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1. INTRODUCTION

The source location estimation problem in the presence of partly unknown noise fields is
investigated. In eigenstructure methods or parametric methods as maximum likelihood, the
additive noise structure is usually assumed to be known, for instance to be sensor noise, i.e.
of equal power and uncorrelated from sensor to sensor. The aim is to find a suitable estimate
not requiring this knowledge. In sonar, noise structures can be complicated and unknown. The
use of a wrong noise model can result in a break down of the estimate.
Certain knowledge about the structure of noise enables to estimate the other part together
with the signal parameters. Recently some authors. cf. [1], [2], [3] and [4], adapt
eigensn'ucture methods for different noise models. In continuation of [5], we investigate the
conditional maximum likelihood estimate (CMLE), the conditional marginal maximum
likelihood estimate (CMMLE) and three different least squares fits (LSF's). One of the LSF's
is a slight modification of an estimate proposed in [3} that supplies asymptotic efficient
estimates. In opposite to [3], we use an unbiasedestimate of the inverse spectral density
matrix obtained by an appropriate scaling of the inverse sample spectral density matrix. In
addition, we develop a two stages estimate (TSE) combining CMLE and CMMLE for the
location parameters estimation and the noise spectral parameters estimation, respectively.
An outline of the paper follows. In section 2, the data model and the parameter structure are
introduced. The criterion of the CMLE is developed in section 3. The estimation of variance
components via CMMLE is investigated in section 4. The LSF‘s and the TSE are described in
section 5 and section 6, respectively. In section 7, results of numerical experiments are
presented. We conclude with some remarks.

2. DATA MODEL

A conventional model is used. Sources m = 1,...,M generate signals that are transmitted by a
wavefield. The wavefield has known properties of propagation except for some parameters.
As in sonar, the outputs of the sensors 11 = 1,...,N are Fourier transformed with a smooth,

normalized window of length T. For a frequency a) of interest, we get data Xk(rn) =

(Xl;(m),...,X1:(w))' of k = 1,...,K successive pieces of sensor outputs, similar to the radar

baseband data. Correspondingly, Sk((o) = (Sll‘(m),...,S:d(co))' denotes the Fourier transformed

signals received at the origin. The array output is assumed to be a zero-mean stationary
vector process. The propagationrreception conditions for signals can be described by a (NxM)
matrix H(cu) with the elements Hm)“: exp(j(ut,,,,,) (n=1,...,N; m=I,...,M), where In", is the
time delay of the math signal in the n—th sensor. The columns of H020) are known as the
steering vectors dm (m=1,...,M). At the sensors, the signals are measured additively disturbed
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by noise. The (NxN) spectral matrix Cx(co) of the array output is assumed to be

Cm») = H(m)C.(m)H(w)* + cum». (1)
where Cs(0)) is the (MxM) spectral matrix of the signals, Cu(u)) is the (NxN) spectral matrix
of noise and * denotes the hermitian operation. Let us apply the well known asymptotic
properties of the Fourier transformed array output for a large window length T:

i) X1(m) , . . . , XK(0)) are independent and identically complex-normally distributed
random vectors with zero-mean and covariance matrix Cx(o)) as in (1).

ii) Given 81(0)) , . . . . 51%;), the x‘(w) . . . . , XK(n)) are independent and identically
complex-normally distributed random vectors with mean H(cu)Sk(m) and covariance
matrix C“(o)).

Now, we have to specify the parameters. Because we have fixed the frequency 0), we omit its
notation in the sequel. The wave parameters are described by the vector E, and we can write
H = H(§). For spheric waves, E summarizes, e.g., bearings and ranges of the sources. The
spectral parameters of the signals are given by the entries of Cs . The spectral matrix C“ is
defined by

L L

0,: £OV,J;= v, [1+ slain] = v,C,, with 10:1, (2)
I: I:

where V = (v0,...,vL)' are the noise spectral parameters and p. = 011,...,|.LL)’ with pi = vi/V0

for i=l,....L. The I, are supposed to be known nonnegatively hermitian matrices for angle
band—limited noise of different directions and widths. For example, assuming farfi'eld noise in
the plane, known angle spectra C i (a) and a half wavelength equispaced line array, the entries
of Jican be

1!:
Jim=f exp[(n—m)1tsin0t] C, (at) da/(21t). (3)

-1I:
Thus, for i) the parameters of CK = Cx(0) are 9 = (col(C;)',§')' with C = (fi',v')'. For ii), the

components of Sk are unknown. The Sk can be interpreted as parameters, and we get '0 =

(81,...,SK,§',vo,u')‘. Generally, the number M of sources is unknown in addition. We assume
to know M with M<N in this study.

