Proceedings of The Institute of Acoustics

THE FERRANTI SINGLE CARD DIGITAL SIGNAL PROCESSOR
D.Rawson—Harris

Ferranti Computer Systems Limited
Bird Hall Lane, Cheadle Heath, Stockport

ARCHITECTURE OF CURRENT NAVAL SONARS

The Signal Processing of contemporary naval sonars can be accomplished by
an "open loop" architecture in which data passes from the array, through
the analogue front end, the digital beamforming, band shifting and filter-
ing, spatial, temporal, or frequency domain processing, normalisation and
associated processing, and out to data and display processing equipment.

Each of these signal processing functions is largely independent of the
others. The data for each function arrives in a well defined order, with
well defined block sizes, rates, significances, and so on. There is a certain
amount of variation of algorithms within each function, but the control can
be achieved by simple mechanisms such as tag words or select lines which are
set in step with the flow of data. Controls can be generated in each function
for transmission further down stream as necessary.

The algorithms are dominated by the multiply-accumulate operation, with data
and coefficients being multiplied in some cases, or data and data in others.
Some algorithms involve running averages, either over data points at constant
time or over data points at different times, or division of data by data, and
so on, but they are in the minority.

The signal processing algorithms for a given sonmar system can be provided by a
small number of different cards. Some have multiplier accumulators and local
stores, to perform the signal processing functions. Store cards which can
buffer data for intervals from milliseconds to seconds are needed at certain
nodes. Interface cards, sequencers or controllers, monitors, and so on are
needed to support the processors and allow the construction of complete sonar
systems.

Data flows within the system from one card, or group of cards, performing
one function, to the next, by point to point links, during a transfer cycle,
and is processed during intervening processing cycles.

A typical example would be the 2 octave narrowband sonar, shown in the above
terms in Figure 1.

65

Proc.l.0.A. Vol 7 Part 4 (1985)

Proceedings of The Institute of Acoustics

FERRANTI D S P

ALGORITHMS OF CURRENT NAVAL SONARS

From the point of view of designing cards to perform the signal processing
functions, the functions fall into three fairly well defined classes:

A) High data rates, heavy processing loads, almost trivial algorithms and
controls;

B) Moderate data rates and loads, more elaborate algorithms and controls;

C) Low data rates, moderate to low loads, complicated algorithms and controls.

Good examples of A) are time—domain beamforming, complex band shifting, and
FIR filtering. Special purpose cards for such functions are easy to design
and commission, and offer great processing power per card.

B) is typified by the discrete Fourier transform or Curtis's Vernier Fre-
quency interpolation algorithm. It is possible to design fixed logic cards
for these functioms, but they will not offer significantly more processing
power per card than a more general purpose card can offer, and can be diffi-
cult to commission, or modify for changing requirements.

C) applies for example to passive cross—correlation and associated processing,
to normalisation and trend removal, amplitude and fine-bearing extraction, and
other "back-end"” algorithms. It is very hard to design fixed logic cards
capable of all these functions, and the rapidity with which the specifications
and algorithms are changed makes it uneconomical even when it is possible.

FERRANTI DIGITAL SIGNAL PROCESSOR ARCHITECTURE

The Ferranti single card DSP is designed to meet the requirements of algor-
ithms of group C), within the environment described in general terms above.

Briefly, it comprises a 16-bit multiplier-accumulator and a 16-bit arithmetic-
logic unit. There is a data bus for each input of the MAc, and a third bus
for the ALU. Each MAc bus has an I/0 port, a data RAM store with its own
address generator, and a link to the ALU bus. The ALU bus has its own 1/0 port
for either data or control, a separate control port, a loop counter, a PROM
store for preset data, and registers for use by the ALU in controlling the
address generators and the programme sequencer.

Proc.l.0.A. Vol 7 Part 4 (1985)

Proceedings of The Institute of Acoustics

FERRANTL D S P

The programmer is provided with a model of the DSP, Figure 2. It shows the
RAMs and the preset and program PROMs, all the registers available to the
programmer, and the programmable "devices": XBUS, YBUS, ABUS, MAC, ALU, XAG
(X RAM address generator), YAG, PSEQ (program sequencer), S (synchroniser
for data transfers). The arrows show the allowed directions of data flow, but
bi-directional arrows can only be used in one direction at each instruction.
Actually, there are registers within the ALU, XAG, YAG, and PSEQ which are
also available to the programmer, and subsidiary models to explain the actions
of these devices.

There are no devices specifically for data I/0, such as DMA or FIFO buffers.
Data transfer is controlled by program during the transfer cycle.

The DSP is programmed at microcode level, and the card is so designed that
each process functions in a single beat of the clock. Thus, each instruction
refers to one operation in each process, and for each process it specifies a
source register, an operation, and one or more destination registers. Within
the ALU there can be two source registers in some operations. Each prog-
rammable device must be controlled at each beat, including the PSEQ, which
handles conditional and similar tests. Thus, the programmer can set up
pipelined structures which are close to the ideal for any given algorithm,
subject to the restriction that only one MAc and one ALU are available.

