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A common approach for sound field reproduction is to encode the spatial audio scene with a fixed set of
channel signals using panning functions or microphones. The channels are then used to drive loudspeak-
ers either directly or via a linear decoding process. A combination of physical and psychoacoustic effects
enable the approximate reproduction of the spatial percepts of the original scene. Older examples include
Stereo and Ambisonics. With the arrival of object-based audio systems the problem has naturally arisen of
how to include channel based material. Here we begin by presenting a framework for discussing channel
encodings. This is applied to the general problem of converting between channel encodings, and specifically
the decoding of channel based objects to arbitrary arrays. We then address the problem of representing a
channel encoding using fewer channels, in order to reduce storage or transmission cost, and use weights to
focus the encoding effort.
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1. Introduction

Channel-based audio reproduction systems use a fixed number of signals to encode a spatial sound scene.
An encoding is a convenient representation of the scene. The encoding may be decoded to produce signals that
are fed to an array of loudspeakers, in order to reproduce a recorded or simulated scene. In some cases the
decoding process is trivial, the decoded signals are the same as the encoded signals.

A common type of encoding consists of microphone signals, or composed by applying panning functions
to source signals. A microphone is described by a directivity function, which provides a transfer function from
each incident plane wave signal to the microphone output. A panning function produces loudspeaker gains
depending on the intended image direction, like the microphone directivity function. The gains are applied to
the image signal. A scene may be composed by summing multiple such image signals.

For a given array, a set of microphones, decoding functions or panning functions are designed so that the
original audio scene is reproduced faithfully, which is to say perceived images match the original recorded
sources, or intended images. If a set of panning functions were replaced by microphones with the same direc-
tivities then the array would reproduce the sound field captured by the microphones. In this case the microphone
decoding is trivial. Precise definitions for sound fields, microphone directivities and panning functions are given
in Section 2.

The stereo system [1, 2] provides the simplest and oldest example of channel reproduction: Two channels
are derived from a crossed pair of cardioid microphones, or else using a mixer with a panning function applied
to each mono source signal. In reproduction these channels are fed directly to loudspeakers.

In the Ambisonic system, the channels are generated either from microphone arrays or with multichannel
panning functions, using spherical harmonic directivity functions, [3, 4]. A variety of Ambisonic decoders have
been designed according to different criteria [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Each of these can be defined
using loudspeaker panning functions. Channel-based encoding enables the compact representation of a sound
field, which may include reverberation and complex objects. However it is not possible to directly manipulate
the component sounds in a channel-encoding independently from one another.

Vector base amplitude panning (VBAP) [15] is a widely used method for panning over a 3-dimensional
loudspeaker array. VBAP is not usually considered in the context of channel-based reproduction because the
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loudspeaker feeds are usually not transmitted, but rather generated at the point of reproduction. However VBAP
is relevant for this article because it can be defined using a panning function for each loudspeaker [11].

In contrast with channel encoding, an object-based audio encoding consists of a variable number of audio
objects, each representing a single source of some kind. Each object includes signals and other metadata
information, for example about source position and size. This permits a great deal of freedom in manipulating
the audio objects independently from one another, right up to the point of reproduction. Object encoding
has been used for many years within the computer game industry, and has more recently been developed in
standards for cinema and interactive broadcasting [16]. As transmission bandwidth increases and reproduction
hardware becomes more sophisticated, object-based audio has become more attractive. In the context of spatial
audio the possibility exists for optimising the reproduction according to each user’s reproduction system and
room. A channel encoding can be useful as an audio object because it can be used to efficiently capture
an element of the sound field that is spatially complex, and for which detailed internal manipulation is not
required. Already channel beds are used to provide a whole background scene. Here we consider more general
channel objects that cover some part of the whole scene. Mixing of stereo signals to multichannel formats has
been common practice in the recording industry, although there has been little research about this.

