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A numerical study is carried out to determine the linear optimal response of an axisymmetric pre-
mixed M-flame to periodic forcing. Direct numerical simulations are undertaken on the reactive
Navier-Stokes equations. By solving these equations with selective frequency damping, we can
obtain steady M-flame base flows about which our linear analysis is performed. The linear and
adjoint operators are obtained by modular automatic differentiation of the full non-linear code.
These operators enable us to find the optimal harmonic forcing and its corresponding output by
performing a singular value decomposition on the resolvent.

As each singular value decomposition is computationally expensive, we seek to extract a max-
imum amount of information from a single decomposition. Using a first-order accurate relation
between the change in a singular value and a parametric change in the resolvent matrix, we easily
and efficiently obtain sensitivities of the singular values with respect to forcing frequency and
Reynolds numbers while avoiding additional singular value calculations.

Using these tools, we carry out an input-output analysis for the response of an M-flame to
harmonic forcing. Parametric sensitivities for the optimal gains are also determined for variations
in the mean flow swirl, with special emphasis on frequency shifts for the optimal amplification
rates.
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1. Introduction

Combustion instabilities are a large problem in industry today, affecting gas turbines[1]], propul-
sion systems[2] and many other applications. Often the type of combustion that would provide rea-
sonable stability such as diffusion-flame combustors produce unacceptable levels of NOx leading to
the development of other techniques such as lean premixed combustors (LPCs) which significantly
reduce NOx levels. Unfortunately LPCs are particularly susceptible to thermo-acoustic instabilities
meaning that these combustors must be operated below their true operational efficiency or be at risk
of failure.

Even though combustion instabilities can be explained simply as the resonance between unsteady
heat release and pressure perturbations via the Rayleigh criterion [3], the mechanisms leading to this
resonance are often unclear. A lack of understanding of these mechanisms can lead to devices being
designed and built susceptible to instability, which must be managed using control techniques. In both
cases, the design or control of a combustion system needs a detailed understanding of the governing
instabilities.

Swirl injectors are common in combustion, hence much research has been undertaken in under-
standing the effect of swirl, some of which has been collected into a review article by Huang and
Yang[4]. In particular a numerical study using LES techniques has been used to study the effect
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of swirl on combustion dynamics [S]]. It was found that increasing the inlet swirl creates a vortex-
breakdown-induced central toroidal recirculation zone (CTRZ) providing a flame stabilisation mech-
anism. This stabilisation phenomenon explains why most LPC turbines utilise swirl injectors.

We intend to carry out a study of the linear response of a flame to harmonic forcing. This may
seem reminiscent of a transfer function analysis, however we do not restrict ourselves to a point-
wise forcing or response. Instead we look at how the resolvent operator maps global structures to
global structures. Moreover, we do not specify the structure for the forcing or the output (except
by a windowing in space) but allow the dynamics to choose the forcing that produces the maximum
response possible. This allows us to carry out an input-output analysis to identify the responsive parts
of the equations that lead to amplification and to see what flow dynamics are efficiently magnified. In
particular, the effect of mean flow swirl will be studied, allowing us to quantify how increasing the
mean flow swirl changes the dynamics, leading to stabilisation.

Our proposed study uses a reactive DNS solver [6] that is efficiently and accurately linearised
[7] to provide the linear operator together with its adjoint. Using the linearised equations, we can
probe directly into the linear response of our stabilised base-flow which is an M-flame at a given swirl
number. The optimal forcing that provides the largest growth in the forced response is found for a
variety of forcing frequencies allowing us to see which frequencies the flame is susceptible to. In
addition, sensitivity of the growth rates can be evaluated with respect to flow parameters, providing
insight into how the parameters affect instabilities. Similar studies have been conducted to evaluate
the noise generated by an aerofoil [8] and to provide insight into pressure generation from a non-
swirled premixed conical flame [9].

2. Governing Equations

The reactive Navier-Stokes equations [10] are given in terms of the non-dimensional Reynolds
(Re), Prandtl (Pr), Lewis (Le) and Mach (Ma) numbers as
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where ~ is the specific heat ratio. Equations (I)), and are the common compressible Navier-
Stokes equations for the density p, pressure P, temperature 7', energy ' and velocity u with the stress
tensor denoted as 7. The energy equation (3]) has an added term Q’wr to account for energy released
during chemical reactions with Q' being the heat release per unit mass of fuel. Equation is the
species equation for the fuel mass fraction Y.

