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1 INTRODUCTION

In pipe flow of natural gas, the flow velocity can be up to 40 m/s or exceeding a bit, corresponding to about
10% of the speed of sound.

In order to study how such a large flow affects a sound beam in the case where the flow direction is
perpendicular to the acoustic beam, a parabolic equation is used1,2,3. The acoustic beam is generated
by a uniform piston source. It is demonstrated that the acoustic beam will be bent significantly, and this
effect should be taken into account when using such an acoustic beam for example for determination of
flow velocity2,3.

For pipe flow of oil, the flow velocity is lower and the speed of sound larger. This means that the flow
velocity is about 1% of the speed of sound or lower. In this case, the flow effects on the acoustic beam
are smaller.

In the present paper it is investigated whether such a beam-flow interaction can be important to take into
account also for underwater acoustics. It is focused on small range propagations, up to about 10 metres.
Ocean currents are often in the range about 1 m/s. For generality, current velocities up to 5 m/s have
been considered. Flow effects on the amplitude and phase are investigated. Applications of this study
may be e.g. within echosounders and acoustic positioning systems. Within the limitations of this study,
it is shown that the effects of alteration of the acoustic beam by flow is minor, and in most cases can be
neglected.

2 THEORY

Sound waves radiating in moving fluid over a small range distance can refer to the study of how sound
waves travel and interact in medium such as natural gas or water. The accuracy of the acoustic wave prop-
agating in a flowing fluid depends on many factors, including the flow velocity distribution of the fluid over
a propagation distance. But often, this accuracy is subject to numerous challenges such as flow effects
or flow disturbances and diffraction effects. In pipe flow, various techniques have been investigated to
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reduce and overcome the effects of such factors on sound propagation, such as using specialized sound
sources and signal processing algorithms, the positioning of flow conditioner designs in the pipeline, or
the use of piston diffraction correction models5,6,7, to name a few.

However, in underwater acoustic applications, when sound waves travel through water, the sound field can
be affected by various factors such as temperature, salinity, pressure, and the presence of obstacles or
boundaries8,9,11. Even over short distances, factors such as absorption, refraction, diffraction, scattering
and noise or variations in the sound field due to changes in the flow velocity and direction can result in
changes in the intensity and direction of the sound waves, leading to variations in the way the waves
propagate and interact with the surrounding environment10,11. In this work, a combination of diffraction
and flow effects is studied.

Thus, flow-acoustic coupling are worth for this study, and in the broad sense it requires a well developed
model that can describe such interactions. However, here a simplified set-up of some inputs in underwater
acoustic, such as the acoustics path, beam angle, sound source, the distribution of velocities in the axial
direction over the propagation distance, are defined to reflect gradually underwater acoustics over a short
distance. Motivated by ultrasonic sound fields in open water, some other assumptions relying on the
underwater acoustic process are set as follows:

i. The sound source is a uniform piston located in a flat baffle, located at z = 0 radiating only into the
half-space z > 0. No bottom and surface reflections or additive noise from other sources than the
piston source itself are considered.

ii. For the purpose of comparing and highlighting the flow effects on acoustic waves between different
flow profiles, we consider a laminar flow profile because we have that model in Ngaha et al.3,4.
Even though this laminar flow is not 100% realistic, it is used and compared to the uniform flow
profile in Ngaha et al.1,2. For this reason, the fluid is considered to be homogeneous (speed of
sound and ambient density are independent of space x = (x, y, z) and time t). Water currents
flow in the x-direction, considered as a laminar flow of velocity v0x = vx,max

(
1− (z−r)2

r2

)
when

0 ≤ z ≤ zmax, with zmax being the maximal transducer axis and vx,max (constant) is maximum
flow velocity at the centerline at r = zmax/2. The water current is in a direction perpendicular to
the acoustical axis of the transmitting ultrasonic transducer. For the uniform flow profile, the flow
velocity is v0x = vx,max. The flow is also here in the x-direction and is thus perpendicular to the
acoustical axis of the transmitting ultrasonic transducer.

iii. No effective speed of sound is considered due to the choice of flow direction. Neither acoustic
refractive index in the flowing water is assessed due to the homogeneity of the fluid.