This investigation is motivated by the desire to better understand channel-based encodings, the information
they contain and how they can be used, particularly within the context of object-based audio. In Section
2 we begin by describing a framework for the representation of the sound field and microphone directivity
functions. This lays the foundation for the following work. In Section 3 this is applied to the conversion from
one set of channel signals to another, in particular the case where the derived decoded signals directly drive a
loudspeaker array reproduction. Comparison is made with some existing decoding schemes. The source signal
set is considered as a channel object within an object encoding, and some examples are given for illustration.
Finally in Section 4 a method is presented for reducing the channel count of encodings while retaining as
much spatial accuracy as possible. This may be useful for compressing broadcast signals, or downmixing
high resolution recordings. Weightings are introduced in order to emphasise the importance either of certain
microphones or directions. Given the limited space here, many details are omitted. A complete account with
examples will appear in a forthcoming extended article.

1.1 Notation

Signals and filters are represented in the frequency domain. For simplicity the frequency dependence is
usually omitted, and frequency dependent directivity functions are not considered. Vectors and matrices are
in bold type. Either may also be represented in component form with normal type, for example the element
of matrix A in the i-th row and j-th column is written Aij . j is also occasionally used for

√
−1 , but not

simultaneously as an index, so its meaning is always clear. A hat is used to denote a spatial vector of unit
length, for example x̂ = x/|x|. Operators or matrices, vector spaces, and functions are all capitalised. The
complex conjugate is represented with a bar, for example p̄. The transpose conjugate is written AH . A dual
basis or space is represented with an asterix, like S∗.

2. Representing Sound Fields And Microphones

2.1 Sound Fields

There are several ways to represent a region of sound field in a 2D or 3D that is free of sources, and which
so satisfies the homogeneous Helmholtz equation. The Herglotz expansion (HE), is built from a continuous set
of plane wave basis functions. The pressure field as a function of position x and wave number k is

p(x, k) =

∫
k̂∈Ω

e−jk·xs(k)dΩ (1)

where the integration variable is k̂ ranging over a surface Ω of radius 1, a circle in 2 spatial dimensions and
a sphere in 3 dimensions. The positive frequency convention, with time dependence ejωt is used here for wave
representation. The wave vector of each plane wave component is k = kk̂, where the direction of travel of the
wave is k̂. The Herglotz density function s(k) contains the information that uniquely represents and encodes
the sound field, and can be thought of as a signal density function for the direction k̂ and wave number k.
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For numerical calculation the HE integral cannot be used directly. It can be approximated by sampling over
a set of uniformly distributed directions, {k̂i}. The encoding is then represented by a function s(ki) = s(k̂i, k).
For brevity we hide the frequency dependence from k and write the encoding as a vector s with components
si = s(k̂i) = s(k̂i, k). s and s(k) will be referred to as the sound field, since it contains the information
content of the field, although the actual pressure field is given by (1). We also refer to the space of sound fields
S, which is the vector space of all possible sound fields s ∈ S. The continuous encoding s(k) exists in an
infinite dimensional space, however in this article we stick to the finite dimensional case and notation. The
sound field pressure is now a sum

p(x) =
∑
i

e−jki·xs(ki)∆Ωi . (2)

In the 2D case the directions {k̂i} can be spaced equally, with uniform ∆Ωj . In 3D the optimal choice
of {k̂i} and {Ωj} is not trivial in general. There exist direction sets for which uniform {Ωj} gives exact
reconstruction for sound fields of finite polynomial complexity, the spherical t-designs [17, 14]. Generally for
large uniform direction sets the variation in optimal ∆Ωj becomes small.

