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1 INTRODUCTION 

The noise generated by ships is recognized as having a significant detrimental impact on marine life1. 
This problem is further exacerbated with the growing number of vessels in operation. There is 
therefore a need to better understand and manage the noise radiated underwater by ships. Under 
normal operation, the propeller can contribute significantly to the overall platform noise. However, 
when cavitation is present on the propeller, the noise greatly increases and becomes the dominant 
noise source. Therefore, the impact of the noise radiated by a platform can be reduced if propeller 
cavitation can be avoided. This can be achieved if cavitation is promptly detected allowing for remedial 
action via the propeller controls to be taken.  
 
In this contribution, we investigate the use of a range of readily available machine learning methods 
for the detection of propeller cavitation based on a number of different input features. Propeller 
cavitation detection is possible using a range of signal processing methods. Cyclostationarity is a 
recently proposed signal processing method for propeller cavitation detection2. It relies a number of 
frequency domain conversions, resulting in a cyclic spectrum. This spectrum is then searched for 
peaks, where peaks around the blade rate and its harmonics can indicate the presence of cavitation. 
Figure 1 compares the output at various stages of the cyclostationarity analysis for a cavitating and 
non-cavitating signal.  
 

  
(a) (b) 

Figure 1: Comparison of cyclostationarity output at various steps for: (a) cavitating signal; and (b) non-
cavitating signal.  

Notable in Figure 1 is the inability to visually detect the presence of cavitation within the time waveform 
and frequency spectrum. We therefore investigate the use of machine learning methods on these two 
signal types in an effort to negate the significant signal processing required in the cyclostationarity 
analysis. A further motivation results from the reduction in capability of the cyclostationarity approach 
as the signal to noise ratio decreases. A number of further features, based on the statistics of the time 
waveform and frequency spectrum are also investigated in order to identify if these features provide 
further insights into the characterisation of cavitation.  
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2 METHODS 

2.1  Cavitation Data  

The intent of the present work is to investigate the potential utility offered by machine learning models 
for detecting cavitation on a propeller. In the absence of data suitable for publication, synthetic data 
has been created. Signals were generated to represent transducer measurements taken in close 
proximity to the propeller. Signals comprised a broadband signal, described by propeller 
characteristics, a continuous component, and where cavitation is present, a modulating component.  
 
The broadband signal is described by the propeller noise estimation formula after Ross3, where the 
noise is characterised by the blade count and tip speed. The continuous component was 
characterised by Gaussian white noise at a specified signal to noise ratio. The modulating component 
was described by a summation of sinusoidal signals at frequencies corresponding to the blade rate 
and its harmonics up to the blade passing frequency. The signal is constructed by adding the 
continuous component to the product of the broadband and modulating components. Where 
cavitation is not present, the modulating part is excluded.  
 
500 signals of 1 second duration have been generated for the analysis. The signals are characterised 
across a range of blade counts, rotational speeds and signal to noise ratios, with     50 % having 
cavitation present by means of the modulating component. 
 

2.2 Machine Learning Models 

The problem of cavitation detection is a binary classification one; that is, is cavitation present or not. 
Therefore, the machine learning models studied comprised a range of classification models. In 
particular, the following models were studied:  

 random-forest; 

 k-nearest neighbours 

 support vector machines;  and 

 logistic regression.  
 
These models were selected as they were readily available as part of the scikit-learn package4. 
Further, they allow for easy implementation for the present work. It is understood that other, more 
complex models, may be more suited for the current study. However, their implementation was 
beyond the scope of the preliminary investigation undertaken as part of this work. It is planned to 
investigate these in the near future. 
 
The machine learning models described were investigated for their ability to detect cavitation across 
a number of different input feature groups. Here, we are investigating which features enable the 
greatest classification accuracy. That is, we are carrying out a feature selection investigation. The 
following feature groups have been studied: 

 time series signal; 

 frequency spectrum; 

 cyclic spectrum; and 

 signal statistics. 
 
These groups have been selected in order to investigate if there is a dependence on signal pre-
processing in the ability to accurately detect cavitation from the generated signals. These pre-
processing steps related to a cyclostationarity analysis. A further feature group comprising a number 
of easy to compute signal statistics are evaluated. The following signal statistics are studied: 

 mean; 

 median;  

 variance; and 

 standard deviation; 
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For all feature groups, the model output was a binary flag denoting the presence of cavitation, 
assigned during the synthetic data generation. The data comprised 500 samples and was shuffled 
and split into training, 80 %, and testing, 20 % sets, with the testing data set used for blind evaluation 
of the different models. Across all investigations, hyperparameters for each model underwent tuning 
based on a random grid search. 
 

3 RESULTS AND DISCUSSION  

3.1 Time Series Classification 

The first feature group studied was the raw time series signal. Time series signals present a particular 
challenge for machine learning models, with the order of the measurement points of primary 
importance. Further, time series data does not lend itself to easy interpretation of results or model 
decisions.  
 
