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I. lNTRODUCTION

Hidden Markov Models (HMMs) have become the predominant solution to the continuous speech recognition

problem due to their high performance in terms of recognition accuracy and computational efficiency. The

power of HMMs arises from their ability to model both the dynamic and acoustic properties of a speech signal

in such a way that a speech utterance can be decoded efficiently by the Viterbi algorithm to produce a recog-

nition of the utterance. The ability of HMMs to model the speech signal is limited, however, by the fundamen-

tal assumptions which make them efficient. For example. the conditional independence assumption means

that HMMs treat successive speech frames as uncorrelated with each other so that HMMs can’t take advantage

of any correlations which are present.

Neural networks (NNs) have emerged as a powerful tool for estimating posterior class probabilities in static

pattern recognition tasks [I l, but have problems with dynamic signals such as speech. Consequently. there is

much interest in constructing hybrid HMM/NN systems which combine the best aspects of both paradigms.

For example, one technique is to use a neural network classifier to estimate the HMM emission probabilities

which improves discrimination between classes (e.g. I21). '

This paper demonstrates a different approach to improving the performance of a set of HMMs, continuing one

of the main themes of the SYLK project [3]. The philosophy behind the approach is to use speech knowledge

to augment the discrimination ability of a set of HMMs through a series of Refinement Tests. A Refinement Test

is designed using phonetic knowledge to resolve potential confusions which arise from the HMM estimates of

segment probabilities. Refinement Tests are free to perform whatever further processing of the speech signal is

necessary to express this additional knowledge. In this work the Refinement Tests have been based on MLP

classifiers and we report on two ways of combining Refinement Test measures with HMM segment probabili-

ties. Our early results show that it is possible to improve on a set of HMMs in this way and that this is a prom-

ising avenue of research.

2. EVIDENCE COMBINATION

Work in the field of pattern classification has shown that combining sets of classifiers can produce combined

performance better than that of the best individual classifier. Xu er al [4] proposed several schemes and dem-

onstrated how combination improved performance on an optical character recognition task. In addition, they

outlined three levels at which classifiers could be combined, depending on the information produced by the

classifiers:
1. Abstract level. The individual classifiers produce a hard decision only, i.e. the ’winning’ class label.

The classifiers are combined by a voting scheme. This method is particularly useful when the classi-

fiers produce different types of measurement (e.g. probabilities, distances, etc).

2. Rank level. The individual classifiersproduce a ranking of the classes under consideration. These

rankings are combined to produce an overall ranking.

3. Measurement level. The individual classifiers produce a measurement value for each class leg. pos-

terior probabilities, distances, etc). These measurements are combined to produce an overall mea-
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surement which can then be used to make the classification decision. The measurements produced
by the classifiers may have to be convened to the same scale (e.g. distances convened to probabili-

ties) before they can be combined.

We are interested in combination at the measurement level because we need information which can aid in the

segmentation of the speech signal as well as its classification.

2.1 . Combination of Neural Networks

Several techniques have been suggested for linearly combining networks at the measurement level. For exam-

ple, Perrone's Generalized Ensemble Method (GEM) [5] produces a linear combination of the outputs of a set

of neural networks that guarantees combined performance which is at least as good. in the mean squared error

sense. as the best individual network. This does not guarantee, however. that classification performance will

not decrease. Perrone also suggested that simply averaging the outputs of a set of networks can improve per-

formance. He called this the Basic Ensemble Method (BEM) and it has been used successfully [2] although

there is no guarantee of this. For a classification problem where each output unit estimates a posterior class

probability, each of these class probabilities are combined independently to produce a new estimate. It should

be noted that these combination methods can be used to combine any type of classifier and not just neural

network classifiers. In Section 6 we report on the use of these techniques to combine HMM and MLP classifiers.

