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1. SUMMARY

Research at Cambridge on building vibration includes analytical modelling of building and

foundation response, laboratory measurements on structural damping, and field measure-

ments at the Gloucester Park development in London. This paper discusses some analytical

questions and includes some recent results from finite element studies and from idealisations

of structural damping in a finite element model.

2. MODELLING

In order to study vibration transmission into and within resiliently mounted buildings,

various models have been analysed. The simplest model is that of a uniform continuous

column to represent the building, mounted on a massless spring and damper to represent

the isolation pad. This has been examined in detail (Newland [6] ch.l) and the results show

that transmissibility from the ground depends strongly on the dynamic characteristics of

the building as well as on the properties of the isolation pads. A similar analysis by

Grootenhuis {3] confirmed these conclusions. Various lumped parameter models have been

studied by others, including Swallow [8] and Willford [9], and results from these have been

used successfully in design. In 1988 we began to look at finite-element models of columns

and frame structures (Wilson [10}) and we are now pursuing the finite-element approach in

order to try to achieve closer agreement between theory and experiment. Our research group

is also studying foundation dynamics in order to learn more about the ground excitation

process and some aspects of that work are described by Hunt and Cryer [4} in their later

paper.
Our finiteelement analysis to date has concentrated on a two-dimensional model con-

sisting of two vertical columns joined by two horizontal floors, fig.1. The parameter values

are chosen so that the columns and the floors are all 30m long with the density and modu-

lus of elasticity of concrete (2400kg/m“ and 10‘°N/m7). The cross-sectional area of all the

members is taken to be 1 in2 and the radius of gyration for bending 0.282m. The floors

are assumed to be integral with the columns and the feet of the two columns are mounted

on resilient seatings. Both the seatings are represented by masslas springs and viscous

dampers in parallel and ground excitation is assumed to occur at the base of the right-hand

seating only. Each resilient seating has stillness of 230 MN/m and damping of 814 st/m.

These values are chosen so that for a rigid column of the same mass as an actual column

mounted alone on one seating, the natural frequency would be 9 Hz and the damping ratio

0.1. For the complete building, if it were rigid, the vertical natural frequency would be
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Figure l: Two-dimensional frame structure with ground excitation at one point

9/x/f = 6.36 Hz and the damping ratio Ill/fl = 0.071 because the complete building
weighs twice that of the columns alone.

The finite element model needs a horizontal anchor (to remove a zero-frequency hori-
zontal translational mode) and this is included by pinning the lower end of the left-hand
column so that it is free to move vertically and to rotate, but its horiontal movement is
prevented.

The elements that we have used allow axial compression and bending. Each element
has two nodes (fig. ‘2), one at each end, and each node has three degrees-cf—freedom which
are the axial and transverse displacements and the in-plane rotation of the element at the
node. In one model, we use 4 elements for each member (total 16 elements); in another
model we use 8elements for each member (total 32 elements). The mass and the stiffness
matrices of each of the elements are given in the appendix. It is assumed that the distri-
bution of displacement is linear in the axial direction and cubic in the transverse direction.
These matrices are for generalised forces in the local coordinates of an element which are
a lateral and transverse force at each node and a moment about an axis through the node
perpendicular to the plane of the framework. The matrices are transformed to the global
coordinate system (figll) using the geometrical transformations

Mf = T'MfT (i )

K? = T‘KfT I (2)
where the subscript 9 refers to a typical element and the superscripts L and G refer to local
and global coordinates respectively. T‘ is the transpose of the transformation matrix T
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Figure 2: Nomenclature for the coordinates of a finite element with bending and compres-
sion.

