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1. INTRODUCTION

A satisfactory segmental duration model is a very important part of many speech applications Duration
serves as one of the prosodic cues which carria information about the underlying content ofa spoken phrase
or sentence. Duration is an important indicator in identifying segments of an utterance and thus plays a
large role in perceptual theory. Automatic speech recognition systems are improved by a good understanding
of durational phenomena. A durational model is also an essential part of any speech synthesis system. An
inadequate model will certainly degrade the quality of the output speech and will detract from the strengths
of a synthesis application.

The importance ofduration can be seen from the work of Klatt in [1]. He performed a number ofexperiments
to aid in determining the contributions of duration to perception. Klatt stated, “it may be hypothesized
that Segmental timing contributes to the perception: of constituent structure and phrasal and lexical strcs
patterns. in addition, the duration pattern reflects the speaker’s mood. speaking rate, and the locations of
emphasized materialt Finally, duration serves as a cue to the phonetic identity of many segment types." '
His experiments led to conclusions of duration playing a primary role as a perceptual cue in distinguishing
between long and short vowels. voiced and voiceless fricatives. phrase-final and non—final syllables, voiced
and voiceless postvalic consonants, stressed and unstressed vowels, and emphasis and non-emphasis.

As shown by Klatt, duration plays a very important role in perceptionI and thus, a good duration model
is essential for many speech applications. In this paper. we seek to develop such a model. Section 2 will
review prior work in this area. Section 3 will develop a model based on the TIMIT database with Section 4
reporting on results in comparison with other durational models. Section 5 will offerconclusions.

2. RELEVANT WORK

The duration of allophonic segments in spoken speech is influenced by a great number of interrelating fac-
tors. At a low levelt phonetic context may effect the duration of neighbouring allophones and lexical stress
may lead to longer durations. At a higher level, syntactic phenomena will contribute to prosodic bound-
arim within a sentence Further, semantic variables may also influence areas of emphasis and speaking rate.
In short, predicting the duration of allophonic segments requires accounting for a number of interrelating
factors. Modeling all these interrelating factors is a difficult taskand many different approaches have been
used. The two most common approaches are parametric and non—parametric models. Parametric models in-
clude additive-multiplicative constructs While non-parametric models include tabular approaches. Although
additire-multiplicative constructs give good insight. into the underlying processes governing duration, they
are hard to formulatcdue to the difficulty ofseparating the effects ofintcrrclating factors. Tabular approaches
are very useful for speech applications. but require large amounts of data for adequate estimation.

Speech synthesis has sen-ed as an important motivator for the development of durational models. Difl'er~
entiation must be made between producing an adequate model for synthesis and producing a model which

IKlatt. “Linguistic Uses of Segmental Duration in English: Acoustic and Perceptual Evidence". ngQIT
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accurately predicts actual durations of naturally spoken speech. A durations] model that is sufficient to
serve as a synthais model will not necessarily be a good predictor of actual speech. This is due to the fact
that a synthesis model hypothesises one set of durations for a given utterance. while, from natural speech. it
is known that a given sentence or phrase can be spoken in many acceptable ways. However. it is reasonable
to suppose that a model which accurately predicts the durations of natural speech will serve asa very good
synthais model,

An example of an early parametric durational model is given by Coker‘s rule based articulatory synthesis
system [2]. The durational model consisted of a set of rule combined with tabular data and arose from
the study of 20 minute passagm provided by three different speakers. Coker showed that vowel duration is
effected by stress and the identity of the consonants following the vowel. These efl'ects are summarised in
his vowel duration prediction equation

T = I". + sac2 + It'SC) (l)
where It]. lt'g. and If; are constants for a given vowel. 5 represents the effects of stress (including position
of vowel in word and sentence. word prominence, sentence strem. and speech rate), C is the factor for the
consonant following the vowel. and T is the estimated duration. The 20 minute passages were used to
produce tables of values for each of the variables in Equation 1. The developed model gave standard error
deviations for one of the speakers as ranging from llms to 29ms depending on the conditions Greater
detail of the vowel model and its development are found in [3]. The model’s consonant durations arose from
studis dscribed in [4]. The factors found to affect consonantal duration included context, content/function
difl'erence of parent word. position in relation to pauses. lexical stress, and position within the Word. Art
additive model for consonantal duration was developed where a base duration of a given consonant was
lengthened or shortened depending on the previously listed factors. Umeda reported that the model worked
well for a wide variety of consonants and conditions.

Perhaps the most well-known and succmsful parametric durational model comes from the work of Dennis
Klatt as used in the MlTalk Text-to-Speech System. Klatt‘s model is an additive-multiplicative model whose
rules are designed to match observed durations for a single speaker reading paragraph length material. The
model details are given in [5]. The following formula summarises the model.