Several equations relying on sound waves in flowing fluids can deal with the assumptions above in various
set such as the Helmholtz-type equations of sound fields through a moving medium by Pierce12 and
Ostashev et al13. But those equations are exhausting in computation and as we deal with underwater
acoustic over a small distance, a high-frequency, narrow-angle three-dimensional parabolic equation as
found in (Eq. 2.111, Ostashev et al.13) is used, and based on assumptions above, it is reduced to

∂q2

∂x2
(x) +

∂q2

∂y2
(x) + 2

ik

c
v0x(z)

∂q

∂x
(x) + 2ik

∂q

∂z
(x) = 0. (1)

The boundary condition at z = 0 is expressed as q(x, y, 0) = ρ0cv̄s when x2 + y2 < a2 (B), and 0
elsewhere, where the sound pressure is P (x, t) = Re{ei(kz−ωt)q(x)}. a (constant) is the sound source
radius, c is the speed of sound in the medium, ρ0 is the mean mass density of the immersion medium, k is
the wave number and v̄s represents the velocity amplitude of the piston source at position z = 0. Eq. (1)
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is also used in Ngaha et al.1,2,3,4 with applications for flow meters. The parabolic equation Eq. (1) remains
valid under the assumption (z/a)3 ≥ (ka) and for ka � 1, and requires the wave propagation to be in a
narrow beam geometry.

For further analysis of Eq. (1), an integral solution based on the boundary condition above developed by
Ngaha et al.1,2,3,4 by use of a two-dimensional spatial Fourier transformation in x and y coordinates is
given by

q(x) =
kρ0c

2iπz
·e

ikz
D2

z

2

∫ ∫
B
e

ik
(
(x− x0)2 + (y − y0)2

)
2z · e−ikDz(x−x0)v̄s(x0, y0) dx0dy0, (2)

where Dz = M
( z

2r

)(
3− z

r

)
, M = vx,avg/c is its flow Mach number, and vx,avg is the average flow

velocity in the x-direction. It can be shown that vx,avg = 2
3vx,max. For uniform flow where v0x = vx,max,

Eq. (1) is reduced to an equation of the sound field through a uniform flowing fluid relying on the same
boundary condition, and an integral solution of Eq. (1) can be found in Ngaha et al.1,2.

From Eq. (2), the farfield approximation of the sound field generated by a uniform piston source through
a laminar flow regime Eq. (1) developed in Ngaha et al.4 where z � ka2

2 is expressed as follows

q(x) ≈ −ika
2

2

ρ0cv̄s
z
·e

ikz
D2

z

2 · e
ik(x2+y2)

2z · e−ikDzx ·
2J1

(
(ka)

√
(tan θx −Dz)

2
+ tan2 θy

)
(

(ka)
√

(tan θx −Dz)
2

+ tan2 θy

) , (3)

where tan θx = x
z and tan θy = y

z . Further investigations based on numerical results are carried out below
to illustrate Eqs. (1) and (2), based on the most influencing parameters on the sound field such asM and
ka-number, which also rely on inputs such as vx,avg, k, c, a or frequency f .

3 NUMERICAL SIMULATION

Simulations of Eqs. (2) and (3) rely on input parameters of relevance for underwater acoustic applications
over a short distance described in the introduction. For sound propagating in open water, we consider
current velocities up to 5 m/s over small distance of zmax = 10 m, and a speed of sound c of 1500 m/s.
The frequency of ultrasonic waves in echo sounders is typically in the order of 15 kHz to 300 kHz, we
consider the maximal frequency of f = 300 kHz. Numerical simulations based on these inputs will be
compared to the ones in natural gas pipe flow and water pipe flow, relying on typical fluid industry set-up.
For generality, we especially extend the pipe diameter to d = zmax = 10 m, to visualize the wave in the
farfield region. In pipe flow, a speed of sound of c = 400 m/s for natural gas, and c = 1500 m/s for water
have been taken. Flow velocities vx,avg up to 40 m/s for natural gas, and 15 m/s for water are applied.