All four models were trained using the raw time series signal, with each discrete amplitude point 
representing a feature. The models were then evaluated against the previously unseen test data set. 
Table 1 presents the accuracy of each model, across all input feature groups. With reference to the 
time series results, the random forest shows the greatest accuracy, with all other models performing 
relatively poorly. To contextualise the accuracy, Figure 2 shows the confusion matrices for the 
evaluated models.  
 

Input Feature 

Accuracy [%] 

Random 
Forest 

Nearest-
neighbours 

Logistic 
Regression 

Support 
Vector 

Time Series 76 50 49 50 
Spectrum 63 60 74 67 
Cyclic 
Spectrum 

94 93 98 97 

Signal 
Statistics 

76 67 95 84 

Table 1: Reported accuracy for all models across input feature groups.  

  
(a) (b) 
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(c) (d) 

Figure 2: Confusion matrix obtained with time series as input for: (a) random forest; (b) nearest-neighbors; (c) 
logistic regression; and (d) support vector models.  

The random forest model showed the greatest accuracy in predicting cavitation. This score was driven 
by a greater ability to classify presence of cavitation compared to when cavitation was not present. 
The nearest neighbours was not suitable for the current prediction – only predicting the presence of 
cavitation. Similarly, the logistic regression classification was biased towards the presence of 
cavitation. On the other hand, the support vector machine models was biased towards the negative 
classification, i.e. cavitation not present.  
 
Overall, the models were not well suited for the time series classification. However, the time series 
classification is an inherently difficult task due to the nature of the input features, i.e. ordered discrete 
points. Therefore, moving forward, models focussed specifically on the classification of time series 
data should be evaluated. These models currently exist in the literature and typically focus on a 
number of pre-processing steps to break the data into a smaller number of features based on 
segments of the time series signal.  
 
During the analysis, the signal to noise ratio was observed to have a significant impact on the results. 
Synthetic data was created over a range of different signal to noise ratio values, and this variation 
appears to make the classification more challenging. When the signal to noise ratio was constant 
across all input samples, even for high noise levels, the classification predictions improved. This 
highlights the importance of this parameter and the potential difficulties that may be faced when we 
transition to measured data where the signal to noise ratio may be quite variable depending on the 
measurement parameters.  
 

3.2 Frequency Spectrum Classification 

The frequency spectrum was obtained using a fast Fourier transform of the raw time series signals. 
The transform was applied over the entire signal duration resulting in a single amplitude spectrum for 
each time series signal. Whilst a cyclostationarity analysis typically uses short time Fourier transforms 
resulting in a spectrum over a discretised time, a single transform was used here to minimize the 
number and dimensions of the input features.   
 
The discrete spectrum across the full bandwidth was used as the input feature for each training point. 
Table 1 shows the computed accuracy of the models when evaluated using the test data. Comparing 
with the time series performance, an increase in performance is observed for all models with 
exception of the random forest model. These results are contextualised in Figure 3 which shows the 
corresponding confusion matrices for each model.  
 
With the exception of the logistic regression, accuracy is biased towards the negative classification, 
i.e. no cavitation.  Similarly to the time series problem, due to the nature of the input features, results 
are difficult to interpret. However, the spectral data benefits from a reduction in the number of features. 
This may result in the ability of the models to generalise more effectively and hence the general 
observation of model improvement. Nonetheless, the results show that further work is required if the 
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spectrum is to be used as the principal feature for detection. The previous results related to the signal 
to noise ratio were also observed when the spectrum was used as the input feature.  
 

  
(a) (b) 

  
(c) (d) 

Figure 3: Confusion matrix obtained with frequency spectrum as input for: (a) random forest; (b) nearest-
neighbors; (c) logistic regression; and (d) support vector models.  

3.3 Cyclic Spectrum Classification 

Models were subsequently evaluated against the cyclic spectrum. With reference to Figure 1, the 
classification is based on distinguishing between a spectrum of uncorrelated noise, no cavitation, and 
a spectrum dominated by peaks at the blade rate and its harmonics, the cavitating case. However, 
this is made more difficult due to the differing blade counts and rotational speeds, resulting in peaks 
being at different indices in the input feature data.  
 
Table 1 shows high levels of accuracy across all models where the cyclic spectrum is used as the 
input feature. Figure 4 shows the corresponding confusion matrix for each model. The confusion 
matrices show good performance across all models for both positive and negative cavitation 
classification. The nearest-neighbour model showed the lowest performance, related to positive 
classification of cavitation.  
 