PROGRAMMING SUPPORT

The DSP is programmed at microcode level because anything else is impractical
within a single card. Thus, it is essential that adequate support be provided,
and that good programming conventions .be adopted, to eliminate most of the
trouble which usually arises in microcode programming.

The programming is done on a proforma which supports the processing pipe-
lines that are natural with the DSP. Each programmable device has a column
down the page, and all columns are divided into rows across, with each
row specifying the operations on the card at a given beat. Thus, a given
data word can be seen to move from register to register, through the various
processes, across and down the page, just as it can be on the model. The
mnemonics also have been chosen to represent the flow of data from source,
through process, to destination, in a more natural way than is usual. Thus,
they refer to the register names explicitly, rather than as a subset of
a combination of symbols. For example, in the ALU, the DSP operation
R31 - ACC > R3l is represented by the manufacturer's mnemonics TORAA SUBS 31.
In this particular case, for example, it is difficult in practice to remember
whether it ought to be SUBR instead of SUBS.

Thus the programmer need learn only the model and a limited amount of extra
material, and finds that the mnemonics represent the data flow and processing
in natural ways.

Proc..0.A. Vol 7 Part 4 (1985) 67

Proceedings of The Institute of Acoustics

FERRANTI D S P

EXAMPLE OF A DSP ROUTINE

The example shows the accumulations of the complex cross correlation co-
efficient and of the beam power for 32 successive beams, including reading
the complex half beam samples. The accumulations are both held as double
length (MS product and LS product) numbers, MS in X RAM and LS in Y RAM. Real
parts are held:in SEGY, and imaginary parts in SEGl, at common addresses.

The bases of the data areas are extracted as immediate operands (I) and
used to initialise the address generators in instructions @ to 4, and the
Loop Counter is also set up. The address generator stacks are set up con-
veniently in 5, which also reads the first data word (Left half beam real
sample, LR). Since this is not a loop operation (due to the address generator
operations), loop return is to 6 and the sequencer stack is set up in 5. The
instructions 6 to 9 read the beam samples, store them in the ALU, and set up
the MAC to do

Real Cross Corr Coeff:= Real Cross Corr Coeff + (LR*RR + LI*RI).

The -current value of the coefficient is preloaded in 2, and the new value
is stored in 10, at the same address. Then, 11 to 15 do the corresponding
imaginary component in the same way. The address is incremented now in
preparation for reading the next beam's worth of data.

Instructions 16 to 20 preload the current beam power value, add the new
contribution (LRH+RR)**%2 + (LI4RI)**2 and store the new value at the same
address. The real component is formed in 8, and the imaginary in 17.

The loop counter is decremented (D) in 6, and tested in 17. If it is not
zero, LNZ gives a 1, which selects 23 after 21, whereas if it is zero, LNZ
gives a zero, which selects 22 after 21.

At 21, the preload for the next beam is done, as was done in the loop header
for the first beam, and at 23 the first input for the next beam is done. The
programme sequencer selects TOS in 23, which returns to 6 or 7. (The "source"
in the PSEQ defines bits 1 to 10 of the next instruction's address, and
"condition" determines bit f.) Since condition in 23 is zero, 6 is the
return address. ’

68
Proc.l.O.A. Vol 7 Part 4 (1985)

Proceedings of The Institute of Acoustics

FERRANTI D S P

PERFORMANCE IN TYPICAL APPLICATIONS

There are various aspects to performance in the context of sonar sets and
similar equipments.

In terms of computing power, the DSP does a 1K complex DFT in about 12 msec,
and with 2 msec for transfer, it can do 64 such DFTs per second. It can use
the 1K routine for 2K and 4K complex DFTs also, and a subset for 256 point
DFTs, and so on.

In terms of efficiency compared with a card of dedicated logic, in an FIR
application for example, the DSP in FMS 12 does 128 point filters on 64
channels every 1.95 msec, including input—output. At 200 nsec per cycle,
the MAc is used for 847 of the time, on average.

Clearly, a dedicated card could provide two MAcs for this purpose, which leads
to a further consideration of performance. The FIR code for the processing
cycle is four instructions for the main loop, and five instructions including
loop exits for the header. Thus, there is scope for other routines in the
program store of the filter DSP. In fact, in the FMS12 two octave narrowband
sonar, there are eight DSP's: 2 HF and 1 LF beamformer, 1 HF and 1 LF filter,
1 DFT, 1 Vernier, 1 "back-end”, and there is enough room in PROM for the code
of all of these to fit into every DSP. Thus, in principle, one part number
and a single spare would do for all eight functions. (Other considerations
lead to three stock numbers as the best compromise, in this case.)