The non-dimensionalisation used is
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where hats denote the corresponding dimensional variables. The reference scales used correspond
to the values for the fresh gas in the inlet tube, with the length scale L being the inlet tube radius
r1 shown in figure (I)) and the reference velocity U being the injection velocity of the fresh gas at
r = —10. Y, represents the fuel mass fraction in the fresh gases which ensures the range of the
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variable Y from 1 in the fresh gases to O in the burnt gases. The values for the reference density,
dynamic viscosity and specific heat capacity are taken to correspond to the values that air attains at
our reference temperature of 7 = 300K.

A simplified one-step, irreversible chemical model [11]] between two species (fuel and air) is used.
By considering a very lean configuration (i.e. the equivalence ratio ¢ < 1) we only need the fuel
mass fraction to calculate the reaction rate wy in the species and energy equations. This rate is given

by an Arrhenius law
wf = Ap}/OY eXp(_Ta/T)v (5

where A is a constant and 7T}, is the activation temperature. We consider the total non-chemical energy
which can be broken down into the sum of the kinetic and sensible energies
1 P
EF=-u-u+——rm.
2 ply—1)
In order to write the energy in the form given by (6) we assumed equal and constant heat capacities
for all species and made use of the non-dimensionalised state equation for a perfect gas
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A further assumption is that the diffusion coefficients of both species are equal which allows us to use
Fick’s law to simply the species equation to ().

For this study we will be using Re = 1461 (based on L and U), Pr = 0.72,Le = 1, v = 1.4
and Ma = 0.1. These parameters were chosen to be as realistic as possible whilst keeping in mind
that an increased Reynolds number or decreased Mach number will cause a DNS approach to be too
computationally expensive. The biggest trade off is that our parameters make the velocity scale U
large at 35ms~! and the length scale L small at 0.64mm. In order to accurately represent the flame
under these conditions we set the Arrhenius pre-factor to 60368.2, the heat release ()’ to 54664.9, the
initial fuel mass fraction Yj to 0.025 and the non-dimensional activation temperature to 40. This gives
a flame speed of 2.9ms™! and a flame width of 0.007mm (= 1% of the injection tube radius).

3. Numerical Code

The numerical code is a reactive axisymmetric DNS solver called CNS2D (Combustion Navier-
Stokes 2D) that has been used in previous studies [6]. External libraries PETSc [12] and SLEPc [[13]]
are used extensively for parallelisation.

An annular inlet tube provides fresh gases to a central cylindrical burning area that is open at its
numerical boundary. Throughout this paper we are taking the radius of the central rod o = 3/11

LODI Outflow

Region 1

r
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-10 1

Figure 1: Numerical Domain

and the radius of the inlet tube ; = 1. The rod protrudes into region 1 by an amount of z; = 2/11.
Characteristic (LODI) boundary conditions are used both at the inlet in region O and at the outlet in
region 1[14]. The inflow boundary conditions are used to specify the inlet mass fraction, temperature
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and velocity profile, whereas the outflow conditions are used to make sure we have no artificial wave
reflection ensuring an open boundary configuration.

As we are interested in investigating mechanisms leading to acoustics and their production, it is
of paramount importance that we treat waves carefully. To this end derivatives are taken using high
order, low dissipative and low dispersive schemes [15]. In addition to the outflow conditions we
further ensure that outgoing waves are not reflected by coarsening the grid far from the flame region
where chemical reactions are taking place and a fine mesh is needed for proper treatment.

Due to the nature of our geometry, cylindrical polar coordinates (z, r, §) are used with the velocity
defined as u = ue, + ve, + wey. In this coordinate system the Navier-Stokes equations are solved in
their conservative form

oq
i N(q), 8)

where A is the non-linear Navier-Stokes operator and the state q = (p, pu, pv, pw, pE, pY').

