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1. INTRODUCTION

A satisfactory segmental duration model is a very important part of many speech applications. Duration
serves as one of the prosodic cues which carries information about the underlying content of a spoken phrase
or senience. Duration is an important indicator in identifying segments of an utterance and thus plays a
large role in perceptual theory. Automatic speech recognition systems are improved by a good understanding
of durational phenomena. A durational model is also an essential part of any speech synthesis system. An
inadequate model will certainly degrade the quality of the output speech and will detract from the strengths
of a synthesis application.

The importance of duration can be seen from the work of Klatt in [1). He performed & number of experiments
to aid in determining the contributions of duration 1o perception. Klatt stated, *it may be hypothesized
that segmental timing contributes to the perception of constituent structure and phrasal and lexical stress
patterns. In addition, the duration patiern reflects the speaker’s mood, speaking rate, and the locations of
emphasized material. Finally, duration serves as a cue to the phonetic identity of many segment types.” !
His experiments led to conclusions of duration playing & primary role as a perceptual cue in distinguishing
between long and shoru vowels, voiced and voiceless fricatives, phrase-final and non-final syllables, voiced
and voiceless postvalic consonants, stressed and unstressed vowels, and emphasis and non-emphasis,

As shown by Klait, duration plays a very important role in perception, and thug, & good duration model
is essential for many speech applications. In this paper, we seek to develop such & model. Section 2 will
review prior work in this area. Section 3 will develop a model based on the TIMIT database with Section 4
reporting on results in comparison with other durational models. Section 5 will offer conclusions.

2. RELEVANT WORK

The duration of allophonic segments in spoken speech is influenced by a great number of interrelating fac-
tors. At a low level. phonetic context may eflect the duration of neighbouring allophones and lexical stress
may lead 1o longer durations. AL a higher level, syntactic phenomena will contribute 10 prosodic bound-
aries within a sentence. Further, semantic variables may also influence areas of emphasis and speaking rate.
In short, predicting the duration of allophonic segments requires accounting for & number of interrelating
factors. Modeling all these interrelating factors is a difficult task and many different approaches have been
used. The two most common approaches are parametric and non-parametric models. Parametric models in-
clude additive-multiplicative constructs while non-parametric models include tabular approaches. Although
additive-multiplicative constructs give good insight into the underlyving processes governing duration, they
are hard to formulate due to the difficuliy of separating the eflects of interrelating factors. Tabular approaches
are very useful for speech applications, but require large amounts of data for adequate estimation,

Speech synthesis has served as an important motivator for the development of durational models. Differ-
entiation must be made between producing an adequate model for synthesis and producing a model which

'Klati, “Linguistic Uses of Segmental Duratian in English: Acoustie and Perceptual Evidence™. pg.1217
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accurately predicts actual durations of naturally spoken speech. A durational model that is sufficient to
serve as a synthesis model will not necessarily be a good predictor of actual speech. This is due to the fact
that a synthesis model hypothesises one set of durations for a given utterance, while, from natural speech, it
is known that a given sentence or phrase can be spoken in many acceptable ways. However, it is reasonable
Lo suppose that a model which accurately predicts the durations of natural speech will serve as a very good
synthesis model.

An example of an early parametric durational model is given by Coker’s rule based articulatory synthesia 1
system [2]. The durational model consisted of a set of rules combined with tabular data and arcse from
the study of 20 minute passages provided by three different speakers. Coker showed that vowel duration is
effected by stress and the identity of the consonants following the vowel. These effects are summarised in
his vowel duration prediction equation

T = K + $(K2 + KsC) (1)

where K, K3, and A3 are constants for a given vowel, § represents the effects of stress (including position
of vowel in word and sentence, word prominence, sentence stress, and speech rate), C is the factor for the
cansonant following the vowel, and T is the estimated duration. The 20 minute passages were used to
produce tables of values for each of the variables in Equation 1. The developed model gave standard error
deviations for one of the speakers as ranging from 11ms to 29ms depending on the conditions. Greater
detail of the vowel mode! and its development are found in [3]. The model’s consonant durations arose from
studies described in [4]. The factors found to affect consonantal duration included context, content/function
difference of parent word, position in relation to pauses, lexical stress, and position within the word. An
additive model for consonantal duration was developed where a base duration of & given consonant was
lengthened or shortened depending on the previously listed faciors. Umeda reported that the model worked
well for a wide variety of consonants and conditions.