Calculations are carried out at frequencies of 500 kHz for pipe flow of natural gas, and 2 MHz for pipe
flow of water. For both underwater and for the different pipe flows, ka = 60 is used. This corresponds to
the uniform piston radius a = 0.048 m in the ocean, a = 0.0076 m in gas pipe flow, and a = 0.0071 m in
water pipe flow, respectively. For the acoustic wave, both the amplitude and phase are depicted along the
transducer axis in the x, z system (y = 0) until it reaches the straight opposite side at the endpoint zmax.
Plots are only displayed when L = a(ka)(1/3) ≤ z ≤ zmax = 2r. L,L2 and L3 are the minimal distances
where the parabolic equation remains valid and R, R2 and R3 represent the Rayleigh distance indicated
by the pink vertical dashed line for each case. r is indicated by the dark vertical dashed line.
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Figure 1: Amplitude ratio (20 log10 [Q(z)]) between the acoustic field at constant flowing and no-
flowing conditions along the transducer axis (at x = 0), for ka = 60 and for different flow velocities.
Gas flow in pipes (column 1), water flow in pipes (column 2), and in open water (column 3).

The integral solution Eq. (2) is calculated by use of the Riemann summation method. Note that for a
steady representation of the acoustic wave in the farfield, we take out rapid phases under exponential
forms from both Eqs. (2) and (3). The phase in the farfield of a transmitting transducer is therefore relative
to the corresponding spherical wave. We set Q(z) = |q(z)/qref (z)| as being the amplitude of the sound
pressure under flowing conditions that has been normalized to the amplitude of the pressure at no-flow
conditions (qref (z)), and H(z) = ∠ [q(z)/ (qref (z)(ρ0cv̄s))] is the difference in slow phases between under
flowing and no-flow conditions.

Plots in Figs. 1 to 4 are illustrated along the transducer axis (at x = 0) as a function of propagation distance
z for ka = 60, by use of the integral solution indicated by the blue line and the farfield approximation by
the red dashed line. A set of average flow velocities vavg = 5 m/s, 10 m/s, 15 m/s, 32 m/s, and 40 m/s is
considered for gas flow in pipes (column 1). For water flow in pipes (column 2), we have vavg = 3 m/s, 6
m/s, 9 m/s, 12 m/s, and 15 m/s and in open water (column 3), we have vavg = 1 m/s, 2 m/s, 3 m/s, 4 m/s,
and 5 m/s.
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Figure 2: Amplitude ratio (20 log10 [Q(z)]) between the acoustic field at laminar flowing and no-
flowing conditions along the transducer axis (at x = 0), for ka = 60 and for different flow velocities.
Gas flow in pipes (column 1), water flow in pipes (column 2), and in open water (column 3).

Figures 1 and 2 show amplitudes of the sound pressure under flowing conditions including ocean currents
in open water (both for uniform (Fig. 1) and laminar (Fig. 2) flow cases) relative to the amplitude of the
sound at no-flow conditions, and Figs. 3 and 4 represent the difference in slow phases between the slow
phase under flowing conditions compared with the slow phase at the no-flow condition.

For uniform gas and water flows in pipes (column 1 and 2 in Fig. 1), a fair correspondance in the ampli-
tude is observed between the integral and farfield solutions close to the Rayleigh distance and beyond.
However, for the integral solution and for flow velocities of 32 m/s and 40 m/s for gas flow in pipes, an
average difference of 2 dB is seen compared to the farfield solution. For water flow in pipes, a peak in
the amplitude of the integral solution from 2 to 10 dB is also observed compared to the farfield solution for
flow velocities of 9 m/s , 12 m/s, and 15 m/s respectively. We remark that the flow velocity effect remains
almost insignificant on the amplitude under uniform gas and water flow in pipes for these flow velocities.

