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1. Introduction

The wave parameter estimation problem is of considerable interest in geophysical applications.

Earthquakes give rise to a number of different waves, e.g. pressure waves, shear waves, or sur-

face waves. These waves are received by an array of sensors. In order to determine the direction of

arrival (DOA) the beamformer is used frequently and gives good results if the data contains only one

type of wave. Because the pressure wave has the highest velocity of all types of waves and arrives at

the array at first the beamformer can be used for determining its DOA. Other waves can arrive at the

same time at the array for regional events with a distance of some 100 km between the earthquake

and the array due to different reasons. The beamformer fails to separate the difl'erent waves in a

wavenumber plot in such a situation, and we are faced with a resolution problem concerning velocity

'and direction. In this contribution we approach this problem by a parametric method. We fit a

parametric model of the spectral density matrix of the sensor outputs to a nonparametric estimate

of the spectral density matrix by minimizing a quadratic criterion. For the narrowband case least

squares fits of this kind have been proposed in [3]. We extend these results to the broadband case
and show the good asymptotic behaviour of our estimates.

The outline of the paper is as follows. In section 2 the data model and the parameter structure are

introduced. The parameter estimates are developed in section 3. In section 4 we report on numerical

experiments with simulated and measured seismic data.

2. Data Model

A conventional model is used. Earthquakes generate signals which are transmitted by a wavefield.

We assume that m = l, . . ., M difierent wave types arrive at the array. The outputs of the sensors

2,.(t) at positions 5,, (n = l, . . . , N) are Fourier—transformed:

T—l t .
are») = 2 «Team-M. (1)

1:0

with a smooth window w(s), where £201 w’(7‘-) = l. The reception—propagation situation is de-

scribed by a (N XM) matrix H(w) = m1, . . “154] with the phase vectors 4.- = [655511 , . . . ,e'ifl'lfly.
b = “[cosog cos a;,cos ¢,- sin chain ¢.-]’ is the wavennmber vector of a wave at frequency u with

velocity V.- , and seen at the origin of the array at azimuth a; and elevation d». The wavenumber

vectors k,- may be written as h,- = a); (i = 1,...,M) where {i = (£4,,£,~,,£,-,)’ is the so called

slowness vector. Let us collect all in a ISM-dimensional vector 3 = ((5,. . "guy. The (N x N)

spectral density matrix Ciao) of the array output canbe expressed by

Cx(w.fl(wa)) = 3(W.H)C§(W)H‘(w. :1) + l«10:01 . (2)
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where C§_(u) is the spectral matrix of the signals and ub(w) is the spectral parameter of sensor

noise. 200,-) = (j, vecC§_(w.-)’,vo(w.-))’ is the p—dimensional parameter vector (p = 3M + M2 + l)
of model (2). I is the identity matrix and the It indicates the hermitian operation.
We need nonparametric estimates of C109.) to develop a least squares fit in the next section. For
stationary sensor outputs g0) the asymptotic properties of17(a)) are well known [1]. Under certain

regularity conditions if the window length T is large and 0 < w; < . . . < w, < 1r, then:

£10.01), . . . , £10.)» are independent complex normally distributed random vectors with
zero mean and covariance matrices OLGA), . . ., Clef-1,), respectively.

Using this property a consistent estimate is given by

1 .Cruz) = fi 2 mo» — “ti/Brllflwliflwt).
T ¢¢o(mod T)

__ .‘where w. = if! and Br = O(T"V) with 7 > § and BTT -o 00 for T —» 00. The spectral window
' 'W(A) is a real valued and even function satisfying the conditions W(A) = 0 if IAI > 1r,

'/ W(A)d). = 1, / |W(A)|dA < co, and / |A|’|W(A)|dA < co.

Let C10») have bounded derivatives up to second order, then

\/K_r vec(Cx(w) - (7104)) 9"" 312(9. 2&0). (3)

where (E(w))u = (Cl(u)).-,,.(C£(w)),.,~ with I: = N(j — 1) + i and l = N(n — 1) + m, cf. Kr is
defined byK, = BTT/ fW(.\)3di.

