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INTRODUCTION

This paper deals with the problem of an adaptive antenna array in a broadband
environment. We consider a three dimensional array of omnidirectional sensors
or monopoles. The array sits in a medium containing a three dimensional noise
field, and a wanted signal coming from a particular far field noise source. The
noise field consists of two parts. One part, self noise, originates at or near
the array, or in the processing electronics. The other part is assumed to ori-
ginate in a number of broadband interfering sources (IS) located in the far
field.

The task of the processor is to make a decision on whether the wanted signal 1is
present or not. To do this an 'output beam' is formed, pointing in the direc-
tion of the wanted signal. The aim of the adaptive processor is to maximise the
signal to noise ratio in the output beam.

THE FREQUENCY DOMAIN APPROACH

One approach to the broadband antenna problem is to do a full frequency domain
optimisation (Hudson, 1981). Assuming M sensors, each sensor output stream is

subjected to an N point FFT, giving complex sensor vectors Xk. The sampling

frequency is assumed to be Fs. The optimum complex weight vector Wk is computed

for each FFT cell k and for each chosen look direction. Full adaptation will
require the inversion of N/2 complex MxM matrices, at least as frequently as the
characteristic time describing the variation of the ambient noise field.
Obviously the option exists not to optimise all cells and all look directions
simultaneously, but nevertheless the computational load of a full frequency
domain adaptive system remains enormous.

Another difficulty with F domain techniques is as follows. Because of the high
level of optimisation, the system is very sensitive to sensor errors. Adapta-
tion time in a single FFT cell is very long, and a fully optimised processor
would be rapidly degraded by time variations in the noise field or in the array
itself. '

THE TIME DOMAIN METHOD

The time domain method developed by Frost (1972) and extended by Vural (1978,
1979), Ko (1981) Hudson (1982) and Nunn (1983), represents a highly suboptimal,
robust approach to the broadband antenna problem. Real sensor data is passed
down a tapped delay line of J taps, with a time separation W1/4f. Output beams
are formed from a weighted sum of the JM tap signals. Time domain processors
have been found to give reasonable values of array gain in cases where the
anisotropy is strong, and due to a small number of interfering sources. In more
complex noise environments there is a substantial loss of gain as the time
domain processor only has JM real weights per beam to cover the whole spectrum,
as opposed to NM/2 complex weights for the F domain processor. However, being
highly suboptimal, the time domain processor is more robust against sensor
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errors and time variations in the noise field.

The time domain processor of Frost also has some other snags. The architecture
of the processor is awkward and not easily implemented in hardware. The system
Jacks flexibility and has a level of optimisation that is actually too low for
many purposes. Accordingly we here design a suboptimal adaptive antenna pro-
cessor based upon F domain techniques and the FFT algorithm.

THE SUBOPTIMAL FREQUENCY DOMAIN PROCESSOR SFDP

The SFDP resembles the frequency domain processor in many ways. Sensor data is

FFT'd to give complex sensor vectors Xk at frequency 'k'. The output beams
géf) are derived from
T
() _ (%)
k e %

The FFT frequency cells k are arranged in groups, and the optimisation is done
completely separately for each group. FEach group of cells would normally form
a contiguous- block, but strictly speaking this is not necessary. The GROUP
of cells could consist of a number of separated contiguous blocks.

For each look direction, the complex weight vector Wk for each cell within the

specified group is given by an expression of the form below

I
W =U>+Z¢,(k)U.
k o 5=1 7 J

where normally I is expected to be a fairly small number. Thus the Wk are an

analytic function of cell no k within each group, this function being uniquely

determined by the complex supervector V

T T T
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If the numbers of cells in the group is N‘ell’ then the number of free weights
is reduced by a factor of (I+l)/Ncell’ Tﬁus small I represents a low optimis-
ation level and I+1=Nbe11 represents full optimisation. The choice of the

real functions ¢, is rather arbitrary, and more research is needed to determine
the best choice.J An orthonormal set of real functions would seem to make

sense.

