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1. Introduction

The wave parameter estimation problem is of considerable interest in geophysical applications.
Earthquakes give rise to a number of different waves, e.g. pressure waves, shear waves, or sur-
face waves. These waves are received by an array of sensors. In order to determine the direction of
arrival (DOA) the beamformer is used frequently and gives good results if the data contains only one
type of wave. Because the pressure wave has the highest velocity of all types of waves and arrives at
the array at first the beamformer can be used for determining its DOA. Other waves can arrive at the
' same time at the array for regional events with a distance of some 100 km between the earthquake
and the array due to different reasons. The beamformer fails to separate the different waves in a
wavenumber plot in such a situation, and we are faced with a resolution problem concerning velocity
‘and direction. In this contribution we approach this problem by a parametric method. We fit a
parametric model of the spectral density matrix of the sensor outputs to a nonparametric estimate
of the spectral density matrix by minimizing a quadratic criterion. For the narrowband case least
squares fits of this kind have been proposed in [3]. We extend these results to the broadband case
and show the good asymptotic behaviour of our estimates.

The outline of the paper is as follows. In section 2 the data model and the parameter structure are
introduced. The parameter estimates are developed in section 3. In section 4 we report on numerical
experiments with simulated and measured seismic data.

2. Data Model

A conventional model is used. Earthquakes generate signals which are transmitted by a wavefield.
We assume that m = 1,..., M different wave types arrive at the array. The outputs of the sensors
z,(t) at positions r, (n = 1,...,N) are Fourier-transformed:

T-1 _

Xr(w)= 3 w(za(t)exp=ir, )

=0
with a smooth window w(s), where "2 w?(3) = 1. The reception-propagation situation is de-
scribed by a (N x M) matrix H(w) = [dy,...,ds] with the phase vectors d; = [e=Eits ... e~ikizn],
k= V-[cos¢. cos &, cos ¢; sin &, 8in ¢;]' is the wavenumber vector of a wave at frequency w with
ve]oaty V; , and seen at the origin of the array at azimuth o; and elevation ¢;. The wavenumber
vectors k; may be written as §; = wf, ({ = 1,..., M) where §. = (bizs&iys &ia)' is the so called
slowness vector. Let us collect all {; in a 3M-dimensional vector = (£],..., £,)- The (N x N)
spectral density matrix Cx(w) of the array output can be expressed by

Cx (w,8(w;)) = B(w, n)Cs(w)H*(w,n) + (W), (2)
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where Cg(w) is the spectral matrix of the signals and #p(w) is the spectral parameter of sensor
noise. #(w;) = (1f, vecCg(w;)',vo(wr)) is the p-dimensional parameter vector (p = 3M + M2 +1)
of model (2). I is the identity matrix and the s indicates the hermitian operation.

We need nonparametric estimates of Cx (w;) to develop a least squares fit in the next section. For
stationary sensor outputs z(t) the asymptotic properties of X r(w) are well known [1]. Under certain
regularity conditions if the window length T is large and 0 < uy < ... < wp < 7, then:

Xy(wn),...,X7(wp) are independent complex normally distributed random vectors with
zero mean and covariance matrices Cx(uw1),...,Cx{w;), respectively.

Using this property a consistent estimate is given by
1
Cx@)= 5o L W((w-wi/Br)Xr(w)Xs(w),
TS 1#0(mod T)
_where w, = 3% and Br = O(T-") with v > } and ByT — o for T — o0. The spectral window
~ W(2) is a real valued and even function satisfying the conditions W{(A) = 0if |A| > =,
| j W(A)dr = 1, / IW(A)|dA< o0,  and j IARF[W(A)dA < co.

Let Cx(w) have bounded derivatives up to second order, then

VKT vee(€x(w) - Cx(w)) % Nfa(0, (w)), (3)

where (E(w))ir = (Cx(w))im(Cx(w))nj with k= N(j—1)+iandI=N(n—1)+m,cf. [1}. K7 is
defined by K7 = BrT/ [ W(A)?d).

3. Parameter Estimates

We use the following least squares fit,

2

(@ = Y ar(mw(w) Csw)) = 3 tr{[Cx(w) - Cxwi ) W)} . (@
wEB wi€B

The symbol B denotes the frequency bands in which the signal is present significantly. The W(w;)

are positively definite (p.d.) weighting matrices,

We initialize the weighting matrices by W{(w;) = I. The minimization of gr(#) leads to an estimate

8,. Using this parameter value we calculate Cy (w;, 8, ) and update the weighting matrix by W(w;) =

Ci’(w.-,ﬂl). Then we start again the iteration. The following theorem justifies this procedure.