The non-linear solver solves the axisymmetric equation i.e. Jp = 0. Using this non-linear
solver we are able to find axisymmetric base-flows qo where N'(qg) = 0, using selective frequency
damping [16] to force the state to a steady solution despite the flow being convectively unstable. Once
a base-flow is found we can investigate the linear dynamics by linearising /'(q) about the base-flow
to find the linear operator. We can write the linear equations of motion as

oq N ,
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A

The linear operator A and its adjoint A are both found through automatic differentiation of the
non-linear routines which are written in a modular way [[7].

4. Optimal forcing-output
Consider the linearised equations subjected to a force f at frequency w,

= Aq + fe™. 10
a " q (10)
As A is found to be stable, q will eventually respond at the forcing frequency, therefore we can write
q = q(t,z,r,0)e™t. After factoring out the ¢! term we can rewrite equation as

9q

i (A —iwl)q+f (11)
From equation it is easily seen that the steady solution q, satisfies the relation,
Gou = Rf, (12)

where R = (iwl — A)~! is the resolvent matrix.
We want to optimise the output g, for a unit-norm forcing f at frequency w i.e., we seek the force

f
fv = arg maXHR ”, (13)

- [I£1]
and its corresponding output g, = RE,. We w1ll allow the forcing and output to consist of all flow
variables but shall confine the forcing to region 0 with —2.5 < x < —0.5 by using the windowing
matrix Lj,. Similarly the output will be confined to region 1 with > 0 with the matrix Loy. The

output will be measured by the Chu norm [17/] with added reactive terms [6] given by
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By discretising the Chu norm to a weight matrix W we can define our norm || - || as the norm induced
by the inner product (x, y)w = xWy. It will prove useful to link this norm to the standard vector
2-norm. To do this we take the Cholesky decomposition of W = MM, letting us rephrase our
optimisation in terms of the 2-norm as

| MLy RLi; M~ MF|,
[IVEE2

15)

fopr = arg fmax
The solution to this problem lies in the SVD of the matrix MLy, RL;;M~!. If we find the singular
triplet corresponding to the largest singular value of this matrix it is exactly (o, Mqg,, Mfg, ), where
o= quptH /|| foell is the maximum growth and the optimum output is obtained from the unit-norm
output given by an SVD by g, = oqgy-

Since we are solving with many degrees of freedom, inverting to find the resolvent matrix is costly,
hence we opt to approximate the resolvent via the long-time solution of equation (I1)) [6]. To make
sure that our resolvent approximation is accurate enough we monitor the quantity ||0,q(7")||2/]|a(T")||2,
which should be kept small whilst keeping the total simulation time within reason. Using a final time
of T' = 10 achieves this. The adjoint equations necessary for a SVD calculation are obtained by
taking the adjoint of and applying a suitable final time condition. The relative error is calculated
for all singular values obtained and is typically kept around 10~° which equates to a percentage error
of 0.001%.

To solve the singular value problem we make use of the SLEPc libraries’ Lanczos SVD solver
[13]]. As each run of the SVD solver is costly, both in terms of time and computational resources, it is
useful to extract all the information we can from a single run. It has been shown [8] that, for the SVD
of a matrix K, to first order accuracy we have the relation

5o = R [uH(SKv} (16)
where (0, u, v) is the maximal singular triplet. Using this relation with K = MLy, RL;;M~!, and

by assuming that the base-flow does not change significantly for a small change in parameter, we can
derive gradient information

do N
% ~ |: qopn outR meopt> ] (17)
Oo
% ~ §R |: qopta outR Rmeg;,J :| (18)
where we estimate 9A .
e~ o (A(Re+¢€) — A(Re)), (19)

for small enough € and Re kept as the value that the singular value was obtained with. Using equations
and (I8) we can obtain parametric sensitivity information for a fraction of the cost of running
another SVD. Similar equations to these have been derived in the case where the SVD problem was
rephrased as an eigenvalue problem [6]. The resolvent is again approximated using (I1]) using the
same final time 7" the singular value was obtained with.