2.2. Evidence Combination in Speech Recognition

Evidence combination schemes have been employed in a variety of speech recognition systems. For example

Zavaliagkos et af {6] used a linear combination scheme to combine HMM and segmental NN processing of

the speech signal whereas Hochberg er al [2] average the outputs of multiple recurrent networks trained on

different representations of the acoustic signal in their integrated HMM-NN system;

3. HMM TRAINING

Before embarking on the evidence combination earperiments, we trained a set of HMMs which were needed

for two reasons: I) to give us a baseline level of performance for comparison purposes, and 2) to provide us

with a set of probabilities for use in our evidence combination experiments.

3.1. Data

The data consisted of all utterances by malespeakers on the prototype TIMIT database except the Shibboleth

‘sa’ utterances which werediscarded because they introduce a bias in favour of phones in certain contexts, as

described by Lee [7I. The data was split into three datasets: a training set of 792 utterances, a cross-validation

set of 760 utterances, and a test set of 768 utterances. Thus each dataset contained roughly one third of the

data. The utterances were divided among the datasets so that speaker independence was maintained. The TIM-

IT labels were convened into the 39-phone set devised by Lee [7].

3.2. HMM Training

The HMMs used were 3-state leltvto-right monophone models. The feature vector consisted of 12 meI-frequen-
cy cepstral coefficients (mfccs) plus energy together with theirdeltas and accelerations to give a 39-dimension-

al feature vector. No language model of any type was used in these experiments, i.e. no bigram, grammar scale

factor or fixed transition probabilities. This was so that we could concentrate on the acoustic performance of

the models in isolation from the effect of the language model, The HMMs were trained on the training and

crosswalidation sets described in Section 3.1 using HTK [8]. Perlormance improved as the number of mixtures

per state was increased. Training was halted at 20 mixtures as adding extra mixtures was only producing small
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performance improvements bythis stage. The performance of the 20 mixture set was 70.2 r’/t,Correct and 63,0
°/oAcCurate.

4. FORMANT FREQUENCY CHARACTERISATION

For a given time segment and for each formant (Fl , F2 and F3), formant frequency Refinement Tests are based
on measurements of:

Where did the formant come fromi, i . what was its frequency before the transition into the segment,
What value did the formant reach within the segmentl,
Where did it go to?

We trace back to the start of the relevant formant movement, which may be different for each formant: we do
not take measuremems at a fixed place. Formant frequency tracks derived by Crowe’s algorithm [9] are ‘char-
acterisationed’ using a technique developed in previous work [3], [lol and this semi-symbolic representation
is parsed to obtain the above description of formant behaviour. In brief, the procedure is as follows:

1. The median-smoothed formant track is broken into 'time-fragrnents’ delineated by discontinuities.
The remaining steps are performed separately for each fragment.

2. Curvature extrema in the track are used to identify potential segmentation points.
3. A development of an algorithm by Bridle and Sedgwiclr finds a piecewise-linear approximation to the

trace with the following properties:
Breaks are allowed only at curvature extrema.
Each line segment is the least-squares approximation to the data it describes.
The minimum possible number of line segments is used such that each segment approximates
the data within a given tolerance.

4. The line-segment-sequence is then parsed for ‘targets' - peaks and dips. The definition of 'target' is
quite general, allowing 0 or more line segments in its attack, steady-state and decay. A grammar and
parser allows any shape-descriptions to be defined.

5. The measurements are taken from the targets entering, centred in and leaving the segment.

 

