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The techniques of spectral analysis are widely used to transform a time
history into its constituent frequency components. In particular, the
power spectrum allows the energy in a given frequency band to be
estimated. Apart from the power spectrum, there are cross-spectral
functions that enable the contribution to a total signal from a
particular source to be calculated. However, itwo transducers whose
outputs are recorded simultaneously are needed for this application and
there can be problmes in data acquisition. This paper presents a
different approach in which the contributions from an harmonic train
can be distinguished from background noise using data sampled from
just one transducer. In addition, this technique can, in certain
circumstances, seperate the contributions from two differenct harmonic
series.

The method is based on the work of other authors who have studied the
bispectrum [1-5] and the bicoherence [1,6], or normalised bispectrum.
The first treatment of bispectral analysis seems to be that of
Brillinger and Rosenblatt [2,3] who define the bispectrum as a two
dimensionsal generalisation of the ordinary power spectrum.

The phase of the signal, which is expected to vary in time, is
discarded when computing the ordinary power spectrum since the Fast
Fourier Transform (FFT) X(w) of a.time history x(t) is multiplied by
its complex conjugate when estimates for the power spectrum P(w) are
made from the equation
Prw)el y xjw xTiwi 7 (1)
i=
where the summation is over a number of records and T is the time
length of each record. The bispectrum, as defined by Brillinger and
Rosenblatt, utilises the phase information of a signal by using the
phase relationships between different frequencies. Instead of depending
on the FFT at just one frequency the bispectrum is two dimensional
and an estimator [1] is:
N ' e
1 Xjluy) Xj (Wa) X (Wy 4Wy).T2

b twq,wy )= ;Z., J d (2)
There is ambiguity about the phase of the FFT at a single frequency (w)
since changing the time origin shifts the FFT by a factor t-1WT
However, this ambiguity is non-existent for the bispectrum since
LT W, T Tl rwalT 7 Thus, the bispectrum is a complex quantity and
therefore depends on the phase relationships between the FFT at two
frequencies and at the sum of those frequencies.
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It is a widely quoted result [1,2,4] that the bispectrum of Gaussian noise
is zero. This a theoretical result in the limit as the number of samples
becomes infinite and is obviously true from equation 2. If x(t) is
Gaussian noise then the phasesof Xlw)X(w,)and X (w] + w,) will be
statistically independent, therefore the terms in the summation will
cancel even though the spectral contributions remain finite.

The bicoherence is defined as the bispectrum normalised with respect to
the power spectrum [1,6] but there is some discrepancy between the
estimator used by Huber et al [1] and that used by Sato et al. [6].
Huber et al's estimator gives bicoherence values that are not normalised
to any particular value whilst Sato et al's real time analyser gives
bicoherence values whose modulus lies strictly between O and 1. In this
paper the lead of Sato et al is taken and the bicoherence estimator of
Huber er al is modified to be: N e
JZ.‘1 Xjlwy) Xjlwy!) Xjlwpuy)

bie (W), Uy ) = — : 3 2111
: ‘{& 2 [lxuwnlz. Ixitwa | Ixg (wi+wy) l]} 2(3)
The problem with previous anafy}c,es is that no direct physical interpretation
has been given for the bispectrum, largely because the dimensions of the
bispectrum are not directly attributable to any particular physical
quantity. For example, if x(t) is an. input force signal the bispectrumhas
dimensions of (Newtons)® (Seconds)?. The major advantage of the
bicoherence estimator that has been introduced in equation (3) is that
it is demensionless and so can be applied directly to physical processes.
The remainder of this paper will deal with the interpretation of the
estimates given by equation (3).

The Bicoherence of a Signal Containing Contributions from a single
source and background noise

If only one record is taken then, like the coherence, the bicoherence

estimator has a modulus of one for all frequency points. If the phases of
X(wy) + (w2 X*(wi+y? ) change between records, increasing the number of records
leads to cancellation in the numerator of equation (3) and hence a decrease

in the modulus of the bicoherence estimator. Ultimately, if enough records

are taken, the bicoherence should tend to be a value representing the
variations in relative phase between the frequencies w,, w. and (w; +W).

