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I . INTRODUCTION

the analysis of multicomponent signals with a strong time varying spectrum content. It is
desirable to try and describe the distribution of energy In the signal as a simultaneous function
1 time and frequency. The conventional analysis tool employed in speech research is based
pen the sound spectrograph introduced in 1946 [1]. The present day realisation of the

original sound spectrograph is performed either by a filter bank analysis of the speech or by a
Fourier transform of a windowed version of the time series. Although these two approaches
have been shown to be equivalent [2] it is primarily with the second approach that this paper
will contrast. Consequently in order to make this distinction the output of a Fourier transform
of a windowed version of the signal will he refered to as a sliding window representation.

Although this technique has much intuitive appeal. it is nevertheless not the only way of
representing a non-stationary signal as a Joint distribution of both time and frequency. The
history of attempts to produce an instantaneous spectrum can certainly be traced back to the
end of the nineteenth century [3]. More recently there have been many distinct, proposed
joint distribution functions in fields as diverse as radar [4]. loudspeaker design [5], speech [6].
laser physics [7] and quantum mechanics [8]. The question of what is the best way of
reprseotlng a signal in any given application area has hardly been raised and a detailed
analysis comparison is rare.

The aim of this paper is to consider an alternative analysis of speech signals based on the
Wigner distribution fwtction.
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2. HBTORICAL BACKGROUND

The Wigner distribution Is an analysis technique which vm originally Introduced by Dirac [9]
and sumeqneatly credited to Eugene Wigner [10] from a paper attempting to describe quantum
systems close to thermodynamic equilibrium. It was realised that this method closely paralleled
classical techniques and so it found application in the fundamental foundations of quantum
theory [it]. non-equilibrium quantum statistical mechanics [12]. the dynamical transport
behaviour of electrons in small semiconductor devices [13] and optical systems theory [14]. In
thue areas the conjugate variable are position and momentum which are related by the
Heisenberg Uncertainty rdation. This essentially states the impossibility of measuring how fast
an object ls moving at a specific location arbitrarily accurately.

In signal processing theory there is an analogous relation between the conjugate variables of
time and frequency. This information-theoretic inequality proclaim that the bandwidth of a
signal of finite duration At cannot be less titan the spread in frequency of determined by the
expression Man [15. 16. 17] where the constant [L is of the order of unity (the explicit value
depends precisely upon the definitions of signal duration and frequency spread).

Considering this correspondence between signal processing theory and quantum mechanics, it
would be hoped that technqu developed in one field may be of some use in the other.
Therefore it would appear reasonable to make the Wigner distribution a function of time and
frequency instead of position and momentum. and apply the analysis to selected problems
involving non-stationary signals. This is precisely what Ville attempted in 1948 [18]. However
his efforts received very little attention at that time. indeed it was not until 1980 in a seminal
series of three artlcl by Classen and Mecltlenbra'ulrer [19] that the technique received a proper
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signal processing basis helng generalised from the continuous case to that of discreter sampled

signals. Since that work various authors have realised the potential of the technique for

analysing phenomena whose principle frequency components vary rapidly with time. Selected

examples of applications in the signal processing not appear in loudspeaker design [an].

time-variant fillean theory [11]. target ranging [22], biological time keeping activity [11]. and
a preliminary foray into speech analysis [14].

3. Dmfi AND PROPERTIB

The Wigner dktrlhutlen may he considered in mathematical terms as a Fourier transform on

the off diagonal elements of the autooorreiatlon matrix of a random process. Specificauy for a

(posihly non-nationary. complex valued) random proces :0) the autocorrelation matrix is

Kil..l,)=<l(t.)x°(l,)> where <...> lndieata an ensemble average. Then the Wigner

distribution of this process is defined u

exam) - I dis-iv" K(t-r/2.t+1/2) (1)

(note that unlm otheer stated. all intemis will he mooted to be over I? = [-w.wl).
It Is assumed that the nutocorrelatlon matrix has a hi-dimensionai Fourier Stleitjes transform

andhenoewearedealingwlthharmonisahierandompmcmes.