The cyclic spectrum comprises significantly less input features when compared to the time series or 
frequency spectrum cases and this may have helped models generalise better on the test data. 
Further, there is an objectively much clearer distinction between the two classifications when using 
the cyclic spectrum relative to the previous features and this may have also helped. The effect of 
signal to noise ratio is also less apparent on the cyclic spectrum data, presenting a less challenging 
classification problem.  
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(a) (b) 

  
(c) (d) 

Figure 4: Confusion matrix obtained with cyclic spectrum as input for: (a) random forest; (b) nearest-neighbors; 

(c) logistic regression; and (d) support vector models.  

 

3.4 Signal Statistics Classification 

A number of signal statistics were computed and used as input features. The purpose of this 
investigation was to identify if there were any easy to compute statistical features of the signal that 
could be used to identify the presence of cavitation.  
 
Table 1 shows mixed results between the different models. The nearest-neighbours models 
performed the worst, with the random forest performing only slightly better. Both the support vector 
and logistic regression showed very promising results, with the logistic regression performing the 
best.  
 
Figure 5 shows the corresponding confusion matrix for each model. The random forest and nearest 
neighbour show similar trends with relatively poor ability to predict both classifications. The support 
vector performed better, but results were biased in its improved ability to classify the where cavitation 
was not present. The logistic regression showed high accuracy in both states.  
 
Unlike the other feature groups, the statistics features are much more interpretable. To this end, 
Figure 6 shows the feature importance computed for the logistic regression model. High positive 
values indicate importance for positive detections, whilst high negative values are important for 
negative classification. The standard deviation of the time series signal is highlighted as the most 
important feature for the positive detection of cavitation. On the other hand, the mean value of the 
frequency spectrum is identified as the most important feature for classifying when cavitation is not 
present. Upon analysing these features, no clear trend was observed, therefore, further work is 
required to better understand the importance of these features and how they influence the 
classification. It is also interesting to note that the mean and median values of the time series signal 
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was not important in the classification. Overall, breaking down the signal into a number of statistics 
proved successful in enabling accurate detection of cavitation when using a logistic regression model. 

  
(a) (b) 

  
(c) (d) 

Figure 5: Confusion matrix obtained with signal statistics as input for: (a) random forest; (b) nearest-neighbors; 
(c) logistic regression; and (d) support vector models.  

 
Figure 6: Feature importance based on logistic regression coefficients. 

4 CONCLUSIONS 

The present work has described the outcomes of a preliminary investigation of machine learning 
models for the detection of propeller cavitation. Four widely available models have been investigated, 
without modification, to the problem of binary classification across a range of input feature groups. 
The investigation focussed on identifying which features and machine learning models showed the 
greatest promise to direct work towards the development of a cavitation detection system. The 
investigation was based on synthetic data comprising cavitating and non-cavitating states.  
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The classification of raw time series data proved the most challenging, with most models performing 
poorly. The random forest model showed the best performance, but due to the nature of the input 
features – time series data, interpreting the results proved difficult. Transforming the time series 
signals to the frequency domain resulted in an improvement in the ability of all models to classify 
accurately. However, overall performance was still relatively poor. The reason for the poor 
performance of the time series and spectrum input features is believed to be due to the nature of the 
input data, seemingly unrelated data points, where the order is important. More advanced models 
designed specifically for this data should be investigated in order to evaluate their capability for 
cavitation detection. 
 
The greatest performance was observed when the cyclic spectrum was used as the input feature. 
Unlike the time and spectrum features, the cyclic spectrum is observed to have a very noticeable 
contrast in features when cavitation is present and when it is not and is believed to be responsible for 
the improved performance.  However, obtaining the cyclic spectrum requires a number of signal 
processing steps, with peak-picking being the final stage of the cyclostationary approach to cavitation 
detection. Therefore, unless there is significant difficulty with the peak-picking, the use of the machine 
learning approach may not be justified.  
 
The final input features was a set of easy to compute statistics based on the time and frequency 
signals. Results across models were mixed. However, the logistic regression model showed very 
promising results. This input feature set shows that accurate cavitation detection may be possible 
with little processing of the time series data. The use of these statistics indicates the potential of 
minimal pre-processing of the raw signal to obtain accurate cavitation detection and approaches 
utilising some dissection of the time signal using statistical measures should be investigated further.  
 
Across most input feature groups, the signal to noise ratio was found to have a significant impact on 
the accuracy of models. In particular, it is believed the variation in signal to noise ratio across input 
samples proved to make classification more challenging. This may provide a significant challenge 
when investigations are undertaken with real data. Therefore, work is required in order to investigate 
the challenges resulting from the variation in signal to noise ratio more thoroughly. Further, it is 
necessary to verify if the machine learning models are limited to the same extent as the 
cyclostationarity analysis where signal to noise is concerned.  
 
This work has provided some insight into the use of machine learning models for the detection of 
cavitation. Whilst the present work has used synthetic data, future work will apply the same 
investigations using real measured data. Further, more complex models, specifically suited to the 
challenges associated with the described input features will be explored.  
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