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Intrinsic Localized Modes (ILMs) or solitons are investigated in periodic arrays of coupled
nonlinear resonators under simultaneous external and parametric excitations. The method of mul-
tiple scales is employed, transforming the dimensionless equations of motion into a damped driven
Nonlinear Schrodinger (NLS) equation. Exact stationary soliton solutions of the undamped driven
NLS equation are derived, while the damped one is numerically solved using the continuous ana-
log of the Newton method. Several numerical simulations have been performed in order to inves-
tigate the evolution of the existence and stability domains of soliton solutions with respect to the
linear damping and the excitation type. In practice, this approach can be used to design nonlinear
periodic lattices enabling the creation of stabilized solitons for energy transport applications.
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1. Introduction

In the theory of waves in nonlinear periodic structures, spatial localization is one of the most im-
portant properties encountered in nonlinear normal modes, providing a link between these modes and
solitary solutions. It can be generated either by an extrinsically imposed disorder as in the case of the
Anderson localization or by the interaction between the inherent nonlinearities of the resonators. The
localization represents an interesting phenomenon in engineering science, which can occur in peri-
odic structures when the wave-function amplitude of the oscillating modal shape is localized in space
and decays exponentially. This phenomenon has inspired innovative studies in physics and motivated
researchers over many years to explore in depth its effects and consequences. Voluminous studies on
mode localization in discrete and continuous periodic nonlinear systems exist in engineering physics
using appropriate analytical and numerical techniques. ILMs have been observed in Josephson junc-
tions coupled arrays [1], antiferromagnet [2], optics [3]], photonics [4]], carbon nanotubes [, 16, 7] and
atomic lattices [[8]. ILMs received a lot of attention in micromechanical resonators arrays [9]], Kenig
et al. [10] studied the ILMs in arrays of parametrically driven nonlinear oscillators with application
to MEMS and NEMS systems. For granular crystals chains, it has been shown that the interplay
of periodicity, nonlinearity driving and asymmetry allows the exploration of localization phenomena
including solitons and Discrete Breathers (DBs) [[11]].

Several analytical and numerical studies were devoted to solve parametrically and externally
driven damped NLS equations [12} [13]. The richness of the nonlinear dynamics in terms of sta-
bility and multivaludness responses obtained in weakly coupled nonlinear oscillators under both ex-
ternal [14]] and simultaneous primary and parametric excitations [15]], motivated the study of ILMs
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in simultaneously driven nonlinear arrays. Recently, the influence of adding external harmonic exci-
tation on the intrinsic localized modes of coupled pendulums chains parametrically excited has been
investigated [[16]]. A perturbation technique is employed, transforming the coupled nonlinear equa-
tions of motion of the periodic array into a damped, simultaneously driven NLS equation. Exact
stationary solutions of the conservative NLS equation are derived, while the dissipative system is nu-
merically solved using the continuous analog Newton method. Several numerical simulations have
been performed in order to highlight the additional value of employing both external and parametric
excitations simultaneously on the stability of localized solutions.

2. Derivation of the amplitude equation

The normalized equations of motion (EoMs) of an array of coupled Duffing oscillators, under
simultaneous external and parametric excitation can be written in the following form

iy — 282D (Ups1 — 2Uy + Up1) + YLy + U, + el cos [2(1 + eQ)t]u,
FO[(Un — Uns1)® + (ty — )] + 6 = 328 cos [(1 + eQ)t] (1)

As the resonators are collectively oscillating at almost the same frequency, we write the displace-
ment of the n”* resonator as [[10]:

u, = P (X,, 1™ + c.c]+ &uV, T,X,) + - - n=1,..,N, )

with c.c. representing the complex conjugate, T = ef and X,, = &in are slow temporal and spatial
variables. Writing the continuous variable X in place of X, and replacing the displacement solution

into the normalized equation of motion term by term up to order £*2 we obtain:
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where O(e’, e3™) are rapidly oscillating terms with 3 and 37 as the temporal frequency and the
spatial wave number respectively. Although, the EoMs (1) are trivially satisfied at the order £'/2, one
must satisfy a solvability condition at the order £/? by vanishing all terms proportional to ¢/™ so
that ! remains finite. Then, we obtain the following partial differential equation (PDE) defining the
slow dynamics of the resonators amplitudes

=~ + (480 +3 —D— + iy -
o5 @88 3BWPY + SDZs i)
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Using the following scaling parameters

A 20 D . 2 ) 20
= |——U, X=—=X,T==T, y=Qy, h=2Qh, 8 =2Q | ———g,
V= a5+ 20 Qv § \'285 + 3¢°

Eq. can be transformed into an autonomous normalized PDE after replacing ¢ by ye'” as

alp azw . 2 *
la—T:—(ﬁ‘*‘(l—lYW—zmlﬁ‘Fh‘/’ -8 (12)
Eq. (I2) describes a nonlinear time dependent Schrodinger equation, including both external
and parametric driving forces beside the linear damping parameter. With y = 0 and v # 0 Eq.
(I2) is called Conservative or Dissipative Simultaneously Driven NonLinear Schrodinger equations

(CSDNLS) or (DSDNLS) respectively.