(k). (k) =8, .,
Z‘bj( )¢J (k) 33
k

with a set of cos/sin functions being an obvious choice

~ T.j. (k=) .
¢2j(k) = cos| | 13=1,1/,

cell
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l ﬁj(k-i) |

¢,. (k) = sin ;mi=1,1/
271 cell 2

where

k= kzk Nee11

The output power P for a specific beam, integrated over all cells k in the
group, is

PR kaXkaWk

t

-ZWHRW where R ‘X*XT
“k k "kk k k “k

By way of illustration take I = 2, Then

H
P —g_ (U b, (K)U 49, (K)U,) Ry (Uytb, (k)U +, (k) U )
In terms of V this may be written

P = (VHQV) where

2 Ry 2 ¢ 1Ry > Ry

X X %

e = 2]; ? 1Rk % 0% % P29 1Rk

SoRrR S 606R R $.2
P 2k :; 21 k zé k"2

The Constraint System

For a specific output beam or look direction the array response may be constrain-
ed to unity in any direction ¢, 9, and in frequency cell k. A monochromatic
signal coming from a far field source at bearing ¢, B, and with frequency

' f = kFs/N, will produce a signal vector X, with the &th component given by

2MikFs i2nft

(X)), = exp { "

TR((IJ,S) + i2nft} = s(k,$,0)e

Xy Yo 2
where TZ(¢'@) = {—7; cosCBcosd + —Ecosasin¢ + —EsinO}

and X Yy and zy are the sensor coordinates.

For unit response at ¢, 9, k we must have
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T
s (k,cp;@).wk =1
In terms of V, a single point constraint may be written

cFx,9,0)v =1

T T T T
where C = | 5 (k,9,0) [0 (k)S"|....u. |6, ) |
Normally several point constraints will be needed since unity response will be
required over the frequency band defined by the cell group in question. Also
the main beam may have to be broadened in ¢, © by imposition of further con-
straints. As in normal F-domain ABF, gradient constraints may be usefully em-
ployed. The most obvious constraints, in order of usefulness, are
T T 2T T

dc dc 3 ¢ dc

-—-—V:O; _— =0; —— =0r———— o V=07

30 39 V=0 322VO, 5o V=0;

The complete set of K point and gradient constraints may be collected up into a
single matrix constraint

¢".v-r

where for example, in the case of 4 point and 4 gradient constraints we have

e e.te.le Iac5]ac6|ac7 ac,
11%21%31%4175¢ 1 3n 21 30
Ff=|11110000 |

Norm Constraint On V

Under certain conditions the matrix Q may be very ill-conditioned or even sing-
ular. In such circumstances the norm of V will be very large, and the optimal
solution unstable and prone to sensor errors. A soft norm constraint may be
applied to V by adding a well conditioned positive Hermitian matrix n to Q.

0" =0+

A suitable choice for n is of the form

Al o o0
o=

3
il
o}
>
-
Qo

whence

R - H .., H H
VHQ V=VoVv + AO(UO UO) f)\l(Ul Ul) + AQ(U2 U2)

Addition of will approximately limit U HU to i—-glL (U HU ) to l—-gii
n pp y o RS I 1 G
H .ZQ11 .
and (U2 U2) to 6 Here G is an estimate of array gain.
2
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Calculation of optimum master weight vector prt

For each look direction the optimum weight vector Vont

the equivalent powei (VHQ'V), subject to the linear constraint ¢T.V = F.
Simple matrix algebra yields the result that

is found by minimising

_l * T - & _l

— ¥ [

Vope = O o ¢

Orthogonalisation of the Constraint Matrix

The constraint vectors Cl' C2, ceee 2 %%- %%~etc. as defined will be linearly

independent but not orthogonal or normalised. It is of some use to transform
the constraint vectors to an orthonormal set. This serves to (a) condition the

matrix algebra; (b) simplify the realisation of Vopt if steepest descent

methods are being used.
For sensor space ¢TV=F, where ¢ has the dimensions (I+1).M x K, where K is the
number of constraints. Premultiplying by I', where I' is K x K

P¢TV = DTV =G =1TIF

T
where D =¢F ;
We require the rows of DT to be an orthonormal set, or

T *
DD =

[~

therefore F¢T&*FH =1-= rar?