3. CONDITIONAL MAXE/[UM LIKELIHOOD ESTIMATES

Properties i) and ii) permit to formulate approximate maximum likelihood estimates. The
application of ii) characterizing a conditional distribution leads to the conditional log-likeli—
hood function

K
1(a) = — N logv, — logdeth — “1K k51(x"—Hs“)‘c;1(x“—rrs“) (4)

that has to be maximized over the parameters 13. We first optimize 1(9) over Sk and v0 while
the parameters g and u are fixed. The necessary conditions for Sk and v0 result in

§*=(H‘c:1H)-1H'cxlx*|§,u. vo=uttxl(I—Pv)é,1/N|§, , (s)
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where P, = I-I(I-I'C.7‘I~I)"H‘(‘,;1 and the data are collected to

C, = l1(ki::lx“x“‘. (6)
An explicit solving for p. seems to be not feasible. Therefore, using (5) in (4) we get CMLE's
by minimizing the criterion '

qtétx) = g, logdezcv+ logtr[C:1(I-Pv)éx]. (7)
iteratively over the wave parameters E and the parameters [1.

4. CONDITIONAL MARGINAL MAXIMUM LIKELIHOOD ESTIMATES

That CMLE's of variance components can be heavy biased is well known in statistics. To
overcome this problem, already mentioned in [5], the less biased CMMLE is introduced. The
CMMLE is performed by maximizing the conditional likelihood function based on the
transformed data 'I‘Xk over the noise spectral parameters v, where T is any matrix orthogonal
to H.

L(v) = — logdet(TC“T) — tr[T(T'C.,T)‘1T'éx] (8)

Differentiation of (8) with respect to V and after some algebra, the CMMLE's are obtained by
solving the nonlinear equation system

HICE‘fl-Pulli} = HICEIG-Pufl iCu1(I_Pu)éx]: i=0..--L (9)
which is independent of the chosen T. To solve (9) several techniques are known in
numerical mathematics. For the case that one of the Ji is equal to the unit matrix, a special
iteration procedure

vi“ = v‘i xterm—Punt CE'(l-Pu)éx}/tr[CE‘(I~Pu)-Ii} [v15 (10)
has been proposed in [6]. This procedure has the interesting property that, if the inital v‘} are

nonnegative and the J, are nonnegative definite. the v‘} stay nonnegative.

5. LEAST SQUARES FITS

A least squares fit of the model (1) to the sample spectral matrix C, can be performed by a
variety of different criteria. In this contribution, we present the following three,

(18(9) = “[(Cx:éx)2]- (11a)
qb(§) = trt[(I—P)(Cx—Cu)]2}. (11b)

qc(e) = tractor-DZ], (11c)
where P = Hm'm-IH* and (:1 = (l—N/K) C;1 with EC;1 = c;1.
The idea of constructing LSF's is as follows. We first try to optimize q“(0), qb(C) or q°(8)
over the spectral parameters where the location parameters are fixed. If we get explicit
solutions, we put them into the criterion and minimize over the location parameters.
Minimization of qfl(9). qh(§) and q°(8) over the spectral parameters without restrictions yields
the explicit solutions, respectively.
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C: = m’m-lfl‘téx—cumm‘m-ll g V. v- = A-lb. (12a)

At,- = nah—Pmle . bi= truéx—chmii .

V” = A-lb , (12b)

Aij = via—Pma—Puji . bi= URI-PH; (I-P)éx] .

6: = (H‘c‘m-'H‘é;l(éx—C.)C;1Hm’cam-1lg v . W = A-lb . (12c)
An = uttJa—letrifirlj (2:11 . bi= trlG-Pxfli (:11 ,

where P)( = H(H*C;1H)‘1H'C;1. After replacing the spectral panneters in (11a) to (11c) by
their corresponding estimates. we find estimates of the location parameters by minimizing

(NO) = trl [HQ-caij-(éx—éatzi. (13a)

NC) = ul[(I-P)(C.—CB)]2L (13b)

we) = II! [unto-Cs)Px—(Cx—Ctmzliz1. (13c)
iteratively, where C: is given by (2) if v is replaced by V' etc. The minimization of the
criteria (13a) to (13c) as well asthe minimization of criterion (7) require global searches and
local optimization techniques.