The definition (1) corresponds to the definition in quantum mechanics in terms of the statistical

density matrix where the state of the system is given only as a weighted statistical mixture of

pure states. The equivalent of a pure state is a deterministic signal which will he dealt with

eacltsslvdy in this paper. in the case of deterministic signals, the definition (1) simplifies to:-

w,‘(t,a) - I dr e'J‘" x*(t-r/2)x(m/2) '(2)

Cootnn the Wiper diatrihutlon with the definition of the sliding window reprmnlatlon :-

1

5,41,») - I In: rim x(r)h(t-r) I (a)

where h is the ohcemtional time window.

Evidently the propenles of the alidlng window rcprcsntatioo depend cnrclaiiy upon the choice

of a window function and in particular on the duration of this oteervstlonal window. Since the

product of afv)h(t-r) is an effective signal of finite duration then we may deduce from the

information-theoretic Inequality did!» that the minimum bandwidth of the windowed signal is

restricted. Comeqoently if one is interested ln analysing line frequency details such as

harmoniu of the fundamental pitch period in voiced speech then the effective duration of the

signal has to he long which implies a very broad oleervatlenai window. Unfortunately this

means that fine temporal details in the original signal will he smeared out due to the weighting

process Inherent In the definition (3) of the sliding window repruentation. Alternatively if the

almoftherpeechanalysislstofollewthehehavlouroftrsnslentssuchastheonsetofthe

uiottai pulse closure or the transitions between different acoustic featurea. then it is important

«a rutrIct the observational window to the region of interest. The effect of this constraint is a

short situational signal whose minimum handwldth h large and hence all fine spectrum details

will have been lost. This dichotomy of time-frequency resolution trade-off is perhaps the

major diudvantage of the sliding window repruentation for speech analysis. The Wigner

distribution doe not have this window function (in the continuous. infinite time ideal case

which we eomlder here for clarity; practical applications of counte require the use of sampling
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and windowing of data diseased shortly) and hence does not suffer from the same problem.

Fallacy domain construction. '

Sometimes the analysis of the Wigner distribution from the frequency domain is more
convenient. particularly when the signal representation B more easily exde in terms of
frequency such as is the case in filter systems. in such a situation. the Mgner distribution
may be ohflined from the Fourier transform X0») of a signal :0) la :-

wxom) - 2:— 14: x'(u-r/:)xm+r/z) «in ' (a)
from which follows the nif dual nature of the Wigner distribution :-

Wx(t.w) - IMAM) (5)
Mules.

Further desirable properties which follow iron the definitions are
(i) the Wigner distribution is real valued (even for complex valued signals)

(ii) n time shift of the signal corresponds to I time ahift of the Wigner distribution

impugn») - Wx(t-n,u) (6)
(iii) modulating the signal with upum) results in a frequency shift

"unequnquml - hum-n) (7)

(iv) Integrating the Wigner distribution over time gives the energy density spectrum of the signal

2
I (it no...» - [sml (a)

(v) integrating the Wigner distribution over frequency yields the instantaneous signal power

I mvxum) - 2: Ismr (9)
(note that the sliding window representation can only ever give an averaged version of signal
power and energy density)

(vi) lnvertibility: the signal and its apectrum may be uniquely recovered up to an overall phase
factor from the Wigner distribution

x(t)2rx(0) - I do! tum/2,») aim (10)

xmxw) - I a: Wx(u/1.t) rim ‘ (u)
in addition. for finite energy tignala the Wigner distribution is bounded. nomlallenbie and tquare
integrable. Finally, for eignal procuslng application it is useful to ltnow that:-
(vll) the Wigner distribution of the convolution of two signals is equivalent to the convolution
b the time domain of the Wigner distributions of the individual signals  Proe.l.O.A. Vol B Pll'l 7(1986) 95
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(viii) the Wigner disu-lhution of the product of two signals is equal to the convolution in the

frequency domain of the Wigner distributions of the individual signals. and

(la) the Wigner distribution of the sum of two signal! is given by the sum of the Wigner

distributions of the component signals. plus the Wigner distribution of the cross correlation

between the signals.

These properties make the Wigner distribution an interesting mathematical object. However

they also open up the possibility of a useful representation of non-stationary signals such as

speech.