2.1 Exact analytical solitary solutions of the CSDNLS equation

As a first step, searching for the ground state which has the form of a localized (in space) exact
solutions. Given a real solution ¥/(x, ) for the following CSDNLS equation (y = 0):

iyr + Yxx — HY + 2ylyl* = —g, (13)

with H = (1 + h). Bach y(X, T) = ky(kX, k*T) is also a solution, corresponding to § = k’g and
H = k*H. Consequently, any solution to Eq. is characterized, up to a simple scaling, by a single
combination f = gH=3/? as given by Barashenkov et al. [13]. In addition, they found two different
soliton solutions of Eq. (I3) of the form:

2sinh’ @
+(X) = 1+ , 14
Y (X) = Yol 1+ cosha/cosh(AX)) (14
Where f is the monotonously decreasing function of 4 and g defined as [16]:
V2 cosh?
f=—95 __ (15)

(1+h)*% (1 +2cosh?@)’?

f being a monotonically decreasing function, « is uniquely determined by /4 and g. Y is the
asymptotic value of both ¢_ and ., solitons: .(X) — ¢y as |X| — oo

Finally, A has the meaning of "half the area" of both solitons _ and ¢, and is equal to A =
2posinha = 5 [ (hu(X)® - y3)dX

. .. 1 g 1/3
is real and positive: = = ( ) 16
Yo b Yo V2(1 + 2cosh? @) “4(1 + h)¥2 cosh® @ (1o

We should note that these solutions exist for @ € [0, co] or for f = ﬁ € [0, 4/2/27] in terms

of excitations amplitudes. Fig. [T| (left) shows the domain of existence of @ according to the different
values of the driving forces 4 and g. Fig. [I] (right) shows the evolution of the solitary solutions i, of
the CSDNLS equation according to a.

2.2 Numerical solutions of the DSDNLS equation

For positive linear damping coefficient (y > 0), Eq. (12)) is solved numerically using the con-
tinuous analog of the Newton method (also known by the variable iteration step Newton method).
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Figure 1: Left curve defines the existence domain of « according to the driving forces 4 and g. The
right curve shows the undamped solitary solutions ¢, of the SDNLS equation for several values of a.

To solve the PDE (I2)) numerically, we write it on its finite difference form on the discretized do-
main [-L/2,L/2] as E(Y) = 0 with ¢ = (Y1,¥2,...,¥ns1) discretized solution, with ¥, = (X)),

X, =-%+nAX,AX = 5; and E = (E|, Es, ..., Eyyy) is a nonlinear operator defined as follows
n - 2 n n— . %
b= = (A)w()Z+ Yoot _ U + 2l W + iy — iy + g, forn=1...N (17)
3o + Ay — Ay 43
with Ey= 2 . A? P2 and By = 2 2‘2’;{ e, (18)

This can be obtained using the finite difference approximations for both differential operators ¢ xx
and y¥x and satisfying the boundary conditions ¥ x(+L/2) = 0. The basic concept of the continuous
analog Newton’s method is to introduce an additional growing variable 7, in such a manner that

d
Y satisfies the following differential equation d—E(tﬁ(T)) + E(Y(7)) = 0 with the initial conditions
T

¥(0) = ¢ where ¢'? is considered to be the exact solitary solution of the SDNLS equation with no
damping. As E(Y(1)) — 0, (o) satisfies E(Y) = 0,
T—+00

o

Ar*+D = k1) _ 2 g selected in order to minimize the following residual

OE\"!
Pk = g _ Ar““)(—)w_wkE(:pk) where k= 1,2, ... (19)

6% = max [ReE, (p ), I, ) (20)

In order to implement the variable iteration step Newton method, we start by choosing a pair (g, /)
of parameters in the domain of existence [0, V2/27]. Eq. is used to determine the unique « for the
chosen (g, /), and we start our continuation using the exact solitary solutions (I4) as an approximation
for y = 0.01. Then, we calculate the numerical solution (I9) for the same g, & and y = 0.01 and
keep advancing along the path until convergence is achieved and residual (20) is minimized. After,
we chose the obtained numerical solution for y = 0.1 as an approximation for the (g, h) pair with
v = 0.02, and the process repeated until the Newtonian iterations ceased to converge.