Again comparing with dedicated cards, there is the time required to program
a DSP implementation compared with designing a hardware implementation. The
FMS12 filter code was written as a training exercise by the programmer who
later wrote the "back end” code. The FMS 12 beamforming code, including an
initialisation pass which calculates the offsets and coefficients of inter-
polation from the array parameters, speed of sound, and beam axis directioms,
was written in six weeks by a degree mathematician, as his first job after
leaving University. The 1K DFT was written by another degree mathematician,
also on her first job, from the algebraic treatment of the particular method
which is best suited to the DSP, and from specimens of code of the inner
loops of the various passes. Including finding the mistakes in the algebra
and the specimen code, developing the other sizes of DFT, and writing VAX
test routines, it took about four months.

69
Proc.l.O.A. Vol 7 Part 4 (1985)

Proc.l.O.A. Vol 7 Part 4 (1985)

Proceedings of The Institute of Acoustics

FERRANTI D S P

" uPUs oeq, .
J3TUJIA pue cyoyje|oddyalur *34013S “1°4°a R 3Jo31s
asue| | Ta3nJNg Jaitudapn ajdwes °]°4°Q 41 pue 44 3| dwes weaq
471 pue 4H 471 pue J4H 471 pue dH ' 471 pue JH
©1°4°Q soue||1aaung 47 pPuUe dH
“BUTWJO } ‘g °3 Y pue
-Burpueq weaq pue ‘BuUT | duwes
aseq 41 3Joals 3(dwes ¢$/HUTUOTITPUOD
Jaonpsueyy 47 ~auad 47
cfeday
471 pue JH
*BUTWJO jweaq ‘q o3 Y pue
*6utpueq ’ pue ‘put | dues
aseq 4H aJojs 23|dwes {BUTUDT I TPUCD
Jaonpsuedl 4H —auad 4H

1

FIGURE

70

Proceedings of The Institute of Acoustics

FERRANTI D S P

2

OXIO

SEG'T | l XOP } XIP l I X AJ 14 | 1 yip [YOP 1 SEG'T |

1010
equv.
MAC

N

Ton [| [woe [e | cwe | [e Lo] [0]

\
‘ {
~ \)
Accl \
Acc2 \
e -y
/'/‘ o / D
LMH /

LMY / ‘ \
/
ool |

Alyy

ALY
Am 29116

Am 2911
PSEG

CPROM

FIGURE 2

Proc.l.O.A. Vol 7 Part 4 (1985)

Proceedings of The Institute of Acoustics

FERRANTI D S P

(R4 ¢]3al] ¢ DA €d I 5

-z) ﬁ V\u\ mv . S 1 o

Tz 1933 [2 S| adlisa|blsat] dsTed v |HsB|Sal] — ST <53

or | (wod {{¥od dbhaseds| |ivad b bas<dsuy

7] ovH[P > .

s tfyad 1} af+Ld (w)) A evly (wy) xeyxy

i #a b (g < @9 Fa|et JLTIHGE CIV +LJ C) B Y)RV C N

g1 tuid| (T usdiplsarl das1e db3s|ysq|dlsor dsw ¢ b3s

7 #a| ¢ 9ad T9asedsi| [i[¥d] Thasedsu

i 12d| 1 >

o $|d] & KATYE Y[(N IRG I aTY| [=Ld () I =7 47 @ Xeysf |

o NEEY Amiy < 1dd| () IXY «hny -1] (@)) XEYLY] |~

T Pood =G| K ITE5T| [P IS ETTS

or (w2 ¢ (@) IXY <X wdld| un| bbIs «ds1|usdld|vod P basedsw| |

b 904 0 E]

g Hwd| (| |@Y) 290 <Pd+qf (49 gho's «yok| o] +1d @v) Yok ‘LeqTh @) xeds|s

z b od| Iy eal () INY T I +J (e 9P L g3k R CTEi .

7 g ipwad| (] ddv<a| () IXY G <k (x7) vk «dzh o s

3 H3Jl6 94| @ Hsd |l sal (37 vk < STk [asajblsall 5[

ui tivadl Amy e« T8 oot «Kmy Hsd || auh t5d || avX|

z o[wd| & Tamog 8309 VK GGX €Kl T

T i fwod] Amiy«I olaud| |P|lak| ds7edbas| lavy] dswedhzs

T 7 B Ji0; 7504 9508 AP AGX €AY

g df | ATTY « T .

11eg |dy s [ous|upoias uojedado uc i qeuado 9| udo Iyqs |1 [ous uoijegedo [y3s it [ous uotjesado

LSNI :aun 035d ng snay I OBA SNGA 9HX snax S{ N1

SHOHLNY 13160 o vt

320w

EXAMPLE OF DSP CODE

72

Proc.l.O.A. Vol 7 Part 4 (1985)