(lA'HDl/R— MINDUR) it PRCNT
100 (2)

The duration (DUR) is calculated from modifications to an inherent (INHDUR) and minimum duration
(MINDUR) for a given allophone. A series of rules are applied which modify the PRCNT value used in
Equation 2. These rules are implemented in the following form

PRCNT = (PRCNT x PRCNTIVIOO (3)

where PRCNTI varies according to the rule being applied. These rules fall under the class of clause-
final lengthening. nonphrase-final shortening. nonword-final shortening. poly-syllabic shortening. noninitial-
consonant shortening. unstrased shortening, lengthening for emphasis. postvocalic context of vowels. short~
ening in clusters. and lengthening due to plosive aspiration (an additive rule]. For example. an emphasised
vowel is lengthened by PRCA’TI = 140. The developed model was used to predict segmental durations oi
new paragraphs from the same single speaker from which the model was developed. The standard deviation
was l7ms. ln [1]. experiments showed that only after changing segmental durations by more than 20ms were
unnatural tinting patterns reported. in other words. deviations less than 20ms should have little effect on
perception. lilatt used his' model to produce segmental durations for synthetic sentences. The sentences
were compared with synthesised sentences taking durations identical to a naturally spoken utterance. Per-
ceptual ratings of the model-derived duration sentences were very close to those taking natural durations.
thus showing that Klatt's model was very suitable for synthesis applications.

DUR: MINDUR+

Some recent. research has focused on trying to refine and improve Klatt’s formulation. For example, in [6]
various data analysis methods are underlakcn in order to find better functional combinations of the many
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interrelating factors which must be accounted for in an additivemultiplicative durational model. The work
has highlighted areas of predictive weakntsses in KIatt-type models. Klatt'a methodology is also being
adopted by pioneers of speech synthais in languages other than English. For example. in [7], 400 sentences
from a single male Moroccan speaker are analysed. The resultant model modifies the inherent duration of
a segment by a percentage obtained from applying rules. The developers claim the model can predict the
data set with astandard deviation ofjust under lfims.

Some durational model developers have chosen to avoid the dificulty of determining how multiple factors
interrelate by adopting a non-parametric, statistical approach. In this approach, statistical calculations are
made and the durations] model is formulated in either tabular or decision tree format. lfa large enough data
set is available and appropriate categorical parameters determined, then these models can be very powerful
and quite useful for synthesis systems. Such a model for Japanae was developed in [8] in which a 503
sentence database was analysed using control parameters which included segment position, part-of-speech,
context. accentednss and segment type. The resultant model yielded a 15.8ms standard deviation error
for vowels and was used to produced natural sounding speech in a synthesis system. A similar elfort for
French synthesis was performed as described in [9]. Here. 150 French sentences were analysed to determine
a tree structure model for durations. \‘arious phoneme and word level features were accounted for including
context, class. position in syllable and word, word nature and word length. Results of the model were used
in listening tests which showed that listeners equally preferred natural durations and modeled durations in
synthesised sentenca.

Another important statistical study which will be used for comparison purposes is found in [10]. In this
study Pitrelli and Zue examined data taken from the multiple speaker TlMlT database. The model was
based on examining 2520 sentences by 504 different speakers and was developed through an automatic
regrssion analysis of phoneme durations into a hierarchical discrete-variable tree. The regression modeling
procedure was supplied with a large collection of features on which to build the tree. This collection included
distinctive features of the current and immediate context phonems, gemination, position in syllable. lexical
stras, position of parent syllable in word, number of syllables in word, function/word classification, and
location in relation to the following pauses or syntactic boundaries. The modeling procedure automatically
selected the relevance of each feature. Performance of the rsultant model on 630 test sentences was given
as a standard deviation prediction error on average of 31ms for vowels and 26ms‘ for consonants. Although
these prediction errors seem large in comparison to work cited above, it must be noted that Pitrelli and Zue
were working in the more difiicult multiple-speaker domain.

3. PROPOSED MODEL

We propose to develop our model by studyingthe characteristics of the multiple speaker DARPA TlMIT
Acoustic-Phonetic Continuous Speech Corpus [ll]. Although a model based on data from multiple speakers
will contain both inter-speaker and intra-speaker variability, and hence. may have greater prediction error
than single speaker counterparts, such a model can be advantageous. Single speaker models may simulate the
characteristics ofthe given speaker but often show a decrease in performance when applied to novel speakers.
A multiple speaker domain can provide a better. more robust generalisation ofoverall durational trends. The
amount of data available for study in the TIMlT database is quite large (3696 training sentences from 432
speakers and 1344 test sentences front 168 other speakers) and we propose‘to develop a model through
statistical studies. The proposed model will explore phonemic durations in terms of the combination of the
variables conlext. stress, syllabic position, word position and phrase position.