5. MLP CLASSIFICATION EXPERIMENTS

A series ofexperiments were conducted using the formant frequencies from the formant characterisation soft-
ware as input toan MLP classifier. A nine dimensional feature vector containing the formant frequencies (Fl,
F2 and F3) was created for each segment under consideration together with its neighbouring segments. The
segments were obtained from the TIMIT label files. The raw formant frequencies were normaliled linearly so
that they lay approximately in the range [0.1] using the maximum and minimum frequency values found in
the training set. The softmax output layer [t 1 consisted of 39 output units, one for each class. The output coding
was 1 for the correct class and 0 for all others as suggested by Bridle [i] (amongst others) so that the outputs
estimate the posterior class probabilities, assuming that the net has been correctly specified and trained. The
nets were trained using gradient descent with a learning rate of 0.0‘llno momentum) and a relative entropy
error function [I] using the training set described in Section 3.1. The set of weights which produced the best
performance on the cross-validation set was used to evaluate the network on the test set. The best test set per-
formance obtained was 31.9%for a network with 80 hidden units. Nets with 20 and 160 hidden units were
also tried but they performed similarly.
The most likely reason for the poor classification performance is that the formant data is not sufficient to dis-
criminate between the entire phone set. it was not considered worth expending a great deal of effort to try and
maximize the performance of the nets, so it is possible that the performance could be improved with further
training varying learning rates, etc.
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In an attempt to enhance performance, the nets were combined by the ensemble methods devised by Perrone

but this only resulted in an improvement of 0.5%. Two possible explanations for this modest improvement are:

I. The nets trained are too similar, i.e. they represent the same local minimum in function space and

there is not much to be gained by combining them.

2. The individual nets are already performing quite well on the data and are extracting most of the dis-

crimination information.

The first explanation is supported by analysis ofthe confusion matrices which shows that. for each MLF, most

of the correctly recognized phones are found in a small subset of the phones (which includes the silence phone

- even though it should not have a distinctive formant signature!).

6. EVIDENCE COMBINATION EXPERlMENTS

In this section we report on two schemes which demonstrate that it is possible to improve the performance of

a set of HMMs by integrating their probability estimates with extra evidence obtained from Refinement Tests.

Section 4 shows how our formant characterisation software can estimate formant frequencies for a speech seg-

ment. There is still the problem of how to identify a segment to apply our formant-based Refinement Tests to.

For the purpose of this demonstration, we decided to avoid this problem by using the segments defined by the

TIMIT label files. This enables us to make direct comparisons of the performance before and after evidence

combination without having to account for the different segmentations which may be produced by the differ—

ent methods. Obviously. our system is not a complete phone recogniser, and cannot be compared with such

systems, it is merely intended to show the potential of evidence combination,

For each segment defined by the label files. the set of HMM probabilities was calculated using the forward

algorithm. This gave us a set of 39 probabilities (one value for each model) for each segment in the database.

The forward algorithm estimates the probability of the observation giiren the model. This was convened into

the posterior class probability by assuming that all phones are equally likely. Implementations of the forward

algorithm normally estimate log probabilities to avoid underflow and these were convened back into actual

probability values. We found that the HMMs were producing 'hard' probability estimates for many segments,

i.e. the largest probability value was close to one and the other probabilities very small. This happened even

when the HMMs were selecting the wrong phone. We were concerned that such hard estimates could cause

problems during the evidence combination phase as strong counter evidence would be required to ovenurn

them. Consequently, we attempted to soften these estimates by dividing each log probability value by the

length (in frames) of the segment before convening them back into probabilities, as suggested by Mclnnes er

a/ II I].
Approximately 8% of the segments were shoner than three frames in duration. The shortest path through the

three-state left-to—right HMMs we were using is three frames. Thus there were some segments for which the

HMMs could not produce any probability estimates. These segments have been excluded from the results pre-

sented below. For some phones, the majority of examples had to be excluded for this reason Ie.g. over 80%

of the examples of phone lbl were shon segments).

