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Wavenumber Filtering of a Random Excitation by an
Elastic Plate Immersed in a Fluid.
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INTRODUCTION

The behaviour of a thin plate immersed in a fluid is studied with regard to
the transmission of arbitrary wavenumber and frequency components of both
normwal and tangential forces applied to one face. The behaviour is found to
be markedly different for the two cases.

THEQRY

Mathematical Formulation of the Problem

Consider an infinite flat plate immersed in an infinite fluid and lying so
that its neutral plane is z = O. The plate is excited imto vibration by
applying a random excitation (normal and tangential) over a finite area for
a finite time om the face z = ~h, This excitation may be decomposed into
its space—~time Fourier components to give stresses of the form

P, =¥ expl i(wt-kx)] normal and B, =5 expl i (wt~kx)] tangential to the
face.

No damping mechanism is included for the solid, but it may still lose energy
by radiation into the fluid provided kc <w, where ¢ is the fluid sound
speed, If k¢ >w no radiation can eccur and there is the possibility of
undampad resonances.

The treatment here follows that of Ewing, Jardetsky and Press [1}. The
compressional and shear wave velocities, a and B, are related to the Lame
elastic constants and the solid demsity p, by at = (A+2u) /p, and Bt = u/p,.
It will be assumed that all quantities depend only on x and” z; the vector
displacement potential y can then be chosen so that only its y-component,
denoted by ¥, is not zero. The scalar displacement potential ia denoted
by ¢.

The effect of the applied stresses is to excite multiply reflected compressive
and shear wavea in the szolid, described by the potentials ¢, and ¢., and
compressive waves in the fluid described by ¢o and @2. Suppressing the time
dependence” the displacement potentials are given by

lyoze—lkx —1Yoze-1kx

¢ = Aoe s Z%<-h; ¢2 = Aze

o , Z>h
¢1 = (Asinyz + Bcusyz)e_lkx; wl = (Csiny 2 + Dcosy'z‘)eﬂkx vavaaa(2.1)
where v = {w?/a? —kz)i, y"= (w2/p2 - kz)i, v = (wlfe ? - kz)* which are

the z-components of wavenumber for compressivé and shear waves in the solid
and compressive waves in the fluid respectively. The six unknown wave
amplitudes in equatioms {2.1) are found by requiring :continuity of Pzz, sz
and Wz across the two interfaces z = *h giving six equations. As a .
consequence of the symmetry about z = 0, these equations may be combined to
give two uncoupled matrix equations of order three.
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Thegse matrix equationa describe modes of vibration which are antisymmetric
- and symmetr:c with respect to the plane z = 0. The first antigymmetric

mode is the bending wave of thin plate theory. The first gymmetric mode

represents compressional waves familiar from longitudinal rod thecry.

Dispersion relations for the first two symmetric and ant1symmetr1c

modes are shown in Figure 1,

2.2, Thin Plate Approximations for the Displacement

The matrix equations can be solved for the contributions of the
gymmetric (ws) and antisymmetric (w ) displacements on the face z = +h of
the plate giving

Nplm ¥ + Sikp [ ¢y 2-k2)cotyh ~ 2yy' coty hl e-:ka (2.2)
w = vaeeaa (2,
3 8 ip why ) s
22 _ou_ + (¥ T=k2)2cotyh + 4k2vy coty h
P87,
Nplmz-\r - Siky [ (¥ ®-k2)Ztanyh - vy tany h) e—lk"c (2.3)
v = veaana (20
a‘ -.lpow T [ | |
22 —L— + (y 2-l,nz)ztan-fh + 4kZyy tany b
a4 By

The dispersion telatmns are obtained by equal::l.ng the denominators of (2.2)
and (2.3) to zero.

These solutions will be examined close to the first symmetric Tesonance at

ks( =awfl 28 (a?- Bz)i]) Making the thin plate approximation wh/c, wh/8,
mhlc <<1, equations (2.2) and (2.3) can be approximated by

o 2, Sik
NTs i (-——;’L ) e—i.kx

L =2 h A+Zu le 7™ e (Z2.4)
; 2
Aplk w [k—k . lpokahm A ] _
ik by, ] Buk O Zu) ()
iv [N + Sik_h ] ,
w_ &~ T -ilkx 1anaes{2.5)
a 296“)2 L+ 1hpl-Y05/pD &
where the subscript s implies that a quantity is evaluated at k = ks‘
Thua - aZw? pL w2 (3A+20)
vy 2 = 2 and v '2 = L
B buik+2uii;\+u5 - IO
Equation (2.4) is clearly a resonance term of width, at half height,
Y 3 p !C w-ha2
ok = Lol o veeenn(2.6)

3p3’2(l+u)3’2(1+2u)i
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-iyos Siks Y E-ikx .
N+ . -
2 2 A+lp
29°m Vg h

R )

and of height Qs =

The main features of the formulae {2.5) and (2.7) are (i) for pure normal
, excitation (8=0), the symmetric and antigymwetric modes are equal in
amplitude and opposite im phase to lowest order im h and therefore cancel
to that order. This gives a sharp dip in the displacement (or radiated
pressure) versus wavenumber spectrum at k = k_. (ii) for pure shear

excitation (N=0), the symmetric resonance peak displacement is proportianal

P to w?/h and the antisymmetric displacement to h. Their ratio is, to lowest
order in h, Al[(l+2u)732hzl. Hence, in the thin plate approximation, the
sympetric mode is dominant clese to k = k_. (iii) It can be seen from

Figure 1 that the first symmetric mode is“non-dispersive for kh<l. Hence

this mode propagates ar constant speed c_ (= 28 (uz-Bz)l the thin plate
compressional wave speed) if its wavengmger i% auch that kh<l so that
radiation at the particular angle {sin le fe ) is reinforced from each
Fourier component having w = kcs. o5

3. NUMERICAL RESULTS

The exact equations {2.2) and (2.3) have been used to calculate the pressure
per unit exciting stress (W=1, 5=0 or N=0, §=1) for a range of frequencies.

~A typical set of results is displayed in Figures 2-4 with a frequency of 3kHe,
a plate thickness of Scm and the material constants of GRF. Figure 4 shows
that for normal forces the symmetric resonance at k=6.84m-1 is cancelled by
the antisymmetric mede resulting in a dip. The antisymmetric resonance at
k=28.6m-1 is not radiation damped but is, however, digpersive and therefore
cannot lead to any concentration of radiation at a particular angle. There
is another non-radiating resonance close te ko corresponding to the surface
wave digscussed, for example, by Morse and Ingard [2].

4. CONCLUSIONS

In the presence of a random shear force, it has been demonstrated that a
thin plate will act selectively to tramsmit those components of the
excitation force which propagate with speeds close to the solid compressive
wave speed. This results in radiation from the far face concentrated in a
particular direction of angle sin 1(c°/cs) to the plate normal,

For a random normal excitation, however, this particular component is
suppressed by the plate.
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