Because segmental durations will vary with the speaking rate, it is desired to have anormalised duration
measure for comparison purposes. Thus, a measure of speaking rate for each speaker is needed, The TlMlT
corpus provides recordings of two identical sentences for each speaker. If it is assumed that the individual
speakers used a fairly consistent speaking rate acrofi all sentence recordings, then the two identical sentences
should yield some indication of speaking rate. Comparison of the duration of selected carrier phrases Within
the 2 recordings led to the establishment of a relative speaking rate measure. This speaking rate measure
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was used to normalise segmental durations for each speaker. The results presented in Section 4 utilise these

normalised durations and show improvement by approximately 1% over results using unnormalised durations,

The data for the durational model was obtained by analysing the training set sentences of the TIMIT

databases The analysis involved performing lexical strsa assignment with the use ofa small ruleset and

manual post-editing. Syllabic assignment was also performed through the use of letter-to-sound rules and

manual post-editing with the mistmce of a Webster's on-line dictionary. The results of the analysis associ-

ated a number of parameter values toeach phonemic realisation within the database These parameters are

shown in Figure l.
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Figure 1; List of parameters associated with each phonemic realisation

To simplify storage requirements. the values of the binary and trinary variables can be used to assign each

phonemic realisation to one of 36 legal position/lexical stress category types. Contextual information is also

stored in the form of the identity of the previous and [allowing phonemes. 51 difl'erent phonemes (including

silences) are possible. Analysis of the TlMlT database led to 132.658 allophonic training tokens (each

consisting of left phonemic context, central phonemic context. right phonemic context. position/lexical stress

category and normalised segmental duration measure). There exist 4.775.436 different possible combinations

of the token variables (5i x 5] x 51x 36= 4.775.436). Although many of these combinations will rarely, if

ever. be seen. the training data is still not extensive enough to realistically cover the remaining combinations.

Thus. simple tabulation as a means of estimating model parameters is not Wise. Further, a simple tabulation

will also ignore close relationships between phonetic classes and category divisions that can be helpful in

prediction. Thus. a predictive model which utilises a more complex search strategy was devised. ln additionI

an efiicicnt data structure is needed.

As noted above. not all of the 4.775.436 possible combinations are actually used. Thus, a direct implemen-

tation of a look-up table would be grossly inefiicient. In addition. the large amount of data necessitates a

storage structure which allows for ease in retrieval. For each central phoneme, the data is stored in a set of

nested binary trees as illustrated in Figure 2. A binary search through these trea allows BECGS to the dura-

tion prediction (and the number oftokens on which the prediction is based) for the desired position/lexical

strata category. right phonemic context. and left phonemic context used to reach the node. The structure is

advantageous in that search time is in the order of 0(logm) +O(logn) + Otlogn) (Where m = the number
of position/lexical stnss categories and n = the number of phonemic contexts). In addition. the structure

saves on storage as the l32.658 training tokens lead to a set of trees with a total of only 28,783 terminal
nodes.
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Figure 2: Duration Data Structure Tree

As mentioned above, a simple tabulation algorithm may ignore close relationships between phonetic claasa
and position/lexical stress categories. Such an algorithm may also perform poorly when faced with desired
conditions which do not exactly match any item pram in the data table. To improve on these weaknessa,
an improved search algorithm was devised. This algorithm predicts segmental durations given a condition set
( the segment identity, left and right context, and position/lexical stress category information). Prediction
durations for test examples are found by searching through the data structure for conditions matching the
test set. If the tree does not contain exact matching conditions, the scope of the search is broadened by
exploiting the relationships in phonetic class and position/lexical stress categories. Broadening the scope
of a search involva looking at examples whose conditions are of a similar class. This require defining what
is meant by ‘similar class‘. In the case of the left and right phonemes, similar class refers to other phonemm
which fall in the same phonemic alas. The phonemic classes are: vowels. closures, bursts, nasals, fricatives,
aflricates, glides, liquids and silence. In the case of the position/lexical stress category. similar class is
defined by comparing the Hamming distance (from the binary and trinary values given in Figure 1) between
categories Categoria Whose Hamming distances differ by only 1 are considered to be of the same category
clafi.