These calculations were performed on the interval (—L/2, L/2), where the soliton solutions decay
slowly in space (¥.(xL/2) = 0). Finally, for a given Ax, the obtained ¥ is used as a boundary
condition for T = 0 to solve the DSDNLS Eq. (I2) numerically, using a Runge-Kutta algorithm
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while setting ¥y = 0. Barashenkov et al. [13] constructed the existence and stability chart for the
soliton solutions of the externally driven, damped NLS equation given in Fig. [2] They showed that,
Y, solution is unstable for all forcing amplitude g and dissipation coefficient y. In Fig. [2] blue color
indicates the stability region of ¢_, while in the pink region ¢ _ exists and it is unstable.

g //9
v

0.40

0.20

0.0 0.2 0.4 0.6 0.8

Figure 2: Existence and stability diagram for the soliton solutions of the externally driven damped
NLS equation as constructed by Barashenkov et al. [[13] on the plane of both forcing amplitude g and
dissipation coeflicient y. They showed that, ¢, soliton solution is unstable for all forcing amplitude g
and dissipation coefficient y. Blue color indicates the region where ¢_ exists and stable, while in the
pink color represents the region where /_ exist but unstable.

3. Numerical simulations and interpretations

In this section we are interested in solving numerically the DSDNLS Eq. (12) for several sets of
parameters. According to the existence and stability diagram (2)) of the externally driven, damped
NLS equation constructed by Barashenkov et al [[13]], the lower straight line defines an approximation
for the lower boundary of the domain of existence of . solutions. For the pair of parameters (* 1)
where the damping parameter is y = 0.3 and g = 0.232, ¢, are unstable. Particularly, ¢, does
not exist while _ exists but decay to zero over time. Remarkably, adding a parametric excitation
h = 0.15, Fig. [3|shows that both solitary solutions exist and converge for the same stable solution.

Now choosing the pair of parameters (* 2) in the blue region of Fig. For these parameters
and for & = 0, ¥, does not exist while _ is stable. In contrast, when adding a parametric excitation
h = 0.25, both localized solutions .. exist as unexpected interesting results are revealed. Firstly, Fig.
H]shows that y_ loses its stability and oscillates periodically in time, as shown in the temporal solution
and phase portrait curves (a) and (b). In addition, Figure [5] (a) shows that the initial transient gives
rise to the formation of three solitons i, , where the middle one decays to 0 and the two others are not
perfectly and periodically stable. Barashenkov et al. [13] demonstrated that the stability of solitary
solutions is very sensitive to the interval length. Therefore, increasing L to 100 which corresponds to
N = 501 dofs, Fig. [5] (b) shows the localized soliton solution .. Noteworthy the number of solitons
increases up to 6 and they are periodically stable at 7 = 200. Note that before reaching the steady
state, several pairs of solitons emerge into one.

The last configuration in Fig. [2|corresponds to the third pair of parameters (° 4) in the pink region
where i, does not exist and y_ is unstable and represents a spatio-temporal chaos as shown in the
left curve in Fig. |§] for h = 0. The right curve shows the evolution of [/_|* while adding a parametric
excitation 4 = 0.225, which enables to avoid the collapse of spatiotemporal chaos.
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Figure 3: Left curve shows the evolution of |/, |> over time, while the left one shows the stable solution

at T = 200 for the first pair of parameters (+ 1) withy = 0.3, g = 0.15, 4 = 0.15 and L = 60.

4. Conclusion

We investigated the intrinsic localization in a one dimensional array of coupled Duffing oscillators
under simultaneous parametric and external excitations. The multiple scales method was employed,
transforming the differential system into an amplitude shrodinger equation, describing the spatio-
temporal dynamics of the system. For zero dissipation, the analytical soliton solutions of the simulta-
neously driven NLS equation were determined. The DSDNLS equation was numerically solved as a
boundary value problem over an interval of length L, using the continuous analog Newton’s method.

Several simulations on different pairs of parameters were performed, based on the existence and
stability domain of the externally driven, damped NLS equation. It has been shown that adding
an amount of parametric driving force avoid spatiotemporel chaos and extend the stability domain
according to the linear damping. Therefore, the combination between parametric and the external
excitations, helps tuning the existence and stability of solitons solutions.

In practice, and since the damping parameter is often imposed by the system, this study can serve
as a predicting numerical tool; allowing the control of the existence and stability of localized solutions
by the simultaneous driving forces to localize energy or avoid energy localization.
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Figure 5: Evolution of |_|> over time for the pair of parameters (+ 2) ¥ = 0.3, g = 0.232, h = 0.25.
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