4. MAL PROCEDURE

In a digital signal procening environment. a transition of definitions has to be made between

the continuous and the discretely sampled case. There have been several interpretations of how

this transition should he performed [25. 26, 21]. However the most straightforward way for the

application in this paper Is to employ the intuitively obvious discrete version of equation (2):-

O

Wxth) - 2 2 e-J‘lk' x*(n-k)x(ms) (12)

-

or,lntcrmaofthespectrumofthediaeretesignal

I’

wxum) -§ I .Jinf x'u-nxmr) ar (13)
-I‘

It should be evident from (13) that the effective sample points upon which the Fourier

transform ls performed are now equivalent to s time spacing of IN and the Wigner distribution

above is periodic in frequency with a period ' instead of 2: as in conventional spectrum

analysis. Therefore in order to avoid aliasing problems it is necessary to oversample the

original signal at twice the Nyquist rate. As long as this requirement of thing an oversampled

signallsadheredtothenmostofthepropertieaofthecontlnuomtirnceasecarryovertothe

discrete version.

An alternative approach to using an oversampled real signal is to employ the analytic signal

dt)=x(t)+jy(t) where s(t) Is the original signal sampled at the Nyquist rate and m) is the

Hilbert transform of s. There is a good physically intuitive reason for utilising the analytic

signal as opposed to the real signal: a real signal has a spectrum which is symmetric about its

origin and hence the expectation value of the frequuicy is zero whereas the analytic signal is

defined to be zero for negative frequencies and hence its expectation value should yield a

positive contribution for the frequency. Therefore the analytic signal makes more sense in

situations where the concept of an instantaneous frequency proves to be useful (albeit

mathematitu lmpossihlel) For exampie consider a simple tone. x(t)=eos(wnt). The

expectation value of the frequency of this signal Is zero due to the cancelling contributions of

positive and negative frequency components. However the frequency expectation value of the

corresponding analytic signal. s(t)= expflual) h a. as we would intuitiver expect.

in this paper the real signals are convened into analytic signals which are also oversampled by

a factor of two. Consequently the aliasing problems are certainly avoided and spurious

correlation effects between symmetric positive and negative frequency components in the signal

are neglected. Furthermore the scaling of both the sliding window representation and the

Wigner distribution to the same frequency range may be automatically ensured by sampling the

analytic signal half as often for the sliding window case as the Wigner distribution ease.

Finally a comment on windowing of the data. in the0ry the Wigner distribution does not have

an espiielt window function. in practice with the constraints of the discrete Fourier transform
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and memory limitations the Wigner distribution in only calculated using I finite number of data
point: (Sll per time Iiice). Therefore for each point in time. n. we form the Wigner kernel
I'(n-k)I(n+k) for in [-255.255], multiply In optional (Humming) window inaction wilt)

'(the window should have the property that w (kind-kn centred at b0 end Ipply III FF'i’
Ilgnrlthnt. The practical efieet nl' windowing is to distort the frequency value: slightly which i:
not A problem In our case. However an ubltt-Irily Iceunte frequency resolution may be
nbtnlned. if deaired. by using more point: in the FFT routine.

Thus the procedure followed in obtaining an output from I reel signal h I: follow. Tell: the
original reIl IllnIl IIntpled It the Nyquilt rue. Convert into an Inniytie function oversampled
by a tutor of two. The analytic function ll then used an input to both the sliding window
routine and the Wigner distribution calculator. The Iliding window representatin employs I
mp length mine In large as used by the Wigner distribution. and prior to being Fourier
tranelorxned is windowed by I Gaussian Ihape n! urer Ipecil'ied bandwidth (the hndmdth in
defined Inch that by half the bIndwldth the power window has fallen to lie of its maximum
nine) and cut otf It 1% of its peak value.

There are 156 frequency value: uieuilted in etch time Ilioe. Ind 512 time IlieeI per picture.
The real output wines are logarithmically mind and linearly quentised into I20 levell for
punitive veiuea Ind 120 level: for nee-live veluel (only relevant for the Wigner distribution)
prior to being displayed on I high resolution grnphiu Icreen. The result: oi photographing the
Icreen Ire displayed in the subsequent pleturu.