3. Parameter Estimates

We use the following least squares fit,

mg) = z "(3,uo(w.~),C§(w.-))= z “{[cgm— Cl(w.-,Q)]W(wg)}2. (4)
urEB MED

The symbol 8 denotes the frequency bands in which the signal is present significantly. The W(w;)

are positively definite (p.d.) weighting matrices.
We initialize the weighting matrices by W(w.-) = I. The minimization of “(9) leads to an estimate

2,. Using this parameter value we calculate C£04.; Q1) and update the weighting matrix by W(u.-) =
CZ(w.~.Q1). Then we start again the iteration. The following theorem justifies this procedure.

fleomm:
let the regularity conditions such that (3) holds be satisfied. Minimizing of "(Q supplies for W(w.-)

positive definitem consistent estimates of the true parameter value 90, Le.

VKTMT — —v 0 in probability,
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where

2r = mgmin «(2)

and 20 denotes the true parameter vector.
Furthermore, if W(u.~) = Cy“ (an-,2) then M(QT — J)is asymptotically normally distributed with

zero mean and covariance matrix J '1 where the elements of J are given by:

  

(1).}- = 28 u[acgw‘kgwoacfiw030m] (M: 1,...,1v).
Use '

The proof is given in the appendix.

The implementation of the parameter estimates differs from the procedure described above in some

details. We first try to obtain explicit solutions for the spectral parameters. Minimization of

“(2, vo(w.-), C§(w.-)) over thespectral parameters without restrictions yields

“gm, :1) = H#(w.~,gz) [aim — moor] H*'(w.-.n>. (5)
where I -1Karma) = [H'(wi,1)W(w;)H(w.-,H)] H‘(w.', g)W(w.-), (6)

and

"° ' ' u{(P(w.-,g)P-(w.-._rz)—I)W(wa)}’ ’
with

P(w.-, 1) = Hm, mafia-,3). (8)

We replace the spectral density matrix of the sources C§(w;) in (4) by the estimate (5) and get the

following criterion

97(1) = 2 9708,11) = 2 "{[WMXCAWO-1700031)],-
wrefl waEB

W(wi)P(wi,n)W(wi)(Cx(wi) - I7o(w-')1)P'(Wi,n)w(wi)P(wMz)(C1(wi) - 170(w4)1)}(9)

The spectral parameter 17:,(wg) is given by (7). The criterion has to be iteratively minimized over all

elements of a where the weighting matrices W(w.-) are choosen according to the iteration procedure

described before.

4. Numerical Experiments

In order to investigate the proposed algorithm we use simulated and real data. In both cases a

circular array with 25 sensors which are distributed on 4 circles is used. The diameter of the array

is about 3 km and the vertical aperture is about 200 m.
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We simulated two sources with {I = [0.166,0,0]’s/lrm and £2 = [0.191,0,0]'s/km impinging on the
array with an SNR of -3 dB. The consistent estimate is used with 40 degrees of freedom. We used 3
frequency bands in the criterion (4). For the experiment 3 x 512 pseudo-random matrices have been

generated. The results are depicted in Figure l. The sources are | A; I: 0.025s/km distant from

each other. The beamformer cannot resolve them. If we use W(w.-) = C?(rm) the estimates have
a higher accuracy than the ones obtained in the case W(w.-) = I. _
The real seismic data was recorded by a corresponding array in the Bavarian Forest. In Figure

2 sensor outputs of an earthquake are shown. 512 sample points were taken at a sampling ire.

quency of 40 Hz. Three frequency bands centred at 2 Hz, 2.6 Hz, and 3.2 Hz were used for the

criterion (4). We smoothed the periodogram over 7 frequencies for obtaining an improved spec-
tral density matrix esimate. The left part of Figure 3 shows the output of the beamformer. We

also plotted the weighted least squares criterion with W(w.-) = I. The iteration procedure gives
{l = [—0.139,0.203,—0.026]’s/km and {2 = [—0.110,0.341,—0.081]'s/km. Indeed, the proposed al-
gorithm can resolve two sources where the beamformer fails. Although we cannot make a statement
on the accuracy of our estimates another analysis using the beamformer and more data samples has

given similiar results.

5. Concluding Remarks

In this paper we extended the least squares fit for the narrowband case [3] to the wideband case.