 

\ x L

Figure 3: Relationship between local and global coordinates

given by
t DT= [o .] (3)

where
c059 -sin9 0

t: sinfl c059 0 . (4)
0 0 1

Since each of the elements has 6 degrees-of-{reedom, all the element. matrices have order
6 x 6. In order to introduce a damping matrix, we have assumed that there is Rayleigh
damping so that

Cf/G = aMf’G + fiKf/G - (5)
where C. is the element damping matrix, L/G denotes either local or global coordinates,
and a and ,3 are constants. The numerical values taken for a and B are a = 21.3755" and
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fl = 1.87 x 10"s. Thae are the same values as used for our column studi (Newland [6](11.12). When or = D, the modal bandwidth increases in proportion to frequency squared.When [9 = 0, the modal bandwidth is constant.
We have found it convenient to model the resilimt seating: as separate elements con-sisting of a discrete spring (stifl'ness 1:) and a damper (damping coeficient c) in parallel.The elemental stiffness and damping matrica are then

x==[_"k 1"] and c.=[_°c 1"]. (5)
If the two terminals of such a. discrete element correspond to the x“ and the (i + 1)Ihdegrees-of-freedom of the global vectors, then

Kg .— Kfi + I:
(7)

Kid-+1 ‘— —k (8)
Kr...” ‘— —k (9)
mm“ .— I: (10)

and similarly for the damping matrix. Two additional degrees—of-Ireedom are introducedby the resilient seatings. Where there are boundary conditions which constrain motion atthe two nodes of the left-hand resilitmt seating. the appropriate rows and columns of thematrices and rows of the vectors are deleted. Hence the total number of degrees-of-freedomfor our 16 beam element model is 16 x 3 = 48 plus 2 for the resilient seatings Ian two forthe boundary constraints leaving 48 degres—of—freedom altogether.
3. FREQUENCY RESPONSE TO GROUND EXCITATION

In this section some typical results are shown for the harmonic response of the model in fig.1. They are expressed as transrnissibilities with the magnitude of the harmonic responseamplitude divided by the magnitude of the displacement amplitude at the lower side of theright hand resilient seating (see fig. 1). The equilibrium equations in the frequency domaincan he exprased as
(—u’M + 51:30 + K)X(iw) = F(iu.-) (11)

all the entries of the force vector are zeros, except for the one corresponding to the groundexcitation which receives a unit harmonic excitation. Because of the resilient seating, theglobal damping matrix turns out to be nonproportional after assembly of the elements.in order to compute the frequency response in such a situation without rcsorling to anyassumptions, we invert the lcl't-hand-side of equation (1 l) at every step of frequency so thatthe global response vector is given by -

X(i:..v) = (—JM + iwC + K)"F(iw). . (1”)

15
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Figure 4: Transmissibility curves for the structure in fig. 1 for point 1 (the solid line), point
2 (the chain line) and point 3 (the dashed line) for the case when a = 21.3753",fi = 0.

Transmissibility at the j‘l’ degreeof-freedom is then obtained by sealing the response vector
here with respect to the displacement computed at the ground excitation so that

 

(l3)

  

In the following discussions. we present the results for two levels of discretisationi In
the first model, the superstructure has been discretised into 16 elements; in the second one
into 32. Transmissibilities for the first case at the base of the right-side column (above the
resilient seating), top of the right-side column and middle of the top-floor span have been
presented in fig. 4.

These results have been compared with results from a different model with a column
alone on a resilient seating (Newland [6] ch.12). We notice that the general trends of
transmissibility for the right-hand column agree fairly well with the responses computed
from the column-alone model. This confirms that, for the level of complexity involved in the
model in F- 1, the right-hand side exhibits weak coupling with the rest of the structure as far
as the vertical displacements are concerned. The mid-point of the top-floor-span, however,
shows a different response and bears little resemblance with the top of the column. Thisis
because the response of the horizontal member is dominated by bending. All the responses
fall sharply after about 100 Hz on the frequency scale because higher natural frequencies
are not included in the lS-element model. To study convergence the mesh was refined in the
second model and the number of elements doubled to 32. With more degrees-of-freedom,
new modes are exhibited after 100 Hz and the previously computed cigenfrequencies tend
to go down, fig.5.
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Figure 5: Transmissibility curves for point 2 of the structure shown in fig. 1 (the chain

line) and for the same point. ‘when the frame is modelled by 32 elements (instead of 16).

Damping is given by or = 21.3755“,fi = 0.