The 2D or 3D sourceless sound field region may also be expanded in terms of a countable set of localised
regular harmonic basis functions {Ri},

p(x, k) =

∞∑
i=1

bi(k)Ri(x, k) , (3)

where bi(k) are the coefficients or signals encoding the sound field. The basis functions can be made orthonor-
mal,

Ri ·Rj = δij , (4)

with the dot product defined as an integral over space,

p1 · p2 = C

∫
x∈V

p̄1(x)p2(x)dV , (5)

for a normalisation constant C. V can be either the whole of 2D or 3D space.
The Fourier Bessel Expansion (FBE) provides an example in 3D, and has several variations including the

N3D form [18], which has real valued functions. The basis functions are each the product of a spherical
harmonic function of direction and spherical Bessel function of distance. Analogous functions exist in 2D
based on sinusoidal functions of azimuth and Bessel functions, a common form is the N2D basis, [18]. The
term FBE will be used to refer expansions of this type in either 3D or 2D.

An FBE can be approximated by truncation,

p(x, k) ≈
N∑
i=1

bi(k)Ri(x, k) , (6)

For typical sound fields the approximation is very good within a radius r depending on N and k. This property
has been used in the Ambisonic reproduction method for sound field encoding. Variable truncation allows for
variable resolution and compatibility of encodings with different resolution. The truncated encoding coeffi-
cients form a finite vector, b = {bi}, which is a representation of the sound field, like s, but with a different
basis.

The HE is a natural representation for the sound field in the sense that the signal content in each direction
is represented directly. In the FBE the signal components are complex linear combinations of the plane wave
signal components. However there are fundamental and practical reasons, not elaborated here, why the FBE
is sometimes preferable. In the next section the directivity of microphones is represented using the natural
counterparts to these sound field descriptions.

2.2 Directivity Functions

An ideal microphone is characterised by its directivity function. Specifically, the output q of a perfectly
linear microphone is the bilinear function of a complex-valued directivity function (DF) Q(k̂), and the sound
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field encoding s(k̂),

q =

∫
k̂∈Ω

Q(k̂)s(k̂)dΩ (7)

The normalised wavevector k̂ provides the direction of travel of the wave. Note that microphone directivity is
often stated as a function of the reverse direction θ̂ = −k̂, towards the incoming wave. In the following formula
the wave directions are indexed, so we don’t have to choose between variables, and no confusion arises.

A panning function provides a loudspeaker gain as a function of the desired image direction. A common
goal is to find a set of panning functions for a loudspeaker array such that the output gains produce a perceived
image close to the desired image, for a range of desired images. A complex scene can be produced by separately
panning multiple signals and summing. If a set of such panning functions were replaced by microphones with
the same directivities then the array would reproduce the captured sound field, since each plane wave component
is effectively panned by each microphone. A panning function can be viewed as a form of virtual microphone
directivity. DF will be used to refer to both microphones and panning functions.

Using a discretised sound field with components sj = s(k̂j) and discretised DF with components Qj =

Q(k̂j) a microphone signal given by (7) can be approximated as

q ≈
N∑
j=1

Qjsj∆Ωj (8)

A set of DFs, representing a set of microphones or panning functions, can then be written as a matrix Q with
components Qij where i indexes the DFs, and j indexes the plane wave directions. Qi will denote the ith DF
as a vector. For the sake of convenience we redefine sj by absorbing the product with ∆Ωj into it. This keeps
the signals and DFs, which are of most interest, constant whatever discretisation is used. Each DFQi produces
a signal qi given by (8). The set of signals can be written as a vector q, and the corresponding set of equations
is

q = Qs (9)

q can be viewed as a lossy encoding of the sound field represented by s. To represent the sound field accurately
the number of elements in s is much greater than the number of elements in q. q then contains less information
than s and the original sound field, andQ has full row rank.

Q could be defined instead by substituting its transposeQT or transpose conjugateQH . This would perhaps
be a more symmetric presentation since DFs are then column vectors like s. The choice does not affect the
discussion here.