The good asymptotic properties of the wave parameter estimates have beenproven. Numerical
experiments with simulated data have shown the accuracy and stability of the proposed iteration

procedure. The successful application of the estimates to real seismic data has been presented. The
improvement of the estimates by taking account of the transience of the seismic signals is currently
under research.
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7. Appendix

To proof the theorem we use a technique to design simplified estimators with nice asymptotic prop-

erties as presented, for example in [4].

Assumption 1: There exists an JR; consistent estimator Q, of the true parameter vector 20 and a
p—dimensional random vector ‘57-'90 depending on the values of the parameter vector Q0 such that

@134 - @729. +JQOVKT(QI ’90) -' 0

in probability where J! is a nonsingular matrix with non random entries.
Assumption 2: There exists a (p x p)-matrix D; with random elements which is am consistent

estimator of the matrix D90 = Jen.
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Assumption 3: The distribution of the random vector {men as T -o oo approaches a p—dimensional

normal distribution JV(Q,J) where J is a fixed covariance matrix.
Under the above stated assumptions the following lemma is valid.
Lgmma; Let

Q: = Q: +(\/K_TDI)"‘1’T.Q. (10)
where

x/K—T‘I’m‘, - Jgnx/K—flflx -Qo) '* 0.

in- probability. .

The random vector mm, — Q“), as T —o oo, possesses a normal distribution N(Q, Dg'n‘ilD911).

lithe weighting matrices are given by W(w.-) = I the minimization of gum) supplies m consistent
estimates 2, (cf. We choose {>131 = Vq1-(Q) Iwmmd. where Vqflfl) is the gradient of the

criterion (4) with entries

 

0a (Q) _ 301(0):.2) . , I _y 50‘ _ 4&5 u [Tmmxcgm _ C£(u.,Q))W(w.)].

It can be shown using-(3) that in probability as T —o oo

vKr‘Pm, - VKT‘I’ma -Jg.vKr(2: -flo) -‘ 0. (11)

where 190 is defined by

BC -.0 00 -,9(190)” = z 2tr [—ég—wao—X—gt—JWmO] .
"€65 ' J wowed.

 

Therefore assumption 1 is satisfied. The matrix D; is the asymptotic expected value of the matrix
. . I . .

of second derivatives 95-55%? of the criterion, where

Dye: 2—W g—Ww; . 12( 1M) EB [ 39'. (w) Mi () ( )

D1(Q,) is a (K; consistent estimator of the matrix J20 because it is a continuous function of Q.

Thus, assumption 2 is satisfied. Lengthy calculations lead to

«Ir—rem, — Z Q(whfln)\/K—T vec(01(w.-)— Cam-.90» —> o in probability. (13)
1.1568

where Q(wl'v = ( VECQKU-Hflo): - a - s vecQP(wi) With

vecQa(w.-.Qo) = vec [—2W(w;)%‘§j—’9-°—)w(wo]

 

W(w.')p.t‘l. .

PfOC.l.O.A. VOl 13 Pan 9 (1991)

  



            

A Weighted Least Squares Criterion

E

t
h
o
—
£
1
!
“

3
5
3
5
.
8
E
E
E
:

    k
i
l
n
-
l
i
n
k
!

E
E
E
E
J
H
S
E

‘Ll an I“! I.“ I" u an at a u u “kl I.“ I" I." “I u u: u! I” I. I3

Bh—Illfl-l Elli—hm]

Figure 1: Monte Carlo simulations assuming stationary data, results for W(w;) = I on the left side
and for W(w.-) = Cilfldhfl) on the right side.

.The sum of (13) is a. linear transformation of an asymptotically normally distributed random vector.
Exploiting the asymptotic independence for difl'erent frequency bins we obtain

flax/171m. ms) (14)
where J = 2M,“ J(w,-) with typical entries

(Jlij(“’i) = if {Qi(’*‘i)C£("’hQa)Qj(“’i)C£_(Wiygo)} lW(w.-)p.d.' (15)

Using now W(w.-) = C2(w.-,QD) in (12) and (15) and applying the lemma gives ma, — Q0) 1';

N9(QaJ_1)-
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Figure 2: 25 traces of seismic data.
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Figure 3: Beamformer on the left side, weighted least squares criterion on the right side.-
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