Theorem:
Let the regularity conditions such that (3) holds be satisfied. Minimizing of gr(8) supplies for W(w;}
positive definite /KT consistent estimates of the true parameter value 8, i.e.

VE7(6r - 83) = 0 in probability,
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where
fr = argmin ¢r(6)

and @, denotes the true parameter vector.
Furthermore, if W(w;) = C3!(wi,8) then +/K7(87 — ;) is asymptotically normally distributed with
zero mean and covariance matrix J—! where the elements of J are given by:

=T u[“’_"g,ﬂ w2 oy .)] (i =1,000s ).
w;€

The proof is given in the appendix.

The implementation of the parameter estimates differs from the procedure described above in some
details. We first try to obtain explicit solutions for the spectral parameters. Minimization of
gr(n, vo(wi), Cs(w;)) over the spectral parameters without restrictions yields

Cslwin 1) = H¥(wi, 1) [Cx (i) - wowi)l] H* (i, ), ()
where .‘ -1
H (wi, 1) = [H"(wi, ) W(wi)H(wi, 7))~ H (i, YW (i), (6)
and
() = tr {(P(w;,ﬂ)P'(wc. 1) = DW(w)[Cx (i) - P(wi, PCx (wi)P*(wi ﬂ)]w(‘-’-’)} ™
s tr{(P(wi, PP~(wi, 1) — DW (@)}’ ’
with

P(wi, ) = H(wi, yH¥(w;, ). (8)

We replace the spectral density matrix of the sources Cg(w;) in (4) by the estimate (5) and get the
following criterion

() =3 ar(wi,m) = Y te{[W(w)(Cx(wi) - dofwi)D)]* -

w€EB wiEB

W (i) P{wi, DW (@) x (w3} — #o(wi ) I)P* (wi, D)W (wi )P {wi, 1S x (wi) — Bo(wi)1)}9)

The spectral parameter i(w;) is given by (7). The criterion has to be iteratively minimized over all
elements of 1) where the weighting matrices W(w;) are choosen according to the iteration procedure
described before.

4. Numerical Experiments

In order to investigate the proposed algorithm we use simulated and real data. In both cases a
circular array with 25 sensors which are distributed on 4 circles is used. The diameter of the array
is about 3 km and the vertical aperture is about 200 m.
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We simulated two sources with £, = [0.166,0,0}'s/km and §, = [0.191,0,0]'s/km impinging on the
array with an SNR of -3 dB. The consistent estimate is used with 40 degrees of freedom. We used 3
frequency bands in the criterion (4). For the experiment 3 x 5§12 pseudo-random matrices have been
generated. The results are depicted in Figure 1. The sources are | A{ |= 0.025s/km distant from
each other. The beamformer cannot resolve them. If we nse W(w;) = Cyx'(wi, 8) the estimates have
a higher accuracy than the ones obtained in the case W(w;) = I. -

The real seismic data was recorded by a corresponding array in the Bavarian Forest. In Figure
2 sensor outputs of an earthquake are shown. 512 sample points were taken at a sampling fre-
quency of 40 Hz. Three frequency bands centred at 2 Hz, 2.6 Hz, and 3.2 Hz were used for the
criterion (4). We smoothed the periodogram over 7 frequencies for obtaining an improved spec-
tral density matrix esimate. The left part of Figure 3 shows the output of the beamformer. We
also plotted the weighted least squares criterion with W(w;) = L. The iteration procedure gives
§, = (-0.139,0.203,-0.026)'s/km and §, = [-0.110,0.341,-0.081)'s/km. Indeed, the proposed al-
gorithm can resolve two sources where the beamformer fails. Although we cannot make a statement
on the accuracy of our estimates another analysis using the beamformer and more data samples has
given similiar results.

8. Concluding Remarks

In this paper we extended the least squares fit for the narrowband case [3] to the wideband case.
The good asymptotic properties of the wave parameter estimates have been proven. Numerical
experiments with simulated data have shown the accuracy and stability of the proposed iteration
procedure. The successful application of the estimates to real seismic data has been preseated. The
improvement of the estimates by taking account of the transience of the seismic signals is currently
under research.
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7. Appendix

To proof the theorem we use a technique to design simplified estimators with nice agsymptotic prop-
erties as presented, for example in [4].