6. TWO STAGES ESTIMATES

The goal to separat the wave parameters estimation from the spectral parameters estimation
fails for the CMLE. In this case, a reduction of the computational burden can be achieved by
a two-stages method different from the method described above. In [5] the TSE as an
alternative to the CMLE has been proposed by heuritic arguments. Because both, CMLE and
CMMLE belong to the same family of estimators an even better motivated TSE can be
constructed by combining CMLE and CMMLE for source location estimation and noise
spectral parameters estimation. respectively.
The procedure is as follows. Initially, the bearings and ranges are estimated by a simple
procedure introduced in [7]. With these estimates and appropriate initial values of v, a

CMMLE of the noise spectral parameters is achieved by (10). The resulting estimate C of
CV is used for a CMLE of the bearings and ranges that minimizes

q(§) =tr[C7‘(I-Pv)éxl. (14)
if Q71 is replaced by C,71 in (7). The spectral parameters could then be estimated again etc.
These two stages allow a separated determination of wave parameters and spectral parameters
as well as a recursive procedure. The minimization of criterion (14) is carried out similar to
that indicated in the previous section. The convergence speed can be enhanced when
performing only one iteration for each recursion.

7. NUMERICAL EXPERIMENTS

We investigate the precision, the stability and the common behaviour of the TSE in
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comparison with the CMLE using the exact noise structure as well as the LSF's in
comparison with the CMLE in the presence of sensor noise only. Several numerical
experiments were performed, especially when resolution problems are expected.
Model (1) is used for a line array of 15 sensors spaced by a half wavelength in the plane. The
matrices J; of the noise model are determined by (3) with the angle spectra

2 . . . ._ . . .ci(a)={3/YICOSWYI(a-<P1)L genera; 2s a s ¢.+ 7J2,

where (pi , 7, denote the centre and the extent of the i—th noise profile, respectively.
In the experiments presented, three sources located approximately broadside generate uncor—
related signals, cf. figs. 1a to 3a. Unknown wave parameters are the bearings [5m and the
ranges pIn (m=1,2,3). The following noise models,

1) sensor noise,
2) three-parameter noise model with vo=v1=v2, cf. fig. 2a,
3) four—parameter noise model with V0=V1=V2=V3, cf. fig. 3a,

are used. The C" are complex-Wishart distributed with K=20 degrees of freedom, except for
the LSF (8b) with K=50. For each experiment, 2048 pseudo-random matrices and also all
estimates are computed using scoring. In figs. 1 to 3 scatter diagrams show the results of the
bearing estimates for the noise models, respectively. Crosses indicate the exact signal
parameters. The signal-to—noise ratio (SNR) of a source is defined by SNRm =
1010g(NCsmm/u'C,,). Space limitation does not allow to present the range estimates.

8. CONCLUDING REMARKS

The estimates developed in this paper have been empirically investigated by a multitude
of numerical experiments, especially when resolution problems are expected. The numerical
experiments indicate that, although the LSF (11c) supplies asymptotic efficient estimates, the
finite behaviour is even worse in comparison to CMLE and the other LSF's. Compared with
the CMLE. the LSF (11c) uses approximately a 2.5 times higher number of degrees of
freedom for the same accuracy. The accuracy and stability of the TSE combining CMLE and
CMMLE are satisfactory and depend slightly on the parameter number of the noise model.
The TSE well approximates the CMLE for known noise structure.
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Fig, 1; Scatter diagrams of experiment 1,
sensor noise only.
a) Signal configuration, qualitative.
b) CMLE, K=20 DOF.
c) LSF (11a). K=20 DOF.
d) LSF (11b), K=20 DOF. '
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c) ' ' “Bx-m.“ I ' e) LSF (11c). K=50 DOF.  
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Fig, 2; Scatter diagrams of experiment 2. Eighi; Scatter diagrams of experiment 3.

3) Signal and noise configuration, qualitative.
b) CMLE using the exact noise structure, K=20 DOF.
c) TSE. K=20 DOF.
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