On the other hand, if the modulus of the bicoherence is one for some
frequencies wj; and w. then there is no change in the relative phases of

X (wy), X (w2) and X (Wy + wz)

1f the Fourier transform is defined by

VAN S )
x(t)(w)';%r-t- J x(t) e “at (4)
then - 00
N\ —iWT :
X(+T) (0w x14) (W€ (5)
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so a time shift of T leads to a frequency dependent change in phase
of $iWT in the frequency domain. Therefore, in general, the FFT
of the jth time record can be written as

-inw,T
X;j (nwo)-n g'*"e o (6)

where Wp is the frequency spacing of spectral estimates, nWg is the
frequency of interest and g FRLE is the FFT once the effect of time
shifting has been removed.

The harmonic contributions to the signal will be independent of j whilst
the non-harmonic contributions will depend on the individual record
number. Therefore, the case of a single harmonic train and background
noise can be analysed usmg the form

(bpt ‘y".,.u;" ‘ -("‘wOT if nwy a harmonic frequency band
Xjinuwy, )= (n’ {‘+n 2w, T otherwise (7)

Doy
whereb n2i¥nis the contribution from the harmonic train anda;{f'*“ is the
background noise. Putting this form into equation (3) gives the result
that in the limit as the number of records becomes large

2 2 2 .1y , if all the frequency
[bic (ntgmugn+mitg)|=4 1147 4 rd 10+ rimit? " pande are harmonic
0 ) ,otherwise

(8)

where n -an/bn an being the averaged background noise in

the nth frequency band This result follows from the relationships

E (‘ei‘n)-o E (a'f, Yea, (9,10)

and assumes that the amplitude and phase variations of background noise
are independent [6].

It is clear from equation (8) that if the level of background noise is small
then fpn,Tmsfn4m are small and the modulus of bicoherence is close to
one. As the level of background noise increases the ratios r_ increase

and the modulus of bicoherence drops. "

The value of the r, can be estimated if the bicoherence can be measured
at four frequencies. Suppose that mWw, is a harmonic frequency and let

Ry=|bic (nw,, nwe ) ,R2=|bic (nWe, 20w, )|, Ra=|bic tnivg,3ntiy ) |,R =]bic (2nug,2 0w, )]
Then simple manipulation shows that estimates for fn,f2n,T3n and "4n

(11)
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3 2 Ly 3 .5 2 1
rn=[(§2 R,/ Ry Ry 3‘-1] 2 fan=[lRIR,/RZ R3) B |22

(1
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The use of bispectral analysis in determing harmonic relationships is
demonstrated by the following example. Vibration data from a diesel engine
was recorded and subjected to a familiar spectral analysis, the result of
which is shown in Figure 1. The fundamental of the diesel was 8.75 Hz
whilst there was another series based on 12.2 Hz that was due to the
capstan 'tick' of the tape recorder. It is to be expected that the harmonics
of 8.75 Hz should have constant magnitudes and relative phases whilst the
multiples of 12.2 Hz should have phases that vary in relation to each other
due to the more random nature of the capstan tick.

The bicoherence takes a long time to compute in full and it is difficult to
display in its whole form because it is two dimensional. Only 'slices'
through the bicoherence are presented here. These slices are made by
fixing the first frequency (W, and then allowing the second frequency (wj)
to vary across its range until Wy + w, equals the Nyquist frequency (the
cut-off frequency of the FFT)

Figure 2 shows the bicoherence for a slice frequency of 8.75 Hz. 1t is
noticeable that the harmonics of 8.75 Hz stand out with bicoherence modulus
values close to 1, since the background noise level is much lower than the
tonal levels. At non-harmonic-frequencies the values of bicoherence should
tend to zero, but finite values were obtained since only 50 time records
were used. In contrast, Figure 3 shows the bicoherence at a slice
frequency of 12.25 Hz, which is the centre frequency of the band containing
12.2 Hz. The multiples of 12.2 Hz are not 'phase locked' to the phase of
12.2 Hz therefore the values of bicoherence are low, and the capstan tick
acts as a background noise. The power spectrum itself is misleading since
the capstan tick has a significant contribution to the' recorded signal even
though it is not part of the vibration on the diesel. In this way bispectral
analysis can be used to filter out non-harmonic contributions in a signal.