Perhaps the most well-known and successful parametric durational mode) comes from the work of Dennis
Klatt as used in the MITalk Text-to-Speech System. Klatt's model is an additive-multiplicative model whose
rules are designed to match observed durations for a single speaker reading paragraph length material. The
madel details are given in [5). The following formula summarises the model.

(INHDUR - MINDUR)x PRCNT
100 @

The duration (DU R) is calculated from modifications to an inherent (JNH DU R) and minimum duration
(MINDUR) for a given allophone. A series of rules are applied which modifv the PRCNT value used in
Equation 2. These rules are implemented in the following form

PRCNT = (PRCNT x PRCNT1)/100 (3)

DUR=MINDUR +

where PRCNTL varies according to the rule being applied. These rules fall under the classes of clause-
final lengthening, nonphrese-final shortening, nonword-final shortening, polysyllabic shortening. noninitial-
consonant shortening, unstressed shortening, lengthening for emphasis, postvocalic context of vowels, short.
ening in clusters, and lengihening due to plosive aspiration (an additive rule). For example, an emnphasised
vowel is lengihened by PRCNTT = 140). The developed mode! was used to predict segmental durations of
new paragraphs from the same single speaker from which the model was developed. The standard deviation ‘
was [7ms. In [1], experiments showed that only after changing scgmental durations by more than 20ms were
unnatural tinting patterns reported. In other words, deviations less than 20ms should have little effect on
perception. Klatt used his model to produce segmental durations for svnllietic sentences. The sentences
were compared with synthesised sentences 1aking durations identical to a naturally spoken utterance. Per-
ceptual ratings of the model-derived duration sentences were very close to those taking natural durations,
thus showing that Klau's model was very suitable for synthesis applications.

Some recent. research has focused on Lrying to refine and improve Klait’s formulation. For example, in [6]
various data analysis methods are undertaken in order to find better funclional combinations of the many

i
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interrelating factora which must be accounted for in an additive-multiplicative durational model. The work
has highiighted areas of predictive weaknesses in Klatt-type models. Klatt's methodology is also being
adapted by pioneers of speech synthesis in languages other than English. For example, in [7], 400 sentences
from a single male Moroccan speaker are analysed. The resultant model modifies the inherent duration of
a segment by a percentage obtained from applying rules. The developers claim the model can predict the
data sel with a standard deviation of just under 16ms.

Some durational madel developers have chosen to avoid the difficulty of determining how multiple factors
interrelate by adoptling a non-parametric, statistical approach. In this approach, statistical calculations are
made and the durational model is formulated in either tabular or decision tree format. If a large enough data
set is available and appropriate categorical parameters determined, then these models can be very powerful
and quite useful for synthesis systems. Such a model for Japanese was developed in [8] in which a 503
senlence dalabase was analysed using control parameters which included segment position, part-of-speech,
context, accentedness and segment type. The resultant model yielded a 15.8ms standard deviation error
for vawels and was used to produced natural sounding speech in a synthesis system. A similar effort for
French synthesis was performed as described in [9]. Here, 150 French sentences were analysed to determine
a tree siructure model for durations. Various phoneme and word level features were accounted for including
context, class, position in syllable and word, word nature and word length. Results of the model were used
in listening tests which showed that listeners equally preferred natural durations and modeled durations in
svnthesised sentences.