5. mums
Picture 1.:Thla deplete

Tmt- w warm
frequency increases
linearly with time).
The Imell'lIIl of the
fine resolution in the
Wigner distribution
by the wide band
unatth of the
sliding window
II evident. Clearly
the mean I}me
devlltlnn from the
lnItIntanenut frequency
In grate“ lot the
sliding window
representation.
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Picture 4.:A segment m
of roll voiced speech
(the Inn! put ol : “ SPEECH '
male saying 'two'). RESERRCH
This picture should J UNIT 5
be computed la 2 and m
J. The Wigner .1

picture display: re a1_ooh
explicitly the impulse ;
Ina-elated with the
sudden closure of the
glottal folds. the "
deny of the impulse
into the first four
l'onsnnu (the formanls
being the pronounced ‘
horizontal bands) and m
the harmonics of the 4

fundamental frequency. '

 

' e
mom-
ml: us-p 7

Home 5.:As s
contnstlve example.
this than the
different time—frequent:
structure produced by

noise. The signal is
uniform. bend limited
noise smoothed with a “*2
Gsussisu envelope. '“a mow bud gaussnolse

lollysis of the top 1

picture has clearly ,‘
mksed much of the "
structm displayed by
the Winter function.
Also sppmnl is the
compactness in
frequency at the
Wipes representstlon. .
This picture should be -‘
enmpsred with the
example a! a periodic
signal in picture 2.
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Ficture 6. :An example
of aspiration CH 4

(the release of the ‘ SPEE
IU from a nut: E REEE?§CH 3

“3'5”! ‘5')-
Haw clone hand- i w
limited noise can
model friutive sounds "HA-a
my be stored by
Mmplrlng the Wigner
distribution patterns
of this. and the
previous picture. The
contrast in pattern:
between this and the
voiced anund.plcture 4.
should also be noted.

2   « a:

6. OONGJJSIONS

This paper has depicted examples oi speech aosmds using two distinct time-frequency
representations. From an inspection of the outputs of the corresponding representaqu it is
clear that the Wigner dtnrihurion has the ability to elucidate simultaneously line spectrum
details and localised tltne events. in contrast to the sliding window representation. Also there
appears to ho a larger cuntrsstive difference between acoustically distinct signals using the
Wigner diatrihution which may prove to he of some use in the separation of similar sounding
words and speaker identification. Therefore considering the Wigner distribution as an iii—focus
spectrogram show its potential applications in very high resolution problem such as
apeech-in-nolse. and speaker separation work. Moreover since any smearing decisions have
been delayed (pruumabiy to a later stage of data—rede when it is decided what is relevant
in the signal. either phyniologieally or mechanically). the Wigner distrilrutimt is a naturai hula
for a theory of time-variant filtering.

In disadvantages are essentially linked with the retention of maximum information in the
picture: current recognition algorithms are unable to succesfuily handle the data rate supplied by

the Wigner distribution. Moreover because the Wigner distributin makes explict correlations in

the signal. this leads to a time-frequency structure (ghosting) appearing at twice the periodicity
of repeating structure in the original signal. Although this ghosting is annoying (albeit essential
for obtaining correct averages). it does not detract from lite interpreutional power of the

Wigner distribution in the tlme‘frequenc‘y domain. Finally although the Wigner distribution is

as close as one can get to a joint probability distribution of time and frequency without
violating the information-meow“: inequality. it cannot be strictly interpreted as a true

probability distribution function since in general it can take on negative values. Th'n is not I
detriment since the physically relevant features are the 'ohservshl' derived from the
distribution (for example. the perceived sound of an acoustic element). The Wigner distribution

is net up to calculate the ‘ohservahiea' correctly whereas the sliding window representation can

100 ProcJ.O.A. Vol a Part mm)
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only reproduce the smeared and distorted equivalent of the observable.

A: a closing remark we comment that this study has only scratched the surface ofwhat
promises to be a fruitful analysis philosophy for speech work. It I: hoped to extend this
approach and further exploit some of the ilniu between signal processing theory and quantum
mechanics to the benefit of speech recognition and ayntheaia in the near future.
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