4. DAMPING ASSUMPTIONS

The main methods of calculating dynamic response are the direct integration method and

the mode superposition method. The latter involves computing the mponse of each mode

separately and then summing the response of all the modes of interest to obtain the overall
response. For many problems this ofi'ers greater insight into the behaviour of the system

being studied than direct integration.
For zero damping, the finite element model can he expressed as

Mi + Kx = f(t) (14)

where the n"‘ order response vector ofdisplacements is x and the n"‘ order excitation

vector is f(t). These 11 coupled equations can always be uncoupled by transforming to

normal coordinates q to give

a +M = W) (15)

where A is a diagonal matrix whose elements are the natural frequencies squared ( see e.g.

Newland [6] p326). The coordinate transformation is

x = Uq (16)

where U is the n x n matrix of the system’s displacement eigenvectors (i.e. its normal
modes).

This is for no damping and, if a damping matrix is not included in the finite element

analysis, the equilibrium equations can can always be uncoupled by transforming to normal
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coordinates. However usually damping has to be included and the finite element model
gives . '

Mi+C$¢+Kx=f(t). (17)

Then the transformation to normal coordinates gives

fi+ U'CUv'r + M = W) (18)
and the equations will only be uncoupled if U‘CU is diagonal. If

C = aM + fiK (19)

then this will be so, but in general U‘CU will not be diagonal.
in order to simplify the finite-element analysis of structures, it is often assumed that

the system’s damping matrix satisfies (19). As mentioned already. for fl = 0, so that
each damping element is proportional to its corresponding mass element, it can be shown
that all the modes have the same bandwidth. For a = 0, when each damping element
is proportional to its corresponding stiffness element, the modal bandwidth increases in
proportion to frequency squared (Newland [6], p 336). For hysteretic damping, the damping
term Cir in (17) is replaced by qux where r, is the hysteretic damping factor. The resulting
equation mayonly be used in the frequency domain. In this case, modal bandwidth increases
in proportion to frequency for constant 1] although strictly it is not possible to hold 11
independent of frequency without violating the conditions of causality (see Newland [6], p
338). These conditions restrict the admissible forms of frequency response functions, which
must he derivable from valid impulse response functions.

Although a combination of Rayleigh damping (a damping matrix satisfying equation
(19)) and hysteretic damping will allow many continuous systems to be modelled satis-
factorily, difficulty arisai when localised sources of dissipation exist within assemblies of
continuous systems. Then unless the ratio of damping to stifl'ness or damping to mass
is the same as in the component continuous systems (which must all be the same in this
respect) the combined system will not have a global damping matrix which is diagonal.

The mode superposition method is particularly effective if it can he assumed that there
is Rayleigh damping, so that (19) applia| or that there is hysteretic damping, because
then the free vibration mode shapes can be used as base vectors. Furthermore, numerical
integration procedure can be applied to the motion in each uncoupled mode separately
rather than integrating 2n first-order equations simultaneously (see for example, Bathe
[1]). This may have considerable computational advantages.

We have therefore invatigatcd procedures to approximate a non-diagonal damping ma-
trix by an optimal diagonal damping matrix. '

5. OPTIMAL DIAGONAL DAMPING MATRICES

We assume that equation (18) applies but that U'CU is not a diagonal matrix. We want
to replace it by a new diagonal matrix which allows theuncoupled equations to generate a
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solution vector q’(t) such that when transformed back to the physical coordinates by

I x'(t) = Uq’(t) (20)

gives an approximate solution vector x’(t) which is as close as possible to the exact solution
vector x(t). Various alternative strategia can be pursued but we have approached the
problem in the following way (Bhaskar Let the non-diagonal matrix (-3 be written as

U‘CU=C=D+R (21)

where D is diagonal and R. therefore embraces all the ofi-diagonal elements in 6. Corre
sponding to (5), we then have

(i + Dc'r + A<1) + R": = ¢(t)- (2?)

Since D and A are diagonal matrices, the equations would be uncoupled if Rf; were
replaced by At} where A is diagonal. We choose A so that the sum of the square of the
differences between corresponding elements of R6; and Ad is as small as possible, which is
so that

f “1161 — aqua: = a minimum (23)
when the integral is evaluated over the time domain of interest. To do this, it is necessary
first to solve for £1 approximately from (22) after omitting the terms Rc'l.

ln the minimisation (23), the unknowns are the elements of the diagonal matrix A.
Difl'erentiating (23) with respect to a typical element 11,-,- gives

- a . ., _ ._m/lqu—Aqfldt—O for 1-1 to n (24)

which after some matrix algebra leads to the formula that

" R- '- ' di _A” = #7531“) .I (20)

J

The elements dj(t)‘ (Mt) come from the approximate solution vector 64 obtained by
solving (22) with the oil-diagonal damping terms omitted (in. with the term RE; omitted).
By differentiating (23) twice with respect to a typicaldiagonal element Ajj, it is found that
the result is always positive. thus confirming that (25) always leads to a minimum (rather
than a maximum) value for the integral in (23).