where A E(iqt*

Thus the matrix T is given by I' = ¥S

where S is the unitary matrix that diagonalises Hermitian matrix A and

-1
Yij = Sijki 2, where the Ki are the eigenvalues of A in the same order as in

(SAS—l) . Hence the orthogonalised constraint is
T
(vs¢’).v = vsF
BEAMSPACE PROCESSING

The SFDP can be configured to operate with inputs which are a set of conven-
tional (CBF) beam outputs. Assuming that the CBF beams are FFT'd we have an
input vector u, for each cell k, where

Up = @cxk

and
- 2TikFs

_ 1, ¥
(@k)ij S u©
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For a given output look direction, let us form a beam output dk from

dp = 2y Uk

where the complex input beam weight vector Zk is as before an analytic function
of cell no k

Z, =T + cpl(k)_fzj'l + ¢2(k)T2 Foeee G 00T

We may now define a beamspace "super weight vector” E

T
e TI

T___; T] Tl T
E = TO Tl TZ
The power of the output beam, integrated over the frequency band in question is
e H
= - * =

For the case I=2, the matrix M is given by

:E:Pk‘ 2{ ¢1Pk :S(bZPk
M= Z¢1Pk Zd)l k Zq)lq)ZPk

2
Z%Pk Z¢l¢2pk' Z(bz Py

wherePk= i k = (@k k@)

Beamspace Mainbeam constraints
In the beamspace case, it is easily shown that a point constraint at k, ¢, ©
takes the following form

HT(k,CD,@) Eo= 1

where

- T 7
ar = |5T(k,¢/—)) @T|¢ (k)sT@T| ceen 0 (K)S @(J

A suitable choice of point and gradlent constraints may be collected up into an.
overall constraint matrix

/LTE=FB
M= Colayl oo 1208 l—a—-z—;ﬂ

T—
Fy =|111....0000 |

opt is obtained by minimising PB

subject to the look direction constraint}f?E =

The optimum beamspace master weight vector E

FB. The result is
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-1 S -
B = ’ M+ N" l #*)#T(M + T]")_% ' F
where a diagonal matrix n" serves to limit the norm of E and provide robustness
and stability.
REALISATION OF THE OPTIMUM WEIGHT VECTORS
The optimum weight vectors Eopt' prt may be realised by a number of techniques,
provided digital processing is assumed.

l. Estimates of Rk or Pk are obtained by taking Ns successive samples of input

data
NS
1 * T
<R. > = =
Ry D Xy Xy e
S
m=1
NS
1 * T
<p. > =
Py ¥ 2 Uy U )t
S
m=1

The optimum weight vectors may be computed dlrectly with software which evalu-
ates the matrix algebra.

2. A running estimate of Rk or Pk is taken, using a deweighting factor .

* T
<R. > (I-0)<R_> + o(X X =)
kto,s k't k"k Tt

+ o (U

Pt = (1-a)<P >
m-1 (1-a) kUk )t

k tn

Again the optimum weight vectors may be computed with software as often as
desired.

3. The inverses of M and Q are updated recursively, using the algorithm of
Bartlett. For the sensor space case, define first a 'super input vector' Xk'

T T
x, = | ceen o 00x |

k

|¢l ()x,”

The matrix Q is successively updated by dyads of the form (E%;kH). "Applying

the Bartlett algorithm we then get
_1 H

RN

72 7] ——
Inxk

n+l (1 +;H| 0

% )
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”n , ., , , , _l
The stabilising matrix N 1s incorporated as an initial condition on Q ~. The

update must be performed successively for all cells k in the block before mov-
ing on to the next time sample.

4, If the constraint matrix is orthogonalised as indicated previously, steep-
est descent methods may be employed usefully, These methods have the advan-
tage of simplicity and possible implementation by hardware.

ALGORITHM TRIALS

The sensor space algorithm has been extensively tested for the case I=2, for a
linear array. Full adaptation and time stationary data were assumed and a
variety of sensor error conditions were simulated.

It was found that the performance of the system was very good. In the pres-
ence of strong broadband interfering sources deep broadband nulls were formed.
Details of the trial results will be presented at Loughborough.
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