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Bearing Errors Due to Correlated Noise
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This problem was attempted in order to explain an anomaly in the results
from a particular sonar set under certain conditions. It failed to explain
that anomaly, but may possibly be useful in estimating some performance
characteris tics .

Consider a simple model of a hypothetical split beam sonar as shown in
Figure 1. Four elements are arranged equally spaced on a horizontal line,
with spacing d say. The left nd pair are summed, and the right hand pair
are smed, phase shifted by 90 and time delayed. The two signals are
then correlated. The phase shifting conVerts a peak in the correlation
function, due to the presence of a target, into a zero crossing, whose
position is easier to measure, as a function of time delay.

Consider half beams whose axis is perpendicular to the'array (i.e. to time
delay between the elements of a pair). In the presence of noise which is
uncorrelated between any pair ofelnts the time delay at which a zero
crossing of the correlation function occurs gives a direct measure of the

. target bearing. However. if the noise field is correlated between pairs
of elements the measured bearing is biased by'the noise.“

The bias and variance of bearing in the presence of an isotropic plane
wave gaussian noise field are calculated and compared with the effects of
an uncorrelated noise field. which produces variance but no bias.

The calculations prove to be cumbersome and a particular case is considered
where both signal and noise are bandlimited white .noise waveforms in the
frequency range B to 23 with the element spacing d equivalent to 2/1. at"
the upper frequency 28. '

Mathematical Model

The mathematical model of the system is as follows. Both signal and noise
waveforms are assumed to be bandlimited, white, gsussian and stationary.=

The signal at elementj is =5» e 5 5- ft. JM (1)
for a target at 93 (see Figure 2) J!) ( t
where <5“)5(&+Z)> = ‘3 MHZ) (2)

<') means ensemble average and W(‘c =- . 11' 2606111 ‘6 (3)) %?L f. A
with B the bandwidth and f. the centre frequency.

Thus 03" is the received signal power at each element.
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The noise at element is

We) = Wfijm w(t-ié%i§,9,¢) (4)

where

< was”) Mugajqb'» = 0;} m7.) SLme—coso')5(¢— 4V) (5)
This corresponds to isotropic glane wave noise, with no correlation betWeen
different directions. Also a; is the'received noise power at each element.

Let P be the phase shift operator. Then it may be shown that

<quPs(e+c)7 = 663%) <6)
with Q“) = Sjflwfis'c $iw1fl},’s (7')"
A similar result holds for nth).

Define

5,30 = 544-) +4“) (8)”
‘ Nut) = um) nun , (‘7)-
Sgu) ‘= Pfszuo-tswg} _ (Io)
Nam =P{mm~,w} - (n)

Then the wavenumber output from the left channel is 5;“) 'HJLLt) , and
that from the right channel is Sinai-Mlle). It is assumed that the
signal and noise do not.‘ correlate. V

Then the correlator calculates the function an) with
' 1'

604) = fate (Sttt)+~,_u-))(S,(e) + Allie) (I2)
For a target at .93, with a} ‘2: 469.593/6 ,

£ch22 = off cam—z) + zoo-n) + ecu-32)}

“{Q(“"7“*£)+2Q(“‘2é9fi) +Q(“-ié§“—9)} ('3)
The noise tem integral may be'evaluated in terms of the tabulated
function Ci“). and so (CU-O) may be plotted as a function of u, given I
8, £0, d, 98, ag‘ and a“,
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For uncorrelated noise, the noise term drops out-of (Cu-0),- and because
Q09 is an odd function of x , the zero crossing of the signal term is
at u=1r= 1% thus giving the target position. Of course, thisc ,

is the reason for doing the phase shift on one half beam.

However, in the presence of correlated noise the noise term does not
vanish. It does have a hero at us 0' becauseQOQis odd but in general
will not be zero atu=1t . The result is that the zero crossing of
<C(u)> will lie between 0 and 2‘s and so given a biased target bearing.

This zero crossing may be plotted as a function of '6 .

For illustration a particular case has been choen which does show
significant bias effects and is, in some sense,- typical of some sonars.
For bandwidth B, the centre frequency will be taken to be 3% , so
that the upper frequency limit is 213, and the lower one, B.

The interelement spacing is the upper frequency 23, so that at the
lower frequency the spacing is only a quarter wavelength. '

Useful simple approximations may be made to both signal and noise terms.
The signal term may be expanded in powers of - (lo—1'!) and z , and the
noise term in powers of n. It turns out that the lowest order approxi-
mations are adequate for O <u(1‘¢' =provided t'is such that the target
lies within 10 of the normal ~to the array, which is equivalent to
B: < 1/“ for the stated interelement spacing.

The result is

 

KW)“ BTf'zirn‘cuézz2-* 4:? l” " m0").
Thus «(whas a zero crossing at _'

V A ‘1
“71'; = 4:: (\ + "2:3;5?) - (15)

So that a ratio oft-21:13 would bias the result to the mid point of
a bearing no 1 to the array and the actual bearing, irrespective of the
81? product. Figure 3 shows aplot of apparent bearing against actual
bearing. -

Now consider the variance.