Another important statistical study which wiil be used for comparison purposes is found in [10]. In this
study Pitrelli and Zue examined data taken from the multiple speaker TIMIT database. The model was
based on examining 2520 sentences by 504 different speakers and was developed through an automatic
regression analysis of phoneme durations into a hierarchical diserete-vatiable tree. The regression modeling
procedure was supplied with a large collection of features on which Lo build the tree. This collection included
distinctive features of the eurrent and immediate context phonemes, gemination, position in syllable, lexical
stress, position of parent syllable in word, number of syllables in word, function/word classification, and
location in relation to the following pauses or syntactic boundaries. The modeling procedure automatically
selected the relevance of each feature. Performance of the resultant model on 630 test sentences was given
a5 a standard deviation prediction error on average of 31ms for vowels and 26ms for consonants. Although
these prediction errors seem large in comparison to work cited above, it must be noted that Pitrelli and Zue
were working in the more difficult multiple-speaker domain.

3. PROPOSED MODEL

We propose to develop our model by studying the characteristics of the multiple speaker DARPA TIMIT
Acoustic-Phonetic Continuous Speech Corpus [11]. Although a model based on data from multiple speakers
will contain both inter-speaker and intra-speaker variability, and hence, may have greater prediction error
than single speaker counterparts, such a mode! can be advantageous. Single speaker models may simulate the
characteristics of the given speaker but ofien show a decrease in performance when applied to novel speakers.
A multiple speaker domain can provide a better, more robust generalisation of overal! durational trends. The
amount of data available for study in the TIMIT database is quite large (3696 training sentences from 432
speakers and 1344 test sentences from 163 other speakers) and we propose 1o develop a model through
slatistical studies. The proposed modet will explore phonemic durations in terms of the combination of the
variables conmext, siress, syllabic position, word position and phrase position.

Because segmental duravions will vary with the speaking rate, it is desired 1o have a normalised duration
measure for comparison purposes. Thus, a measure of speaking rate for each speaker is needed. The TIMIT
corpus provides recordings of two identical sentences for each speaker. If it is assumed that the individual
speakers used a fairly consistent speaking rate across all sentence recordings, then the two identical sentences
should yield some indication of speaking rate. Comparison of the duration of selecied carrier phrases within
the 2 recordings led to the establishment of a relative speaking rate measure. This speaking rate measure
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was used to normalise segmental durations for each speaker. ‘The results presented in Section 4 utilise these
normalised durations and show improvement by approximately 1% over resulis using unnormalised durations.

The data for the durational model was obtained by analysing the training set seniences of the TIMIT
database. The analysis involved performing lexical stress assignment with the use of a small rule-set and
manual post-editing. Syllabic assignment was also performed through the use of letter-to-sound rules and
manual post-editing with the assistance of a Webster's on-line dictionary. The results of the analysis sssoci-
ated a number of parameter values lo each phonemic realisation within the database. These parameters are
shown in Figure 1.

Binory valued variables:
Phrese Initial
Fhrase Medinl
Phrase Final
Word Initinl
Word Medial
Word Finnl
Word Overiap*
Phrase Lnitinl
Phrase Medinl
10) Phrase Finel
*As in o single [5] used in “her red..”
Trinary valued varinble (0, 1, or 2):
11) Lexienl Streas
Rent valued variable:
12) Measured durstion

5 00 1 ) N Bl R

Figure 1z List of parameters associated with each phonemic realisation

To simplify storage requirements, the values of {he binary and trinary variables can be used to assign each
phonemic realisation to one of 36 legal position /lexical stress category types. Contextual information is also
stored in the form of the identity of the previous and following phonemes. 51 different phonemes (including
silences) are possible. Analysis of the TIMIT database led to 132,658 allophonic training tokena (each
consisting of left phonemic context, central phonemic context, right phonemic context, position/lexical stress
category and normalised segmental duration measure). There exist 4,775,436 different possible combinations
of the token variables (51 x 51 x 51 x 36 = 4,775,436). Although many of these combinations will rarely, if
ever, be seen. the training data is still not extensive enough to realistically cover the remaining combinations.
Thus, simple tabulation as a means of estimating model parameters is ol wise. Further, a simple tabulation
will also ignore close relationships between phonetic classes and category divisions that can be helpful in
prediction. Thus, a predictive model which utilises a more complex seatch strategy was devised. In addition,
an efficient data structure is needed.