The search procedure begins by looking for an exact match for the given condition set. if the search procedure
fails to find an exact match, it will broaden the search by gathering information for examples in which 2
of the 3 parameters match exactly and third parameter is of the same class of the desired parameter. In
addition, exact matches which have too few training tokens (< 5) to yield an unbiased estimate. are ignored
in favour ofa broader search. For example. if the test condition set for an /iy/ in the context of [n/
and /f/ being in an unstressed syllable medial position is not. found in the tree, a search will be made to
determine closer matching information. In this case. either the /n/ can be replaced by another nasal, the
/l'/ by another fricative, or the sentential position by strased syllable medial examples. If this search yields
multiple matrJIes, a weighted average is used to obtain the predicted duration. If this wider search fails to
gather enough information on which to make a prediction, an even broader search is used. Figure 3 gives
the matching criteria in the scope of search is broadened. Basing a statistical prediction on only a few
training samples is unWise. Thus, in all search levels, an estimate based on less titan 5 training tolrens will
be rejected in favour of a broader search. Weighted averages of all tokens matching the conditions are used
to generate the final predictions. in this way, predictions should better reflect general trends as opposed to
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‘ 4. EXPERIMENTS AND RESULTS

The search algorithm described above was used as a segmental duration predictor on training and test sets.
The training set consisted of the 182,658 tokens used to build the data tree. The test set was taken from
additional TIMIT sentences spoken by diil‘erent speakers than those who appeared in the training set. In
addition, the texts of the sentences spoken in the test set do not appear in the training set. and thus. serve
as a good mewure of the predictor‘s ability to generalise to novel situations. Figure 4 shows the performance
of the predictor on the training and test data broken down into phonetic classes. The lower prediction error
on the training set reflects the bias of using the same data to both build and maize predictions. The test set
error is a more realistic measure of the algorithm's performance. The percentage error (percent deviation
from the actual phoneme duration) for the model prediction was 31.4% on the training data and 35.1% on
the test data.

In order to gauge the performance of the predictorI the results must becompared to other durational models.
Performance quotes given in Section 2 are difiicult to compare to because they are mostly given for much
smaller tasks and for single speakers. A more valid comparison would come from looking at the results of a
different predictor on the same data. With the use of the M lTallt [1?] synthesis system, which incorporates the
Klatt durational rules. the predicted durations for a phonetic segment could be gathered. Because MlTallt
is implemented as a modular system, data files containing the actual spoken phonemes of the candidate
sentences. and other information required by MITalk. could be prepared. Thae data files could then be
given to the PROSOD module which predicted durations. Because MITalk is designed to model a single
speaker. all results were compared With rate normalised durations. The MlTalk rules predicted the training
set with 40.7% error and the mt set with 40.4% error, a full 5% higher than our search algorithm predicted.
Figure 5 shows a comparison of prediction performances on the (at sets. Each group of bars compares
the performance of the predictors on a phonetic class. Within each group of bars. the white bar gives the
new model performance and the horizontally hatched bar gives the Klatt performance (the solid bar will be
explained in the following paragraph). in each category. thenew model predictor gave significantly better
segmental duration predictions than the Klatt rules.

it is also of interest to compare the performance of our new predictor model to another predictive model.
Pitrelli and Zue [10] developed such a predictor with the object of applying the model to recognition tasks, l
Data for their hierarchical model was also taken from the TlMlT database although the division into training
and test sets was not equivalent to the division used in our example. It is also unclear as to whether Pitrelli's
test set contained only unseen sentence texts or whelhcr the test set contained rcpcnlEd texts but by difl'crent
speakers. Results from Fitrelli were quoted as a root-mean-square prediction error of approximately aims
for vowels and 26ms for consonants for test sci prediction. Details oftest set prediction of phonemic classes
was given in the original paper in the form of a bar graph. Estimates from the bar graph are reproduced as
the solid bars in Figure 5. Our model and the Pitrelli model perform roughly the same with vowel prediction
'(both approximater films), however. our model performs significantly better over the remaining clam.
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Over all the consonants, our modd performed about 4m: better than Piuelli‘a model (26mg to 22:11:). Some
of this improvement can be attributed to our algorithm'l ability to utilise varying degrees of search scope.
and thus multiple pieces ofinformation. to obtain a prediction; this is in contrast to a hierarchical tree model
whit-J: will only use information from a single terminai node to rank: its prediction. in addition, the new
model is advantageous in that it utilise less features than the Pitrelli model and thus require less efion. in
gathering the model parameters

5. CONCLUSIONS

The extensive study of segmental durations in the multipleespeaker TlMlT database has led to the deveiop-
menl. ofa new durationa] mode]. This model predicts the durations of naturally spoken speech significantly
better than the Klatt durational model implemented in the MITaJl: synthesis system. Further, the new
durational model also performs better than the Pitrelli duratioriai predictor designed expmsly for use in
a multiple speaker domain. Thus. the developed model should be sufficient not only for use in synthesis
applirationsi but also in wider ranging speech technology tasks.
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