5. Results
We shall define the swirl number .S by [18]]

r1 2
o g PUWT= AT

S = f%h“ —. (20)
"1 J g o PU rdr
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(a) S = 0.00 M-flame base flow (b) S = 0.15 M-flame base flow

Figure 2: Temperature plots of the base-flows at two different swirl numbers

Two optimisations are now carried out: one with a non-swirling base flow and another with S' =
0.15. This low swirl number was chosen to preserve the shape of the M-flame, so that we can make an
accurate comparison of the dynamics and not just observe the effect of a radically different base-flow.
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Figure 3: Optimal Growths for S = 0.00, 0.15. The solid lines show the gradients for the growth
factors calculated. We can see that swirl decreases the growth and shifts the peak value to lower
frequencies.

From figure (3) we can see that for no swirl there is a peak growth rate, obtained when w = 3. For
increased swirl this maximum growth moves to lower frequencies and has a larger value, indicating
that increasing the swirl inhibits the ability for the forced response to grow. Obtaining each singular
value is a lengthy process taking around 5573 CPU hours to complete. By using equation we can
find the derivative of each singular value with respect to the forcing frequency in a third of the time
of a full SVD calculation. This enables us to carry out SVDs at less points and interpolate in-between
with cubic Hermite splines, providing us with a smooth and continuous picture of the data.

Now we can use equation (I8) to calculate sensitivity with respect to Reynolds number. By saving
the term RL;, £, calculated during the frequency derivative routine we can reduce our simulation time
to just one-sixth of a full SVD. Carrying out this procedure for no swirl and w = 3 gives a sensitivity
of 0o = 12.036Re. This calculation shows that Reynolds number is acting as an amplifier, enlarging
the peak growth rate. We verify this by running an SVD for w = 3 but with the Reynolds number
set higher at 1471. Using our sensitivity we can predict that the growth rate at this higher Reynolds
number should be w = 3162 4 10 x 12.03 = 3282. The actual value obtained through an SVD is 3285
giving a relative error for our predicted value of 0.1%.
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Figure 4: Real part of the optimal forcing-output shapes w = 3,5 = 0. The forcing is shown as the
longitudinal velocity u’ whereas the output is shown as the total energy £’.
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Figure 5: Real part of the optimal forcing-output (density) shapes w = 6, S = 0. The forcing is shown
as the longitudinal velocity u’ whereas the output is shown as the total energy F'.

Figures (El[) and show the form that the optimal forcing and output take for w € {3,6}. We
allowed the forcing and output to consist of all flow variables; however, we can see from splitting the
norm into its flow-variable components that the most efficient configuration is to force with primarily
longitudinal velocity perturbations which accounts for approximately 95% of the norm. This results
in an output consisting mainly of fuel mass fraction and temperature perturbations which account for
around 40% each. It is not surprising that temperature and fuel mass fraction account for roughly
equal amounts since the norm was designed using the fact that in simplified conditions, fuel mass
fraction and temperature are equivalent [6, [10]. In both cases the forcing comes in the form of waves
slanted against the mean-flow and the output is confined to the reaction layer with the waves slanted
the other way. This is typical of an Orr-type mechanism for instability [19]. For a higher forcing
frequency we see a shorter wavelength in both the forcing and output as well as the forcing becoming
localised to the centre of the inlet. This has been seen in a previous study [6] where an optimal
forcing-output was carried out for axisymmetric flow with the constraint that w = 0. We can also
use this study to validate our growth curve for S = 0 since our optimal forcing has a negligible w
component and we therefore get the same growth curve as if we had constrained w to zero.

6. Conclusions

A linear numerical study has been carried out to determine the maximum growth possible when
a stable M-flame is submitted to harmonic flow disturbances in the inlet tube. By carrying out our
analysis on two base flows with different swirl numbers we are able to see that increased swirl has a
favourable effect on the flow, decreasing the peak growth and shifting it to lower frequencies. We saw
that the Reynolds number enlarges the peak growth for no swirl.

Throughout our study emphasis has been put on obtaining numerical results as efficiently as pos-
sible, using a relation between a small perturbation in the growth rate to a perturbation in the resolvent
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to cheaply obtain sensitivity information. This enabled us to accurately and smoothly cover a large
range of frequencies with limited singular value calculations. We were also able to obtain the effect
that the Reynolds number has on the peak growth rates for a sixth of the cost of a full simulation.
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