As noted above, not all of the 4,775,436 possible combinations are actually used. Thus, a direct implemen-
ration of a look-up table would be grossly inefficient. In addition, the large amount of data necessitates a
storage struclure which allows for ease in retrieval. For each central phoneme, the data is stored in a set of
nested binary trees as illustrated in Figure 2. A binary search through these trees allows aceess to the dura-
tion prediction (and the number of 1okens on which the prediction is based) for the desired position/lexical
stress category, right phonemit context, and left phonemic context used 1o reach the node. The structure is
advantageous in that search time is in the order of O{logm) + O(logn) + Q(logn} (where m = the number
of position/lexical siress categories and # = the number of phonemic contexts). In addition, the structure
saves on storage as the 132,658 training tokens lead 10 a set of trees with a total of only 28,783 terminal
nodes.
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Figure 2: Duration Data Structure Tree

As mentioned above, a simple tabulation algorithm may ignore close relationships between phonetic classes
and position/lexical stress categories. Such an algorithm may also perform poorly when faced with desired
conditions which do not exactly match any item present in the data table. To improve on these weaknesses,
an improved search algorithm was devised. This algorithm predicts segmental durations given a condition set
( the segment identity, left and right context, and position/lexical stress category information). Prediction
durations for test examples are found by searching through the data structure for conditions matching the
test set. If the tree does not contain exact matching conditions, the scope of the search is broadened by
exploiting the relationships in phonetic classes and position/lexical stress categories. Broadening the scope
of a search involves looking at examples whose conditions are of a similar class. This requires defining what
is meant by ‘similar class”. In the case of the left and right phonemes, similar class refers to other phonemes
which fall in the same phonemic class. The phonemic classes are: vowels, closures, bursts, nasals, fricatives,
affricates, glides, liquids and silences. In the case of the position/lexical stress category, similar class is
defined by comparing the Hamming distance (from the binary and trinary values given in Figure 1) between
categories. Categories whose Hamming distances differ by only 1 are considered to be of the same category

class.

The search procedure begins by looking for an exact match for the given condition set. If the search procedure
fails to find an exact match, it will broaden the search by gathering information for examples in which 2
of the 3 parameters match exactly and third parameter is of the same class of the desired parameter. In
addition, exact matches which have tao few training tokens (< 5) to yield an unbiased estimate, are ignored
in favour of a broader search. For example, il the test condition set for an /iy/ in the context of /n/
and /f/ being in an unstressed syilable medial position is not found in the tree, a search will be made to
determine closely matching information. In this case, either the /n/ can be replaced by another nasal, the
/i/ by another fricative, or the sentential position by stressed syllable medial examples. If this search yields
multiple matches, a weighted average is used to obtain the predicted duration. If this wider search fails to
gather enough information ou which to make a prediction, an even broader search is used. Figure 3 gives
the matching crileria as the scope of search is broadened. Basing a statistical prediction on only a few
training samples is unwise. Thus, in all search levels, an estimate based on less than 5 training tokens will
be rejected in favour of & broader search. Weighted averages of all tokens matching the conditions are used
Lo generate the final predictions. In this way, predictions should better reflect general trends as opposed to
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Semrch Level  Matching Criteria

1 Exnct match of 3 given purnmeters

2 Exnct match of 2 given parsmeters, ckass match of remaining parameter

-] Exnact match of 1 parameter, clasa match of 2 other purameters

4 Cizass match of sll 3 parameters )

] [Exnct mateh of 2 given parameLers, any example far remaining parameter

1 Exnact match of 1 parameter, class match of 1 parameter, any example of 1 parumeter
7 Class match of 3 par any ple for ining parameter

-] Exact match of 1 parameter, any ple far ining 2 par

a Class match of 1 parameter, nny ple tor ining 2 par

10 Any ple of 3 par ere (1.¢. ge lar ph

Figure 3: Algorithmic Search Levels

the characteristics of a few examples.