The Bicoherence of a Signal containing Contributions from Two Sources

Assuming that the sources are incoherent, a general way to write the FFT
of the signal is:

. .t j]‘(-. J'
[“n f"'"-i-'bn{“’“ "E")°x Trinto T ,if nwy is a harmonic
Xj(nw)= c j"fi‘"rja ,g-fnon-‘ frequency
n : , otherwise (12

where (@n,én) is the magnitude and phase information for the contribution
from one source and ( bp,$n .) is the corresponding information for the
second source. The angle X! measures the incoherent nature of the
sources. ) .
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As before bit (nWy,mu}) tends to zero unless nupmWe and {hem} Wo gre
all harmonic frequency bands, when the bicoherence has the value:

, 1 - ) 1§ bt
bic (nWemW) = { ‘n""m *n-l-m +™ 'mfn+m ¥ ottt m) it nakm
{o+etiasee Do Sirie e B (13)
i(2¢,.-0,.)
=== £ bn bzn + r% r2n
If Nam

D22 2 2 i S 2 }1
{o+r 20 214 2, (14r, #1015k
where
"n bnlap

Equation 13 has been tested by computing the bicoherence of the sum

of two square wave generators; one with a fundamental frequency of

70 Hz and the other with a 210 Hz fundamental. Time histories were
stored simultaneously from a dual-channel FFT analyser and then digitally
summed to give the overall signal. The spectrum of the combined

signal is shown in Figure 4 and the idividual spectra were also

computed to give direct measure of the relative proportions of each in

the harmonic frequency bands. The computed bicoherence for a slice
frequency of 70 Hz is shown in Figure 5.

The bicoherence at (70,70) is close to 1, which demonstrates that there is
little contribution to the total signal from the 210 Hz generator at 70
and 140° Hz. Theoretically the bicoherence should have a value of 1 at
(70,70) since f7g9 = "40 =0 but the slight drop in the modulus can be
explained by the fact that the second generator will have some
contribution to all frequency bands and that background noise will

also affect the result. '

The seperate spectra of the two generators give the following values for

some of the 'r.’ values in various frequency bands:
Freq 70 140 210 250 420
A5x107° 3.9%1072 0.98 ~ 4.8x107%  2.43

As an input data are square waves the relative phase between any two
harmonics is zero and the values given in the table above can be used to
predict bicoherence values using equation (13).

Freq (Wy, w,) : (70,70) (70,140) (70,350)

| bic (W1,wz)] = 1.0 0.70 0.36
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The computed values, shown in Figure 5, are slightly lower than the
theoretical values. This is due to background noise effects and to the
assumption that the relative phase of all the harmonics is zero.

This example highlights some of the problems with the technique. 1In
general, the phase angles between the harmonics of the signal will be
unknown and these phase angles can have a significant variation in

the computed modulus of the bicoherence. For example if rpwrpy oo 01
the modulus of bicoherence can take any value between 0 and 2//fig.

The phase of the bicoherence cannot be used to derive any useful
information about these relative phases and there can be may values of
the 'y, each of which give the same bicoherence value.

Another problem is that large numbers of records need to be taken for
bicoherence values at non-harmonic peaks to tend to zero. In the
example above, where 25 records were taken, the peak at (70,350) is
barely distinguishable from the random background noise levels.

However, the first problem can sometimes be overcome. If the
fundamental frequencies of the two sources are not too close there will

be harmonic frequency bands where only one source contributes and the

' "™ ' value for this. frequency will be zero. When this happens there
is no ambiguity in the phase of the bicoherence at frequencies where

this harmonic contributes and the technique can be used to calculate
other ' fn ' values by taking the slice frequency to be that of this
harmonic band.

In conclusion, when a signal has contributions from two sources the
relative magnitudes and phases of the two sources can be measured by
the bicoherence estimator defined in this paper. If one of the sources
is background noise or if the fundamental frequecies of the two sources
are not too close then measurements of the modulus of bicoherence can be
used to estimate the relative strengths of the two sources.
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Fig 4: Spectrum of the sum of two square Fig 5: Bicoherence of the sum of two
wave generators. square waves.Slice Frequency 70 Hz.
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