitly in terms of 8 and c eq [17) is

(n + t) = 2 fI? dz

According to the adiabatic approximation each mode exists and propagates independently of
the others. So for a particular mode we have n and f as constants which leaves
I (sin Ole) dz as constant. This is precisely Weston's invariant {9] which reduces to eq (1) for
isovelocity water.

[18)

2.4 Horizontal WKB expansion
Brekhovskikh [5| derives a formula for the adiabatic normal mode solution by use of the WKB
approximation in the horizontal.  
pa 1’) = (2M)“2 2Q,(z,,0)¢,.(z,. r) (K,.(r)r)'l’exp(i]; Kndr) ( )

n 19

Here the modes are evaluated at the source and receiver (depth and range] only. and the
intervening medium is only involved in the mode phases which are manifest in the WKB-type
phase term In an incoherent mode sum even this is absent and the solution is
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2 
In: r) = (2M) 24:: (z... o) (A? (2.. r) Km)"

[20)

The lack of dependence on the intervening medium is reminiscent of the ray invariants. In
fact it is easy to see that the mode shape at the source range obeys eq (17) (or (16)). There is a
similar relation at the receiver for the same mode number. and the consequence is the ray
invariant [eq [18) or (1)).

3. APPLICATIONS

 

As an illustration of the applicability of the adiabatic approximation some runs of
SUPERSNAP (adiabatic normal mode) are compared with IFD (parabolic equation) in troughs
of various depths containing isovelocity water overlying sediment of velocity 1665m/s (Fig
l).

The first is the control case with flat bottom. Figures 2 and 3 show extremely close agreement
between SUPERSNAP and SAFARI as one would hope. The slightly irregular beats confirm
the presence of three modes. However. lFD (Fig 4) has a clear range discrepancy increasing to
about one third of a beat at 500 wavelengths. The critical angle is 27° which is enough to
induce the well known ‘phase' or angle errors.

In contrast the SUPERSNAP and lFD plots for the shallow trough (Figs 5 and 6) agree
extremely well at all ranges. Although the critical angle is unchanged the ray anglesat the
deepest point where the water is 50% deeper are correspondingly reduced (according to the ray
invariant) to 17°. The fact that the two plots agree so well suggests that both are correct: the
anlglgs are within the IFD limit for most of the range. and the adiabatic approximation is still
vai .

Finally the SUPERSNAP and lFD plots for the deep trough (Figs 7 and 8) also agree extremely
well. Here the ray angle at the deepest point (100% depth increase) is 13°. Clearly IFD is
retreating from its limit. but more interestingly the stringent adiabatic approximation is
still holding as the water depth changes by a factor of two. The bottom slope is of order 1°
with 13° rays representingthe steepest of three modes.

4. CONCLUSIONS

A number of approaches to dealing with range-dependent environments have been briefly
examined emphasising the cross-relationships between ray invariants. mode coupling. the
adiabatic approximation and the WKB approximation, and in particular looking at their
respective criteria for validity. It appears that there are two adiabatic approximations - the
first being stringent. ensuring that detailed interference patterns are correct. and the second
being weaker. ensuflng only that mean intensities are correct. Some examples are discussed.
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