4. EXPERIMENTS AND RESULTS

The search algorithm described above was used as a segmental duration predictor on training and test sets.
The training set consisted of the 132,658 1okens used to build the data tree. The lest set was taken from
additional TIMIT sentences spoken by different speakers than those who appeared in the training set. In
addilion, the texts of the sentences spoken in the test set do not appear in the training set, and thus, serve
as a good meagure of the predictor’s ability to generalise Lo novel situations. Figure 4 shows the performance
of the predictor on the training and test data broken down into phonetic classes. The lower prediction error
on the training set reflects the bias of using the same data to both build and make predictions, The test set
error is & more realistic measure of the algorithm’s performance. The percentage error (percent deviation
from the actual phoneme duration} for the model prediction was 31.4% on the training data and 35.1% on
the test data.

In order to gauge the performance of the predictor, the results must be compared to other durational models.
Performance quotes given in Section 2 are difficult to compare to because they are mostly given for much
smaller tasks and for single speakers. A more valid comparison would come from looking at the resulis of a
different predictor on the same data. With the use of the MITalk [12] synthesis system, which incorporates the
Klatt durational rules, the predicted durations for a phonetic segment could be gathered. Because MITalk
is implemented as a modular system, data files containing the actual spoken phonemes of the candidate
sentences, and other information required by MITalk, could be prepared. These data files ¢could then be
given to the PROSOD module which predicted durations. Because MITalk is designed to model a single
speaker, all results were compared with rate normalised durations. The M1Talk rules predicted the training
set with 40.7% error and the test set with 40.4% error, a full 5% higher than our search algorithm predicted.
Figure 5 shows a comparison of prediction performances on the test sets. Each group of bars compares
the performance of the predictors on a phonetic class. Within each group of bars, the white bar gives the
new model performance and the horizontally hatched bar gives the Klatt performance (the solid bar will be
explained in the following paragraph). In each category, the new model predictor gave significantly better
segmensal duration predictions than the Klatt rules.

It is also of interest 10 compare the performance of our new predictor model Lo another predictive madel.
Pitrelli and Zue {10] developed such a predicior with the object of applying the model to recognition tasks.
Data for their hierarchical model was also taken from the TIMIT database although the division inte training
and test sets was not equivalent 1o the division used in our example. It is also unclear as Lo whether Pitrelli’s
test set contained only unseen sentence texts or whether the test set contained repeated texts but by different
speakers. Results from Pitrelli were quoted as a root-mean-square prediction error of approximately 31ms
for vowels and 26ms for consonants for test set prediction. Details of test set prediction of phonemic classes
was given in the original paper in the form of a bar graph. Estimates from the bar graph are reproduced as
the solid bars in Figure 5. Our model and the Pitrelli model perform roughly the same with vowel prediction
‘(both approximately 31ms), however, our model performs significantly better over the remaining classes.
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Figure 5: Comparison of tree model vs. Klatt rules vs. Pitrelli and Zue model

Proc.l.O.A. Vol 14 Part 6 (1992)

501



Proceedings of the Institute of Acoustics

A MULTIPLE SPEAKER PHONEME DURATION MODEL

Over all the consonants, our model performed about 4ms better than Pitrelli’s model (26ms to 22ms). Some
of this improvement can be attributed to our algorithm’s ability to utilise varying degrees of search scope,
and thus multiple pieces of information, to obtain a prediction; this is in contrast to a hierarchical tree model
which will only use information from a single terminal node to make its prediction. In addition, the new
model is advantageous in that it utilises less features than the Pitrelli model and thus requires less effort in
gathering the model parameters.

5. CONCLUSIONS

The extensive study of segmental durations in the multiple-speaker TIMIT database has led to the develop-
ment of a new durational model. This model predicts the durations of naturally spoken speech significantly
better than the Klatt durational model implemented in the MITalk synthesis system. Further, the new
durational model also performs better than the Pitrelli durational predictor designed expressly for use in
a multiple speaker domain. Thus, the developed model should be sufficient not only for use in synthesis
applications, but also in wider ranging speech technology tasks.
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