For laminar gas and water flows in pipes (column 1 and 2 in Fig. 2), a good agreement in the amplitude
is observed between integral and farfield solutions for all flow velocities. An oscillation in the farfield is
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Figure 3: Slow phase difference (H(z), [◦]) between the acoustic field at constant flowing and no-
flowing conditions along the transducer axis (at x = 0), for ka = 60 and for different flow velocities.
Gas flow in pipes (column 1), water flow in pipes (column 2), and in open water (column 3).

seen at mid distance where the flow velocity reaches its maximun. In the nearfield, we can see that the
flow effect is insignificant on the amplitude for laminar gas flow in pipes due to the no-slip condition3,4.
However, in the farfield, the flow effect gets significant for laminar gas flow in pipes for flow velocities from
15 m/s to 40 m/s (column 1, Fig. 2), but remains negligible for water flow in pipes.

In open water (column 3, Figs. 1 and 2), a good agreement in the amplitude is observed between integral
and farfield plots for both flow profiles. In the nearfield, a last maximum in the amplitude of the integral
solution is also seen under uniform flow cases, and a last minimum in the farfield is observed for integral
and farfield solutions under laminar flow profiles and for the different flow velocities. However, the flow
effects remains insignificant for both flow profiles due to low flow velocities compared to the gas and water
flow in pipes where high flow velocities are used.

For slow phases over the propagation distance (Figs. 3 and 4), and for uniform gas flow in pipes (column
1, Fig. 3), no close agreement is observed between integral and farfield solutions with increasing flow
velocity. For the laminar flow profile (column 1, Fig. 4), there is a fair correspondence in the slow phase

Vol.46, Pt.1 2024



Proceedings of the Institute of Acoustics

Figure 4: Slow phase difference (H(z), [◦]) between the acoustic field at laminar flowing and no-
flowing conditions along the transducer axis (at x = 0), for ka = 60 and for different flow velocities.
Gas flow in pipes (column 1), water flow in pipes (column 2), and in open water (column 3).

between the two solutions, for the different flow velocities.

For integral solution (column 1, Fig. 4), the slow phase exhibits a last extrema due to the maximum laminar
flow velocity when approaching the mid propagation distance along z. For integral and farfield solutions in
both flow profiles, the higher the flow velocities, the more the gap between the slow phase under flowing
and no-flow conditions gets significant.

For water flow in pipes (column 2, Figs. 3 and 4), and in open water (column 3, Figs. 3 and 4), a good
agreement between integral and farfield solutions is seen. However, a last extrema in the nearfield is
observed for the integral solution, for the different flow velocities. For uniform flow case (column 2, Fig. 3),
this extrema remains significant with increasing flow velocity. For laminar flow case (column 2, Fig. 4)
and in the farfield, there is a last minimum in the slow phase of the integral solution, where the laminar
flow velocity reaches its maximum approaching the mid propagation distance along z. Therefore, for
water flow in pipes and in open water, flow effects are insignificant on slow phases and remains negligible
under the two flow profiles. Note that the farfield solution remains just an idealized representation of the
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acoustic wave in the farfield.

4 CONCLUSION

In this work, a theoretical study of whether flow effects on a sound field over a small range distance can
be important to take into account for underwater acoustic applications has been carried out, by use of
a parabolic wave equation. This also includes diffraction effects on sound beams. We have computed
acoustic waves through a uniform and a laminar flowing fluid in open water by use of integral and farfield
solutions. The sound source is a uniform piston source located in a flat baffle. The flow direction is
perpendicular to the sound propagating over a short propagation distance of 10 m. Numerical simulations
are presented under different flow velocities for ka = 60, and are compared to the ones in natural gas
pipe flow and water pipe flow, based on industry set-up. As results, the acoustic diffraction correction
effect depends on the path length, the ka number and the flow velocity, as expected. Results here also
indicate that for uniform and laminar gas flow in pipe, flow effects on acoustic waves get significant with
increasing flow velocities. However, for water flow in pipes and in open water, flow effects over a short
range distance are insignificant on sound waves and remain negligible under the two flow profiles, and for
the different flow velocities considered.
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