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Bearing Erroras Due to Correlated Noise
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This problem was attempted in order to explain an anomaly in the results
from a particular sonar set under certain conditions. It failed to explain
that anomaly, but may possibly be useful in estimating some periormance
characteristics.

Consider a simple model of a hypothetical split beam sonar ag shown in
Figure 1. Four elements are arranged equally spaced on a horizontal line,
with spacing d say. The left hand pair are summed, and the right hand pair
are summed, phase shifted by 90 and time delayed. The two signals are
then correlated. The phase shifting converts a peak in the correlation
function, due to the presence of a target, into a zefo ecrossing, whose
position is easier to measure, as a function of time delay.

Consider half beams whose axis is perpendicular to the array (i.e. to time

delay between the elements of a pair). In the presence of noise which is

uncorrelated between any pair of elements the time delay at which a zero

crossing of the correlation function occurs gives a direct measure of the

. target bearing. However, if the noise field is correlated between pairs
of elements the measured bearing is biased by the noise. -

The bias and variance of bearing in the presence of an isotropic plane
wave gaussian noise field are calculated and compared with the effects of
an uncorrelated noise field, vhich produces variance but no bias.

The calculations prove to be cumbersome and a particular cage is considered
where both signal and noise are bandlimited white noise waveforms in the
frequency range B to 2B with the element spacing d equivalent to ;VL at
the upper frequency 2B. '

Mathematical Model

The mathematical model of the system is ag follows. Both signal and noise
waveforms are agsumed to be bandlimited, white, gaussian and stationary."

The signal at element |} is Sl = 8 'l:-'- Vi éos (1)
for a target at Oan(sie Figure 2) Jl) ( 2 98/6) ‘
where , ‘ G“)S(H"C)) = U3 'W('C) | (2)

<‘> means ensemble average and W("C) = % 'IT§Z cnsz.'ﬁj-,z (3)
BT )
with B the bandwidth and 4, the centre frequency.

Thus 0‘32' is the received signal power at each element.
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The noise at element is

nj(e) = (I%VJA'Q »(t-ié_cg;g,g,qﬁ) 4)

where

hlE8,¢)(tr2,004)) = G WD) S(coss-cos)§ (4- é') (s)

This corresponds to isotropic plane wave noise, with no correlation between
different directions. Also 0R°is the received noise power at each element.

Let P be the phase shift operator. Then it may be shown that

{se)Psie+)) = o* QL) (&)
wi ) = SinaBt sinani, (#)
th QLY nuBe sim - )
A similar result holds for n(k).
Define -
| S = s + sl (8)
NGB = mple) tmlE) (1.
Sp) = Pis,w+se} | (10
Nelty = P{wle) + nyte}] ) A

Then the wavenumber output from the left channel is 50 +N W) , and

that from the right channel is Sllb)-l-l\k(l-).r It is assumed that the
signal and noise do not correlate. K

Then the correlator calculates the function f«) with
rT
Clu) = f 4t (5._(e)+~,_u-))(s,.u-) + N,u-)) (12)
For a target at -93, with ° T= dCases/c ’ i

§Q_1%22 = 0;‘{ QUu-T) + L Qlu-22) + Q(u-s-r.)}

i {42 2 Q- 2g0) + Qlu-adgur] ()

The noise term integral may be evaluated in terms of the tabulated

function C{(X), and so {C(4)) may be plotted as a functionm of u, given
B, fo, d, By, g;* and g,



For uncorrelated noise, the noise term drops out of <C(u)),- and because

Q(X) is an odd function of X, the zero crossing of the signal term is

at Wz A= LdtasBg thus giving the target position. Of course, this
c | |

is the reason for doing the phase shift on one half beam.

However, in the presence of correlated noise the noise term does not
vanish. It does have a zero at u = O because@)is odd but in general
will not be zero at W=2%. The result is that the zero crossing of

{Clw))> will lie between O and 2% and so given a biased target bearing.
This zero crossing may be plotted as a function of T .

For illustration a particular case has been chosen which does show
significant bias effects and is, in some sense, typical of some sonars.
For bandwidth B, the centre frequency will be takem to be 384, , so
that the upper frequency limit is 2B, and the lower ome, B.

