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1. INTRODUCTION

the analysls of mullicomponent signals with a strong time varying spectrum content, it Is
desirable to try and describe the distribution of energy In the signal as a simultantous function
f time and frequency. The conventional analysls tool employed in speech research Is based
upon the sound spectrograph Introduced in 1946 [1). The present day realisation of the
original sound spectrograph Is performed elther by a filter bank analysis of the speech or by a
Fourier transform of a windowed wversion of the tme series. Although these two approaches
have been shown to be equivalent [2] it is primarily with the second approach that this paper
will contrast. Consequently In order 1o make this distinction the output of a Fourier transform
of a windowed version of the signal will be refered 10 as a sliding window representation.

_ Although this technique has much intuitive appeal, it is nevertheless not the only way of
representing a non—stationary signal as a Joint distribution of both time and frequency. The
history of attempts 0 preduce an instantaneous spectrum can certainly be traced back to the
end of the nineteenth century [3). More recently there have been many distinct, proposed
joint distribution functions in flelds as diverse as radar (4], loudspeaker design [5], speech [6],
laser physics [7] and quantum mechanics [8). The gquestion of what is the best way of
representing a signal in any given application area has hardly been raised and a detailed
analysis comparison Is rare.

The alm of this paper is to consider an alternative analysis of speech signals based on the
Wigner distribution function.
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2. HISTORICAL BACKGROUND

The Wigner distribution is an analysis technique which was originally Introduced by Dirac {9)
and sutsequently credited 1o Eugene Wigner [10] from a paper attempting to describe quantum
systems close 1o thermodynamic equilibrium. It was reallsed that this method closely paralleled
classical techniques and so it found application in the fundamental foundations of quantum
theory [11], non—equilibrium quantum statstical mechanics [12), the dynamical transport
behaviowr of electrons in small semiconductor devices [13] and optical systems theory [14]. In
these sreas the conjugate varlables are posiion and momentum which are related by the
Heisenberg Uncertainty relation. This essentially states the Impossibility of measuring how fast
an object Is moving at a specific location arbitrarily accurately.

In slgnal processing theory there is an analogous relation between the conjugate variables of
time and frequency. This information—theoretic inequality proclaims that the bandwidih of a
signal of finite duration At cannot be less than the spread in frequency AF determined by the
expression MAfyp [15, 16, 17] where the constant p is of the order of unity (the explicit value
depends precisely upon the definitions of signal duration and frequency spread).

Consldering thls correspondence between signal processing theory and quantum mechantes, It
would be hoped that techniques developed in one field may be of some wuse in the other.
Therefore it would appear reasonable to make the Wigner distribution a function of time and
frequency instead of position and momentum, and apply the analysis to selected problems
involving non—stationary signals, This is precisely what Ville attempted in 1948 [18). However
his efforts recelved very little attention at that time. Indeed it was not until 1980 in a seminal
series of three articles by Claasen and Mecklenbraiiker {19] that the technique received a proper
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signal processing basls being generallsed from the continuous case to that of discretely sampled
signals, Since that work various authors have realised the potential of the technique for
analysing phenomena whase principle frequency components vary rapidly with time, Selected
cxamples of applications in the signal processing area appear in loudspeaker design [20],
time—variant filtering theory [21], target ranglng [R2], blological time keeping activity [23], and
a prellminary foray into speech analysis [24].

3. DEFINITIONS AND PROPERTIES

The Wigner distribution may be considered in mathematical terms as a Fourier tramsform on
the off diagonal elements of the autocorrelation matrix of a random process. Specifically for a
{possibly non-—siationary, complex valued) random process x{t} the autocorrelation matrix Is
K(1, .t )= <x(1,)x*(1,)> where <..> Indicates an ensemble awerage. Then the Wigner
distribution of this process is defined as

Welt,w) = I dr e~JOT K{t-r/2,t41/2) {1}

(note that unless otherwise stated, all integrals will be astumed to be over R = [—=.x]).
It Is assumed that the autocorrelation matrix has a bi—dimensional Fourler Sueltjes transform
and hence we are dealing with harmonisable random processes.

