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INTRODUCTION

The behaviour of a thin plate immersed in a fluid is studied with regard to
the transmission of arbitrary wavenumber and frequency components of both
normal and tangential forces applied to one face. The behaviour is found to
be markedly different for the two cases.

THEORY

Mathematical Formulation of the Problem

  

Consider an infinite flat plate immersed in an infinite fluid and lying so
that its neutral plane is z = 0. The plate is excited into vibration by
applying a random excitation (normal and tangential) over a finite area for
a finite time on the face 2 = -h. This excitation may be decomposed into
its space-time Fourier components to give stresses of the form
P" = N epr i(ot-kx)] normal and P” = S exp[i(mt-kx)] tangential to the
face.

No damping mechanism is included for the solid, but it may still lose energy

by radiation into the fluid provided kc <w. where c is the fluid sound
speed. If kc >0) no radiation can occurasnd there i3 the possibility of
undamped resogances.

The treatment here follows that of Ewing, Jardetsky and Press [1] . The
compressional and shear wave velocities, n and B, are related to the Lame' '
elastic constants and the solid density p by oz = (A+2u)/p and 82 = 11/91.

It will be assumed that all quantities depend only on x and z; the vector

displacement potential up can then be chosen so that only its y-component,
denoted by w. is not :50. The scalar displacement potential is denoted ,
by o.

The effect of the applied stresses is to excite multiply reflected comPIESsiVn

and shear waves in the solid, described by thepotentials d and wl, and
compressive waves in the fluid described by do and02. Suppressing the time
dependence’ the displacement potentials are given by

-ikx
Vt2 “ A2elyoze—lkx e , z>h

-ikx

oo = Age , z<-h; “Yo:

; wl = (Csiny' z * Dcosy'z)e_lkx@1 = (Asinyz 4' Bcosyz)e ......(2.1)

where Y = (Luz/n:2 48);, ‘1' = (ml/82 - kz)‘, ya = (ml/c 2 - k2); which are
the z-components of Havenumber for compressive and shear waves in the solid
and compressive waves in the fluid respectively. _The six-unknown wave
amplitudes in equations (2.1) are found by requiring continuity of P”, P

K!

and biz across the two interfaces 2 = :h giving sixequations. As a

consequence of the symnetry about 2 = 0, these equations may be combined to

give two uncoupled matrix equations of order three.

20.611

 



 

Proceedings of The Institute of Acoustics

Havenumber Filtering of a Random Excitation by an Elastic Plate

2.2.

These matrix equations describe modes of vibration» which- are antisymmetric

and symmetric with respect to the plane 2 = 0. The first antisymmetric

node is the bending wave of thin plate theory. The first symmetric mode

represents compressional waves familiar from longitudinal rod theory.

Dispersion relations for the first two symmetric and antisymmetric

modes are shown in Figure 1.

Thin Plate Approximations for the Displacement

The matrix equations can be solved for the contributions of the

symmetric (us) and antisymmetric (wa) displacements on the face z =

the plate giving

Nplwzy + Sikp [ (7' 2-k2)r;atvh - 21w, coty’ h] e-1

+h of

kx
......(2.2)
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+ (y' 2-k2)2cotyh + Akzyy' ccty’ h]

Nolwzv - Sikh [ (v' l—kzfltauvh - zw' c'anv'ifle'm ......(2 3)
_________.._—————
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The dispersion relations are obtained by equating the denominators of (2.2)

and (2.3) to zero.

These solutions will heexamined close to the first symmetric resonance at

k = ks(=am/I 2809-32)“). Making the thin plate approximation uh/u, Luh/B,

(uh/co «1, equations (2.2) and (2.3) can be approximated by

+ (y' 2-kz)2tanyh + Akzw' tanyf E]

    

 

  

 

_ 2 5n:

w *‘ [N15 + h 5 ( ) _ikx
s

2 Z
Aplkom [k_k + qukshm A _

ikshy“ s Bu];o (Mini {Hui

iY N + Sik h ]
08 S .

u “ -—s——7— -ka ......(2.5)

3 2961.32 [1 + lhalves e

 

where the subscript s implies that a quantity is evaluated at k = ks.

Thus -a°Azm2 I pluzwnzu)
Y 1 = and y 2' =
s hnZMZuiiHui a ‘ louhwi

Equation (2.14) is clearly a resonance term of width, at half height,

' 3 p p {Cow‘hlz

5113' 2 mm“ 2(“211)
Ak= ......(2.6)
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“yes Slka - A e-lkx ‘ ......(2.7)

2 2Zoom 1 h

   

- and of height as =

The main features of the formulae (2.5) and (2.7) are (i) for pure normal

‘ excitation (5:0), the symmetric and antisymmetric modes are equal in

amplitude and opposite in phase to lowest order in h and therefore cancel

to that order. This gives a sharp dip in the displacement (or radiated

pressure) versus wavenumber spectrum at k = k . (ii) for pure shear

excitation (N=0), the symmetric resonancepeafi displacement is proportional

to [HZ/h and the antisymmetric displacement to h. Their ratio is, to lowest

order in h, All (la-Zn” 2hzl . Hence. in the th plate approximation, the

symmetric mode is dominant close to k = k . ( i) It can be seen from

Figure 1 that the first symmetric mode issnan—dispersive for kh<l. Hence

  

this mode propagates at constant speed c (- é—B— (oz-£32)l the thin plate

compressional wave speed) it its Havenumger is such that kh<l so that

radiation at the particular angle (sin 1colts) is reinforced from each

Fourier component having u: = kcs.

3. NUMERICAL RESULTS

The exact equations (2.2) and (2.3) have beenused to calculate the pressure

per unit exciting stress (N='l, S=O or N=D, 5:1) for a range of frequencies.

5A typical set of results is displayed in Figures 2-!» with a frequency of 3kHt,

a plate thickness of Sen and the material constants of 611?. Figure I. shows

that for normal forces the symmetric resonance at |<=E.Glnm-l is cancelled by

the antisymmetric mode resulting in a dip. The antisymmetric resonance at

ke28.6m—1 is not radiation damped but is, however, dispersive and therefore

cannot lead to any concentration of radiation at a particular angle. There

» . is another non—radiating resonance close to ho corresponding to the surface

wave discussed, for example, by Morse and lngard l2] .

4 . CONCLUSIONS

In the presence of a random shear force, it has been demonstrated that a

thin plate will act selectively to transmit those components of the

excitation force which propagate with speeds close to the solid compressive

wave speed. This results in radiation from the Ear face concentrated in a

particular direction of angle sin-1(co/CE) to the plate normal.

For a random normal excitation. however, this particular component is

suppressed by the plate.
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FIGURE 1.
FIGURE 2 .
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FIGURE 4.
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