As an example, we consider the following three degree-of-freedom system which has
been studied already by Shahruz [7].

18 Proc.l.O.A. Vol 12 Parl7 (1990)
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1 0 0 a. 2.0 —0.15 —0.15 q',
[0 1 0 {5,} + —0.15 4.2 —o.2 a}
0 0 1 is —0.15 —0.2 6.6 43

4.0 0.0 0.0 q, 1
+ 0.0 4.41 0.0 ] { q, }={ 1.2 }u(t) (26)

0.0 0.0 9.0 g; 2.5

where u(t) is a unit step function at t = 0 and the initial conditions of displacements
and velocities are all zero at t = 0. Using the method described above, the matrix of the
off-diagonal damping elements is

 

0 —.15 —.15
R = —.15 0 —.2 (27)

—.15 —.2 0

and the computed replacement. diagonal matrix A is

—4289 0 0
0 —.283 0 (28)
0 0 -.385

This result has been obtained by calculating the 11(2) response to substitute in (25) as the
solution to (26) with the off-diagonal damping elements omitted and making the integration
time in (25) run fromt = 0 to t = 15.0 at which time the steady state response has been
reached to a close approximation.

The computed response q when (26) is modified by replacing R by A is shown in
fig. 6alongside the exact response calculated by numerical integration of the 6 first-order
equations to which the 3 second-order equations (26) may be reduced (see Newland [6]
p.113). It is seen that there is very close agreement between the optimal response and
the exact response. For comparison, the solution of (26) ignoring off-diagonal damping
elements is also shown and has quite large errors at the response peaks. The same method
can be used when the excitation is periodic, when the integration time in (25) has to be
chosen to cover the time of transient settling and one or two periods afterwards. I! greater
accuracy is required, the method can be made iterative (Bhaskar After the replacement
diagonal matrix A has been computed once, and the new approximate solution vector q(t)
generated using A. the components of this vector can be used in (‘25) to compute a second
approximation for A and hence a more accurate solution vector q(t).

8. FURTHER RESEARCH

So far the method of computing an optimal diagonal damping matrix has been applied only
to test casa with a few degrees-of-freedom. lts application to large scale finite-element
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Figure 6: Computed step response of the system defined by equation 26 by three difierent
methods

models with non-diagonal damping depends on the computational efficiency of the method.
It may be possible to improve this by including within the summation in the numerator of
(25) only those products q'jzjg which make significant contributions to the integral; methods
of identifying these are being studied.

Our next step is to model a simple real structure. We have in mind an acoustic damping
chamber mounted on resilient bearings. The effect of the resilient bearings is expected to
give a damping matrix with significant off-diagonal elements. Subsequently the intention
is to apply this method to analysing the building under construction at Gloucester Road
underground station in London, for which we hope to have good data. The experiments to
determine this data are described in the companion paper by Hunt and Cryer [4].
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APPENDIX

The elemental mass matrix is given by (see Meirovitch [5] ch. 8)

140 0 0 70 0 0
0 156 221. 0 54 —13b
0 22h Ui’ 0 13}: —3h’
70 0 0 140 0 0
0 54 13]; 0 156 —22h
0 -l3l| —3h2 0 —22h 41:7

M, = (nth/420)

where m is the mass per unit length of the element. and h is the length of the element. The
elemental stillness matrix is given by

r2 0 0 —r2 0 0
0 12 6h 0 —12 6h
0 6}: 4h2 0 —6h 2’;2

—r2 0 0 r2 0 0
0 — 12 —6h 0 12 —6h
0 till 2!:2 0 —6h 4’11

K: = (El/h“)

where r is the ratio of the length I: to the radius of gyration r, so that r = h/r,.
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