The definition (1) corresponds to the definition In quantum mechanics in terms of the statistical
density matrix where the sate of the system {s given only as a weighted statistical mixture of
pure states. The equivalent of a pure state is a deterministic signal which will be dealt with
‘exclusively in this paper. In the case of deterministic signals, the definition (1) simplifies t0:—

Wy(t,w} = I dr a~Jor x*(tor/2)x(t4r/2) ()
Contrast the Wigner distributlon with the definition of the sliding window representation :—
2
Syl(t,w) = | _[dr e']_“" x(r)h{t-r) I (&)

.where h is the otservational time window.

Evidently the propertes of the siiding window representation depend cruclally upon the cholce
of a window function and in particular on the duration of this observational window. Since the
product of x(r)h{t=r) ls an effective signal of finite duration then we may deduce from the
information—theoretlc Inequality AtAfyp that the minimum bandwidth of the windowed signal is
restricted,  Consequently  one is interested Io analysing fine frequency details such as
harmonics of the fundamental pitch period In wolced specch then the effective duration of the
signal has to be long which Implies a very broad observational window. Unfortunately this
means that flne temporal detafls In the original signal will be smeared out due to the weighiing
process Inherent In the definition (3) of the sliding window representation,  Alternatively if the
alm of the speech analysis is to follow the behaviour of translents such as the onset of the
glotal pulse closure or the tramsltions between different acoustic features, then it is important
to restrict the observational window to the region of Interest. The effect of this constraint is a
short durational signal whose minimum bandwidth ls large and hence all fino specirum details
will have been lost. This dichotomy of time—frequency resolution trade—off is perhaps the
major disadvantage of the sliding window representation for speech analysis. The Wigner
distritution does not have this window function (in the continuous, infinite time ideal case
which we consider here for clarity; practleal applications of course require the use of sampling
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and windowing of data discussed shortly) and hence does not suffer from the same problems.

Frequency domain construction. )

Sometimes the analysis of the Wigner distribution from the frequency domain is more
convenlent, particularly when the signal representation is more caslly expressed in terms of
frequency such as Is the case In filter systems, In such a situation, the Wigner distribution
may be obtained from the Fourler tramsform X(u) of a signal x(1) as :—

We(w,t) = !:— Jdr X (w-F/2)X(urEr2) edit )
from which follows the self dual nature of the Wigner distribution :—

Wy(t,w) = Wylaw,t) (5
Properties.

Further desirable properties which follow from the definitions are
(i} the Wigner distribution is real valued (even for complex valued signals)

(i) a time shift of the signal corresponds to a time shift of the Wigner distribution

Wy (r-a)(t, o) = Wlt-a,u) (6)
(ili) modulating the signal with exp{jit) results in a frequency shift

wx(t)exp(jnt)(‘-“’) - W (t,w-) (7)
(lv) Integrating the Wigner distribution over time glves the energy density spectrum of the signal

]
_[ dt W (t,w) = [S(u)l (8)
(v) integrating the Wigner disiribution over frequency yields the instantaneous signal power

j do Wy(t,0) = 2¢ |.m|’ (9

{note that the sliding window representation can only ever give an averaged vemslon of signal
power and energy density)

(V) Invertibllity: the signal and I spectrum may be uniquely recovered up to an overall phase
factor from the Wigner distribution

x(t)2rx(0) = I dw Welt/z,w) elut {10)

X(W)X(0) = _[ dt Wy(w/1,t) e~Jut | (11)

In addition, for finlte energy signals the Wigner distribution Is bounded, normalisable and square
integrable. Finally, for signal procesting applications It is useful to know that:—

(vif} the Wigner distribution of the convolution of two signals ls equivelent 1o the convalution
I the time domain of the Wigner distributions of the individual signals
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{vili) the Wigner distribution of the product of two slgnals i1 equal to the convolution in the
frequency domain of the Wigner distributions of the individual signals, and

(ix) the Wigner diswibution of the sum of two signals h given by the sum of the Wigner
distributions of the component signats, plus the Wigner distribution of the cross correlation
between the signals,

These properties make the Wigner distribution an interesting mathematical object.  However
they l:lm open up the possibility of a wseful representation of non—statonary signals such as
speech.