Assumption I: There exists an /KT consistent estimator §, of the true parameter vector §, and a
p-dimensional random vector $14 depending on the values of the parameter vector 8 such that

@70 — ¥14, + I, VET(8) - 8p) = 0

in probability where Jy is a nonsingular matrix with non random entries.
Assumption 2: There exists a (p X p)-matrix D; with random elements which is a /K7 consistent
estimator of the matrix Dy = Jg .
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Assumption §: The distribution of the random vector 1y, as T —+ oo approaches a p-dimensional
normal distribution A(0,J) where J is a fixed covariance matrix.
Under the above stated assumptions the following lemma is valid.

Lemma: Let
8; = 0, + (VKTDy) @71y, (10)
where

VKr®rg, —Jg, VKT (6 — bo) — 0,

in probability.
The random vector /E7(8; — 8;), as T -+ oo, possesses a normal distribution N (0 Dg, 'JD;‘)

If the weighting matrices are given by W{w;) = I the minimization of gr(8) supplies /KT consistent
estimates @, (cf. [3]). We choose $14 = Vgr(8) |W(ui)p.d. Where Vor(€) is the gradient of the
criterion (4) with entries

. 8"(0) ~2 E ac—"‘(—°"‘’—9)‘W(w.-)(C'J_J_c,(w-')-Ci(m-"QJ)W("’-')]-

It can be shown using (3) that in probability as T - oo

VKr¥re — VK1¥rg — 38, VK1(8) - 85) = 0, (11)
where Jg_ is defined by

8Cx(wir ) 8Cx (wir o) ]
Jg )i = 2tr | —=7—"W(w; Wiw;
(3s,): Es [ %, () =5 W)

W(w)p.d.

Therefore assumption 1 is satisfied. The matrix D, is the asymptotic expected value of the matrix
of second derivatives %;# of the criterion, where

@)= 3 2 [Py 2oy, .)] (12)
wi€ED

Dy(8,) is a /K7 consistent estimator of the matrix Jg, because it is a continuous function of 8.
Thus, assumption 2 is satisfied. Lengthy calculations lead to

VEr®79, - Y Qwi,8)VE7 vee(Cy(wi) - Cx(wi,8p)) = 0 in probability,  (13)
. w,EB
where Q(wl'v QO) = ( 1"e‘:Ql(“’ia Qﬂ)i seen vecQP(“’i! QD))' with

veeQu(u o) = vee [~2W(w) 22X ()

W(w.')p.d. '
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Figure 1: Monte Carlo simulations assuming stationary data, results for W(w;) = I on the left side
and for W(w;) = Cx'(w;, 8) on the right side.

The sum of (13) is a linear transformation of an asymptotically normally distributed random vector.
Exploiting the asymptotic independence for different frequency bins we obtain

Jm VETd14 % Ny(0,3) (14)
where J = ¥ eg J{w;) with typical entries
(is@i) = 41 {Qu(wi)Cox(wsr 86) Q3w )C x(wir o)} hwwyp.d. - (15)

Using now W(w;) = C3'(wi,8p) in (12) and (15) and applying the lemma gives vE7(8; — 8,) %
Nﬂ(gﬂ]_l)' B

References

(1) D.R. Brillinger: Time Series: Data Analysis and Theory, Holden-Day, San Francisco 1981
[2] M.A. Cameron, E.J. Hannan: Transient Signals, Biometrika, 1979, 66, 2, pp. 243 - 258

[3] D. Kraus, G. Schmitz, J.F. Béhme: Least Squares Estimates for Source Location and Asymptotic
Behaviours, Proc. EUSIPCO, Barcelona 1990, pp. 649-652

[4] K. Dzhaparidze: Parameter Estimation and Hypothesis Testing in Spectral Analysis of Station-
ary Time Series, Springer-Verlag, New York 1986

Proc.L.O.A. Vol 13 Part 9 (1991) 100




A Weighted Least Squares Criterion

|

i
111

|

#T #p#t&4i¢##%;#ﬁﬂ

19:45:00.000 18:46:00.000 18:47:00.000 18:48:00.000
§

Figure 2: 25 traces of seismic data
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Figure 3: Beamformer on the left side, weighted least squares criterion on the right side.
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