According to (7) DF can be viewed as a linear map from the space of sound fields S to the complex numbers
C, so the space of all possible directivity functions is the dual space S∗, of S. S and S∗ have the same internal
structure but represent different types of object. The subspace of S∗ spanned by DFs inQ will be written

S∗Q ⊆ S∗ . (10)

For any sensible choice of DFs they are linearly independent, and form a basis of a subspace in S∗. We
assume this case unless stated otherwise. A linearly dependent set is called a frame [19], and may arise for
example when two different basis sets are joined together.

Equation (9) can also be viewed as an equation with an operatorQ that acts on the sound field according to
the original definition in (7). All subsequent expressions have analogs with this interpretation. We focus on the
discrete case to give a presentation in terms of familiar matrix operations. For background on the linear algebra
and matrix results employed here refer to [20].

3. Conversion Between Signal Sets

A range of problems can be expressed as the task of converting one set of signals associated with a set of
DFs to another set of signals associated with another set of DFs. The DFs are known, but the associated sound
field is not. One specific example is finding signals for a standard multichannel microphone set given a non-
standard set of microphone signals. Another example is finding loudspeaker feeds for an array specified with
panning functions from signals of an unrelated microphone set. This conversion is an example of decoding,
since it is the process of reproducing the sound field from a set of encoding signals.
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More precisely, given signals q and DFs Q such that q = Qs for an unknown sound field s, what is the
best estimate for signals r such that r = Rs for known DFs R? Generally there will be many sound fields
satisfying q = Qs, since Q has full row rank as noted previously. A natural estimate is the sound field s̃ for
which the L2 norm ‖s‖ is a minimum, since this will have the least total energy. Nearly all possible sound fields
s have excessively high energy, being distant from s̃. Sparsity is another possible criteria useful for estimating
s, since natural sound fields are sometimes sparse. The L1 norm is one way to select for sparsity, and can be
used in combination with energy criteria, but this is not explored here. The kind of sound field that is usefully
represented by channel encodings is dense and complex rather than sparse.

If Q has full row rank, as discussed in the previous section, then the least power estimate, written s̃q to
indicate the dependence on known signals q, can be calculated using the Moore-Penrose pseudo inverse Q+,
equivalent in this case toQH(QQH)−1,

s̃q = Q+q (11)

The pseudo inverse is well conditioned provided the DFsQ are chosen reasonably, with no DFs being close to
linear dependence. Equation (11) can also be viewed as an expansion of s̃q with a set of vectors we call {Q∗j}
whereQ∗j = {Q+

ij}, the jth column vector ofQ+,

s̃q =
∑
j

Q+
ijqj =

∑
i

qiQ
∗
i (12)

The inner product of vectorsQi with vectorsQ∗j defines a matrix

Qi ·Q∗j =
∑
k

QikQ
+
kj (13)

= QQ+ = I = δij . (14)

The equivalence to the identity in the second line follows because Q has full row rank. {Q∗i } is therefore a
dual basis for {Qi}. The ∗ superscript is chosen to indicate this. The space spanned by the dual basis will be
called

SQ∗ ⊆ S . (15)

The subspaces SQ∗ and S∗Q are dual to one another. The space of sound fields S can be written as an orthogonal
inner direct sum of SQ∗ and the null space SQ0

= {s : Qs = 0}:

S = SQ∗ ⊕ SQ0
, (16)

since any sound field can be written as s = s̃q + (s − s̃q), where q = Qs, s̃q ∈ SQ∗ and (s − s̃q) ∈ SQ0
(

sinceQ(s− s̃q) = q − q = 0 ).
Fig. 1 illustrates this relationship and other quantities discussed below.

0

S

s̃q

s

s̃rSQ0

SQ∗

SR∗

b

b

b

b

Figure 1: Illustration of relationships between quantities in the sound field space S. The view is normal to the
plane of s̃q and s̃r. s may be out of the plane.
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From the estimate s̃q the corresponding estimate for r is

r̃ = Rs̃q = RQ+q (17)

RQ+ is then the decoding/transcoding matrix from signals q to r̃. If there exists a DF in R that is pro-
portional with a DF in Q, Rk = αQi, then signal rk can be recovered exactly, as we would hope: From (17)
rk = αQiQ

+q = αqi, usingQQ+ = I .