4, EXPERIMENTAL PROCEDURE

In a dighial signal processing environment, a transition of definitions has to be made between
the continuous and the discretely sampled case, There have been several interpretations of how
this transition should be performed [25, 26, 27]. However the most straightforward way for the
application In this paper is 10 employ the intuitlvely obvious discrete version of equation (2):—

Wy(n, ) = 2 ) o= IZKE ¥ (n-k)x (k) Q2)

of, In termy of the spectrum of the discrete signal

T

We(B.n) -% ] ed2nd x*(g-TyX(8+1) df (13)
It should be evident from (13) that the effective sample polnts upon which the Fourier
transform Is performed are now equivalent to a time spaclng of 24t and the Wigner distribution
above Is periodic In frequency with a period r insiead of 25 as In conventional spectrum
analysis, Therefore in order to avold aliasing problems it Is necessary to oversample the
original signal at twice the Nyquist rate. As long as this requirement of using an oversampled
ﬂ;nalhadheredtolhenmostofthepmperﬂuofthecontlnuousumcmecarrymtnthe
discrete version.

An alternative approach 1o using an oversampled real signal is to employ the analytic signal
(0= sy +jy(t) where x(1) Is the original signal sampled at the Nyquist mte and ¥(t) iz the
Hilbert transform of x. ‘There Is & good physically Intultive reason for utilising the analytic
eignal as opposed to the real signal: a real signal has a spectrum which ks symmetric about its
origin and hence the expectation value of the frequency Is zero whereas the analytic signal Is
defined to be zero for negative frequencies and hence its expectation value should yield a
positive contributlon for the frequency. Therefore the analylic signal makes more sense in
situations where the concept of an instantancous frequency proves to be useful (albeit
mathematlcally impossiblel). For example consider & simple tone, x{1)=cos{wy). The
expectation value of the frequency of this signal Is zero due o the cancelling contributions of
positive and negative frequency components, However the frequency expectation value of the
corresponding apalytic signal, s(t)=explic,t) It w, as we would intuitively expect.

In this paper the real signals are converied into analytic signals which are also oversampled by
s factor of two. Consequently the aliasing problems are certainly avoided and spurious
correlation effects between symmetric positive and negative frequency components in the signal
are meglected.  Furthermore the scaling of both the sliding window representation and the
Wigner distribution to the same frequency range may be automatically ensured by sampling the
analyte signal half as often for the sliding window case as the Wigner distribution case.
Finally s comment on windowing of the data. In theory the Wigner distribution does not have
an explicit window function. In practice with the constralnts of the discrete Fourler transform
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and memory limitations the Wigner distribution is only calculated using a finite number of data
points (511 per time slice). Therefore for each point in time, n, we form the Wigner kernel
s'(n—k)s(n+k) for ke [—255255], multiply by an optional (Hamming) window function w(k)
" (the window should have the property that w (k)= w{—k)) centred at k=0 and apply an FFT
algorithm. The practical effect of windowing is to distort the frequency values slightly which is
not a problem in our case. However an arbitrarily accurate frequency resolution may be
obtained, if desired, by using more points in the FFT routine.

Thus the procedure followed in obtaining an output from a real signal is as follows. Take the
original real signal sampled at the Nyquist rate. Convert into an analytic function oversampled
by a factor of two., The analytic function is then used as input to both the sliding window
routine and the Wigner distribution calculator. The sliding window representation employs a
step length twice as large as used by the Wigner distribution, and prior to being Fourier
transformed is windowed by a Gaussian shape of user specified bandwidth (the bandwidth is
defined such that by half the bandwidth the power window has fallen to 1/e of its maximum
value) and cut off at 1% of its peak value.

There are 256 frequency values calculated in each time slice, and 512 time slices per picture.
The real output values are logarithmically scaled and linearly quantised into 120 levels for
positive values and 120 levels for negative values (only relevant for the Wigner distribution)
prior to being displayed on a high resolution graphics screen. The results of photographing the
screen are displayed in the subsequent pictures.