This will give a measure of the uncertainty of the position of the .zero
crossing of C(u). , ~

The variance V(u) is given by

(6.04)) ‘— (C(14)):
V(u) is thus a double integral of a product of 4 gaussian variables. There—
is a well-known result on the expectation value of such products, such that
for zero mean variables



     

<x,x,,x, x.) = (max we) + <x.xa><xat>+<X.x-oxxtxg ('6)
Using this

V(u) = J,(SLLe)5._(t’)7(s,,u-+u) Ska/+10)

+ (SLLE) sktr’w)><s,_ze’) S,1 few) + <a/,_(9)~,_tej><~¢ 1m)%(eau;>

+ < Ma) Ma (94.4))(th95Nxtew» + (SLIE)SJP5><WM)W*’+I~))

.+ < Sue’) 5“(E+u))<NL(b)N¢ler—u)) + (sLtk)$R(b#u)XM_u-§Nnmu))

_+ < 5,. m") 5fl(g#u)><~Lcc-)~Lle’)7 _ _ (Pr)

The expectation values can be written down from revious equations and the
integrand depends only on fi-k’ , not on fiend separately. By a change
of variables, and writinv - («J—t- , the variance is easily shown tobe of the form (u) e j71-. 1'51) H3) 43' (I?)
where Pg) is small for§>> 8" sit-that if 31‘?) 1 the term in ISI-
is very small compared to that involving T and may be neglected. Now
there is noharm in extending the limit of integration to infinity to

V(u),”f Fwd; - ' - (m)
The expection values of second order ‘products of S and N all involve the'
functions W and Q, and V(u) may be simplified further using the results

fw(e-K)W(x+g)_dx egg. kin-+3) It (to?

and

V m . .

( — = -LOQ E x)Q(x+g)d.x 3J8. LOG-+5) (7.!)

Thus V(u) may be evaluated in terms of Si and Ci functions and is compli-
cated. It is of the form

VM= Cw“ + Cmog‘rn‘ + Cunt»? m)where the C's depend on u, and ’r. .  



        

To simplify the result, consider a target on the beam axis, 2:0 , and
calculate the variance only at u = O,~i.e. at the zero crossing of
Then after some tedious calculations, under the conditions of a signal
band of white noise from B to 23 with element spacing 1/1, at 23,

Wu) Z 1.; (muos‘af +13%“) _ (23)

If it is assumed that the slope of C(u) in the neighbourhood of thev'zero-
crossing is unchanged from' its expectation value (Or at any rate that any
change is a higher order effect) the variance on the zero crossing itself
may be deduced. Instead of . 239 a.value for it will 'be found-whose standard -.
deviation is given by ‘ 'Ih.

its Ix -- V ,(14)

 

"v‘ <’ $43,134 (51")7'21 ' ', (24')

For uncorrelated noise, with u.- 0., .-=. O'.
1' - . ' r

1

Via) T8"?¢,'f.+ Vag'efif} _. - Q?)

It is not necessary to locate the particular frequency.band or specify
the element spacing to obtain this result. Thus the variance in the case
of uncorrelated noise is a little less thanthat found for correlated
noise having the particular band location and element. spacing'used here.

The approximations for very small ratios-break down because of the
assmnption that the slope of each actual C(u) curve is identical to that
of (C(u)) close to its zero crossing. " -

To clear up this point the covariance rather than just the variance needs
to be examined.

Figure la shows plots of the standard deviation as. a-function of correlated
signal in noise and also the standard deviation for uncorrelated noise for
31' = 10 . - -' , ' ' - ' -



 

Conclus ions

A mathematical model has been proposed to find the bias in the bearing
indicated by a split beam correlator in the presence of isotropic plane
wave bandlimited noise. The standard deviation of hearing has also been
calculated and compared with that due to uncorrelated noise. '

 



 

-77-

  
d
w
e
s
v
i

 



mus Beagme, (DgelrzeeS) SIQNAL To No.56 2mm (:18)

~30 .10 -IO

 

np
pn

ae
w‘
r

se
n/

1w
:

(‘
DE

<:
&E

E$
)

N
-

+>
o~

W

I0
Ftfiu Re 3’

t.
..

c
"

.
I

I
|

o
._

a
, a

s
‘ E

5:
3

S
I
Q
N
A
L
T
o

N
O
I
S
E

R
A
T
I
O

ads

«as

s
-
r
a
wj

m
m
a
)
e
v
m
-
n
o
N
(
I
m
a
g
e
s
)

_
—

N
9

.
.

,
N

m
.
-

0
vs

.
0

5,.

   
F! fiuRE 4»

CORRELAreD Nose

 
 

E

-
8
1
.
-

  
 