4. Finding An Optimal Reduced Encoding

Given a set of DFs, it may be useful to find a smaller set of DFs from which the original DFs can be
reconstructed. This would allow us to reduce the number of signals to be stored or transmitted. The reduction
may be necessary because transmission is required over a lower bandwidth channel, or when several sets are
combined, possibly with some redundancy. The goal then is to find the reduced set for which the original
signals can be reconstructed as well as possible.

The reduced DF set will be chosen to minimise the difference between the signals from the original DFs
and their estimates derived from the reduced DF signals, averaging over all plane waves. So, given N DFs Q,
how should M DFsB withM < N be chosen to minimise the total estimated signal error over all plane waves,
‖q̃−q‖, where q̃ = QB+b, b = Bs? From here on b does not necessarily refer to an FBE encoding, although
there is a connection that will become apparent. LikewiseB does not necessarily refer to FBE DFs .

It can be shown that estimate for DFsQ constructed from DFsB that gives the lowest signal estimate error
‖r̃ − r‖, averaged over all sound fields, is Q̃B = QB+B, with error ‖Q̃B − Q‖. Hence the problem is
equivalent to finding the valueB giving the least error for estimates Q̃B ,

BQ = arg minB(‖Q̃B −Q‖) (18)

which is the DF set, spanning S∗B ⊆ S∗, that minimises the overall distance from S∗B to the vectors {Qi},
illustrated in Fig. 2. The meaning of BQ is distinct from Q̃B and made clear by the presence of .̃ The
optimum set is not unique since any basis for S∗B provides an alternative set.

0

S∗

Q1 Q2

Q3

b
b

b

Q̃3

Q̃2

Q̃1

b

S∗
B

Figure 2: Choice of S∗B in S∗ minimising distance from micsQ.

Singular Value Decomposition (SVD) solves this problem directly [20]: Given mics Q SVD provides
unitary U ,V and diagonal Σ such that

Q = UΣV H (19)

and the diagonal entries of Σ, the singular values, are real valued, non-negative, and ordered by decreasing
size, V H the complex conjugate of V . Then a solution to (18) is given by

BQ =
[
V H

]
M

(20)

denoting the restriction of V H to the first M rows, which form an orthonormal basis. The projection of Q into
the space spanned by basis DFsBQ is

Q̃ = QBH
QBQ (21)
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whereBH
QBQ is a projection operator, sinceBQB

H
Q = I by orthonormality ofBQ. FurthermoreBH

Q = B+
Q

asBQ has full row rank. The projection can also be evaluated as

Q̃ = [UΣ]M BQ (22)

where [UΣ]M is the restriction of UΣ to the first M columns.
Finally, the reduced signals are given by

b = BQQ
+q , (23)

and to reproduce estimates of the original signals from the encoded signals,

q̃ = QBH
Qb . (24)

5. Conclusions

A framework was presented for representing sound fields, microphone directivity functions and panning
functions, and the resulting signals. A method was found for converting signals from one directivity set to
another, based on intermediate estimation of the sound field. This is compatible with conventional decoding
methods including stereo and Ambisonics, and allows the decoding of general microphone signals to arbitrary
loudspeaker arrays in a rational manner. An important general feature is that the psychoacoustical content of
the loudspeaker panning functions is separated from the process of mapping the encoding functions on to the
panning functions.

The overlap between encoding microphones allows channel signals to be compressed into fewer channels
and restored approximately. While this causes some loss of spatial accuracy, only linear mixing is used, so
the non-spatial fine structure of the signals is preserved. Weighting can be used to distribute spatial encoding
accuracy non-uniformly in the compressed signals.
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