5. RESULTS
Picture 1.:This depicts
a chirp (a signal whose
frequency increases SPEECH ol

linearly with time).
The smearing of the RESEARRCH

fine resolution in the UNIT o
Wigner distribution o
by the wide band

analysis of the chirp

sliding window

is evident. Clearly
the mean squared
deviation from the
instantaneous frequency
is greatest for the
sliding window
representation.
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Picture 2.:A sequence

SPEECH
RESEARCH
UNIT

dampsin

¥
! 28
.

a single formant case.
Again the temporal :

* structure of the [
onset of the impulses ¢
are evident as
vertical lines in § P,

. the Wigner distribution. §

: The formants are also
evident as horizontal
structure in both cases.
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Picture 4.:A segment "m
of real voiced speech

(the /u:/ part of a | SPEECH  |edoi
male saying 'two'). { RESEARCH

This picture should | UNIT

be compared to 2 and i

3. The Wigner

picture displays real_ooh

explicitly the impulse
associated with the
sudden closure of the
glottal folds, the ’
decay of the impulse
into the first four
formants (the formants
being the pronounced
horizontal bands) and T Kz
the harmonics of the
fundamental frequency.

Vs
WAVEFORTY-
TINE wi~>
Picture 5.:As a
contrastive example,
this shows the

different time—frequency

srocure produced by | REGEARCH
noise. The Signa] is UNIT
uniform, band limited
noise smoothed with a

Gaussian envelope. £

The narrow band .saussno ise : o
analysis of the top 5 19 Sy
picture has clearly B l e
missed much of the 9

the Wigner function.
Also apparent is the
compaciness in
frequency of the
Wigner representation.
This picture should be |
compared with the P
example of a periodic
signal in picture 2.
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Picture 6.:An example
of aspiration —eoerrid |
(the release of the i REEEEgEH
/t/ from a male UNIT
saying ‘'to').

How close band—
limited noise can
model fricative sounds
may be gauged by
comparing the Wigner
distribution patterns

of this, and the
previous picture. The
contrast in patterns
between this and the
voiced sound,picture 4,
should also be noted.

real_t_o

6. CONCLUSIONS

This paper has depicted examples of speech sounds using two distinct time—frequency
representations. From an inspection of the outputs of the corresponding representations it is
clear that the Wigner distribution has the ability to elucidate simultaneously fine spectrum
details and localised time events, in contrast to the sliding window representation, Also there
appears to be a larger contrastive difference between acoustically distinet signals using the
Wigner distribution which may prove to be of some use in the separation of similar sounding
words and speaker identification. Therefore considering the Wigner distribution as an in—focus
spectrogram shows its potential applications in wvery high resolution problems such as
speech—in—noise, and speaker separation work. Moreover since any smearing decisions have
been delayed (presumably to a later stage of data—reduction when it is decided what is relevant
in the signal, either physiologically or mechanically), the Wigner distribution is a natural basis
for a theory of time—variant filtering.

Its disadvantages are essentially linked with the retention of maximum information in the
picture: current recognition algorithms are unable to succesfully handle the data rate supplied by
the Wigner distribution. Moreover because the Wigner distribution makes explict correlations in
the signal, this leads to a time—{frequency structure (ghosting) appearing at twice the periodicity
of repeating structure in the original signal. Although this ghosting is annoying (albeit essential
for obtaining correct averages), it does not detract from the interpretational power of the
Wigner distribution in the time—frequency domain. Finally although the Wigner distribution is
as close as one can get to a joint probability distribution of time and frequency without
violating the information—theoretic inequality, it cannot be strictly interpreted as a true
probability distribution function since in general it can take on negative values, This is not a
detriment since the physically relevant features are the ‘observables' derived from the
distribution (for example, the perceived sound of an acoustic element). The Wigner distribution |
is set up to calculate the ‘observables’ correctly whereas the sliding window representation can
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only reproduce the smeared and distorted equivalent of the observables.

As a closing remark we comment that this study has only scratched the surface of what
promises to be a fruitful analysis philosophy for speech work. It is hoped to extend this
approach and further exploit some of the links between signal processing theory and quantum
mechanlcs to the benefit of speech recognition and synthesis in the near future.
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