The interelement spacing is ‘V,_at the uppér frequency 2B, so that at the

lower frequency the spacing is only a quarter wavelength, -

Useful simple approximations may be made to both signal and noise terms.
The signal term may be expanded in powers of - (L-2%) and 2 , and the
noise term in powers of u. It turns out that thé lowest order approxi-
mations are adequate for O €1 (2T ‘provided T'is such that the target
lies within 10 of the normal to the array, which is equivalent to

Br< VM for the stated interelement spacing,

The result is

Kco) = BT fair o (uize) i u,} SN
Thus (C(u?haa a zero crossing at
. . -1
w-2T = =% (\ + %’%‘i) - (s)

So that a (% ratio of.-21dB would bias the result to the mid point of

a bearing norhal to the array and the actual bearing, irrespective of the
BT product. Figure 3 shows a plot of apparent bearing against actual
bearing. .

Now consider the variance.

This will give a measure of the uncertainty of the position of the zero
crossing of C(u). : :

The variance V(u) is given by

{Cw) — Lc ))1

V(u) is thus a double integral of a product of 4 gaussian variables. There
is a well-known result on the expectation value of such products, such that

for zero mean variables



CRiX X XD = CXXaD< X3 D> + CxXD<X XY + <XHgICR %5y (16)

e Viw) = j, L‘ j I&’{ QLI SUEDDC Splita) Sp(tne))
+ CS L) S (FRODLS, LD 3, :'HH» + MU N DY v (FrON,(E0)
+ CVLLE) N (64u) D CNLLED Mg (6-4102) + (S S 65K (b Ny (Fa))
+ CSUE) S (E0)S VBN, ) +< Su D) SplER)DMLIEI Ny (b))
+ £ Sqlean) SlER) XN ) MDY N (EY)

The expectation values can be written down from previous equations and the
~ integrand depends only on £-§’, not on ¢ and separately. By a change
of variables, and writingv}’ a B~ » the variance is easily showm to

ars
be of the form VW = jf(T-lgl) F(¥)d¥ ‘ (%)

where F(¥) is small for_j'» g-! 5o that if BID> 1 the term in lgl'
is very small compared to that involving T and may be neglected. Now
there is no harm in extending the limit of integration to infinity to
give .

V) =T [FE)ds @

The expection values of second order "products of S and N all involve the’
functions W and Q, and V(u) may be simplified further using the results

fw(z—x)W(x-y)_d.x = L Wity | _G‘?

and

(2= AX = =
J;Q Z x)&(xa:j)d.x _i_ls_ W(z+y) )

Thus V(u) may be evaluated in terms of $i and Ci functions and is compli-
cated. It is of the form - 1.1 Y
T VW) = G5t 4+ Co 0500 + C, 0t (22)

where the C's depend on u, and 7.
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To simplify the result, consider a target on the beam axis, €=¢ , and
calculate the variance only at u = 0, -i.e. at the zero crossing of
Then after some tedious calculations, under the conditions of a signal
band of white noise from B to 2B with element spacing A/2, at 2B,

V(o) = lB— (o' +3305%) (23)

i1f it is assumed that the slope of C(u) in the neighbourhood of the zero
crossing is unchanged from its expectation value (or at any rate that any
change is a higher order effect) the variance onthe zero crossing itself
may be deduced. Instead of Z=0 a. value for. 2.1'. will be found whose gtandard -

deviation is given by
(V(o))h' :

1Y o —
z;:-(C(u))LksO

@

) C L L e 43301.'*),"

() .
B(B'l‘?}L (uzn > 4 (%T,)a“-) o

< 6 42 B"" (B ) R ¢ A R
For uncorrelated noise, with.__u.f 0, z =0"

.V('?) _s=.-. TB" ?0:,"'-:- ?ag':a:,_"} L ‘@'3

It is not nmecessary to locate the particular frequency band or specify
the element spacing to obtain this result. Thus the variance in the case
of uncorrelated noise is a little less than that found for correlated
noise having the particular band location and element. epacing used here.

The approxunatmns for very small (5‘[) ratias break down because of the
assumption that the slope of each actual C(u) curve is 1dent1ca1 to that
of (C(u)) close to its zero crossing.

To clear up this point the covariance rather than Just the variance needs
to be exzamined.

Figure 4 shows plots of the standard deviation as a. function of correlated
signal go noise and also the -tandard dev:.at:.on for uncorrelated noise for
BT = 10 . , -
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Conclusions

A mathematical model has been proposed to find the bias in the bearing
indicated by a split beam correlator in the presence of isotropic plane
wave bandlimited noise., The standard deviation of bearing has also been
calculated and compared with that due to uncorrelated noise '
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