Obviously, it was only possible to perform evidence combination on those segments for which some formant

data was available. If the formant characterisation software was unable to calculate the values of the formant

features for the preceding or following segments,the formant target values were used in their place. On the

rare occasions when it was impossible to calculate the formant target values for the centre segment, that seg-

ment was excluded. No attempt was made to calculate formant features for the first and last segments of each

utterance as these are normally silence in the TIMIT database. The HMM probabilities alone were used to

make the decision for those segments where formant features were unavailable.
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6.1. Evidence Combination Results

Two different schemes have beentried so far: one using Perrone‘s ensemble methods and the other using an
MLP to perform the evidence combination. The results are sum arized in Table 1. (Since we know the correct
segmentation, we have presented our results in terms of °/-;Correct only as there are no insertions or deletions
to account for.)

6.I.t . Ensemble Methods. The probabilities estimated by the HMMs and the MLP classifier were combined
linearly via the BEM and GEM techniques (see Section 2.1). Figure I contains a block diagram illustrating the
procedure. For those segments where the formant data was unavailable, the HMM probabilities alone were
used to make a decision. Both methods produced an overall performance improvement of 0.6%.

6.1.2. One-Stage MLP Evidence Combination. This was achieved by feeding formant values and HMM prob-
abilities for a given segment into an MLP and training it to reproduce the correct class label (see Figure 2). The
formant values were normalized in the same way as for the MLP classifier. The MLP had 46 inputs (9 formant
values plus 39 duration-nonnalized HMM probabilities) and 39 outputs (one for each class). Other training
details are the same as for the MLP classifier in Section 5. With 20 hidden units, one-stage MLP combination
achieved an improvement of 2.4% over the HMMs acting alone.

Table 1: Effect of Evidence Combination on Classification Performance

 

7. DISCUSSION

The results show that it is possible to improve on HMM discrimination performance by adding extra informa-
tion, at least within the framework of our experiment. Further work is required to discover how effective this
approach will prove. There are several avenues to pursue. Firstly, what data can be used in a Refinement Test?
We have demonstrated the use of Refinement Tests based on formant values, but we can use our knowledge
of speech to obtain other sets of features (including other sets of formant features, e.g. bandwidth. energy)
which will help discriminate between phones. We believe that the most effective sets of features will contain
information that the HMMs cannot use very effectively. Forrnant features fall into this category because they
are present over a number of consecutive frames which the HMMs treat as uncorrelated.
A second issue is how best to use the extra evidence. In the experiments reported here. the extra evidence was
used to produce classifiers which attempt to discriminate between the entire phone set. It may prove more
fruitful to attempt discriminations between subsets of the phone set le.g. a vowel classifier) or just to concen-
trate on individual confusionsle.g. a classifier which discriminates between /5/ and III). This raises the question
of which segments should be presented to such a classifier: if the correct label for a segment is Ind, the infor-
mation provided by an Isl-Id classifier will not be very helpful! It may be possible to find which Refinement
Tests are appropriate to a given segment from the ranking of phones produced by the HMMs. Although the
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probability values produced by the HMMs are unreliable, the ranking of phones based on these values appear
to be more sensible: for example, the correct phone is amongst the top five on 97% of occasions.
Thirdly, there are other evidence combination schemes which can be tried and which may be more effective
than the ones reponed on in this paper.
We have also trained a set of HMMs which use formant data in their feature vector.Their performance was
comparable with that of the standard HMMs. They will be used in a control experiment which will demon-

strate whether or not it is better to use the formant data directly as pan of a HMM feature vector, or indirectly
via Refinement Tests.
When we have optimized the performance of the Refinement Tests and evidence combination scheme, we
can then attempt to integrate them into a full speech recognition system. The better discrimination achieved
by using extra evidence should not only reduce the number of substitutions but could also help produce a bet-
ter segmentation of the utterance which will help with insertions and deletions as well.
In summary, we have demonstrated that it is possible to improve on the discrimination performance of a set
of HMMs by using extra evidence from a Refinement Test. Funher work is needed to establish how effective
this approach will be but we believe our preliminary results are very encouraging.
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Figule 1: Linear Combination OI Probabilities I0: 3 Speech Segment
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Figure 2: Evidence Combination by MLP for 3 Speech Segmenl
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