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A three-dimensional acoustic model is developed to characterize the performance of a concentric
tube resonator by using Green’s function. Green’s function is expressed in terms of acoustic mode
shape of the annular cavity with inner wall impedance conditions. Lumped parameter model has
been used for calculating specific acoustic impedance to relate the pressures across the perforated
liner portion. The acoustic domain is assumed to be rigid, except at inlet and outlet, which are
the locations of piston sources. The total pressure acting on each piston is evaluated by using su-
perposition principle of acoustic pressures developed at both inlet and outlet port locations. The
transfer matrix, relating acoustic state variables at upstream and downstream ends is obtained,
and transmission loss is calculated to estimate the performance of the configuration. These results
have been compared with that of the numerical models developed using Finite Element Methods,
and good agreement has been obtained.
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1. Introduction

A concentric tube resonator (CTR) is a perforated pipe covered by an annulus cavity with acous-
tically rigid end-terminations. It is used widely in automotive industry especially in exhaust systems
due to their broadband noise absorption characteristics and low back pressure.

Acoustic analysis of CTR was started by Sullivan et al.[1] when they obtained an analytical ex-
pression for predicting transmission loss (TL) by mode superposition principle in one-dimension.
Later, in order to incorporate cross-flow and reverse-flow conditions Sullivan et al.[2] developed a
segmentation approach in which the perforated portion is divided into different segments and the
overall transfer matrix was obtained by successive multiplication of individual transfer matrices of
each segment. Rao et al.[3] extended the decoupling approach developed by Jayaraman et al.[4] to
allow different flow conditions in the perforated pipe and annulus regions.

Numerous theoretical models are developed based on flow and sound pressure level conditions
for the sound absorption mechanism through the perforates. For example, Elnady et al.[S] proposed
a semi-empirical expression for perforate impedance which incorporates both grazing as well as bias
flow effects including orifice interactions. Recently, Chris Lawn[6] has summarized various perforate
impedance models that are available in the literature.

In the present work, an equivalent model of CTR is made and solved the governing equations
for the stationary and homogeneous medium in terms of velocity potential function in the frequency
domain by using Green’s function analysis. Total pressures at the inlet and the outlet ports are obtained
from the potential functions. A three-dimensional transfer matrix is formulated from these pressures,
and thence the transmission loss is calculated. A numerical model is also developed to validate the
results.
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2. Analytical model

This section describes the complete derivation of three-dimensional transfer matrix of a CTR,
and calculation of TL. Assumptions that are made during the analysis are stated in the corresponding
sections.

Figure [I| shows the schematic diagram of a CTR. The inlet port is located at z = 0 and the outlet
port is at 2 = L. Both the ports are axisymmetric with each other and are of the same cross-sectional
area (mr?). The perforated pipe (pipe-1) of radius r; is covered with annulus cavity (pipe-2) of outer
radius 75 over the perforated portion of length L.

Figure 1: Schematic diagram of CTR

In the equivalent model the annulus cavity and the perforated liner are replaced with a wall of equiv-
alent reflection coefficient R as shown in Fig 2] By doing so, the computational domain has been
reduced to a uniform pipe of radius r; with wall reflection coefficient R.

Figure 2: Equivalent model of CTR

2.1 Derivation of Green’s function

In this analysis, it is assumed that the medium is stationary, inviscid and homogeneous with uni-
form density py and speed of the sound cy. It is also assumed that the thermal conductivity of the
medium and the pressure fluctuations associated with acoustic waves are sufficiently small. Under
these conditions, for harmonic time dependence, the governing equation for the wave propagation in
terms of the velocity potential function ¢(r, 6, z) can be written as[[7]]

V3¢ + k¢ =0, (1)

and is known as homogeneous Helmholtz equation. Here k = w/c¢ is the wavenumber and w is the
angular frequency in rad/sec. Acoustic pressure p and particle velocity u can be obtained from the
potential function ¢ by using the relations

p=—jwpd,  u=Vo. 2

The velocity potential G(r|ro) generated at r due to a point source at ro is governed by the
inhomogeneous Helmholtz equation:

(V2 + E*)G(r|re) = §(r — 1o). 3)
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The function G is known as "Green’s function" and ¢ is the Dirac delta function. In the cylindrical
coordinate system, when r # rg, the above equation can be written as

10 0 1 0? 0? 9
{;a (a—) iage T e | Glrire) =0 @

By choosing G such that its normal derivative will vanish at the inlet and the outlet ports, and by
approximating azimuthal variation with cos(mf); the method of separation of variables yields,

G(rlro) = {AJm(krT) cos(mf) cos(k,z) for 0 <r <y, )

BlaJ, (k1) + Yo (k.r)] cos(mB) cos(k,z) for ro <r <,

where A, B are constants and « is a function related to reflection coefficient, R. The radial wavenum-
ber (k,) and the axial wavenumber (k) are defined as

ky = /K2 — k2, kzz%, (6)

where p =0, 1, 2, 3, and so on.
By integrating Eq. (3) over the domain, the required boundary conditions to determine the con-
stants A and B can be obtained as

G|r0+e - G|r0—e - 07 (7)
dG _dG 1 cos(mby) cos(k.zo) ®)
dr{, . dri, _. ry eg e,

which means G is continuous and its derivative is discontinuous at » = ry. Here ey and e, are the

normalization factors defined as
21 L
€p = —, €= —, (9)
€m, €p

where

e = TR and e, = orr=n (10)
2 for m#0, 2 for p#0.

Upon substituting these boundary conditions in Eq. (), the Green’s function G due to a point
source at r = ry will become

- Z wl(r)¢2(r0) for 0<r< To,
Grlro) = 2 {wl(ro)wz(r) for ro <r <y, (1)
where
Pi(r) = Z Z egle I (kpr) cos(m@) cos(k.z), (12)
m=0 p=0 z
Po(r) = Z Z egle [ (k) + Yo (K1) cos(mB) cos(k2). (13)
m=0 p=0 z

ICSV24, London, 23-27 July 2017 3



ICSV24, London, 23-27 July 2017

2.2 Derivation of equivalent reflection coefficient

The derivation of equivalent reflection coefficient (R) of the annulus cavity and the perforated
liner will be on similar lines to the method presented by Hughes et al.[g]].

Let p and p® be the acoustic pressures in the regions below and above the perforated liner,
respectively. From Eq. (I), Eq. (2)) and Eq. (5)) it can be written that

pY = Cy [ (k1) + RY, (k1)) cos(mb) cos(k,z), (14)
P = [Codp (k1) 4+ CsYy (kyr)] cos(mb) cos(k, 2), (15)
where (', (5 and (5 are constants, and can be eliminated by using acoustic rigid wall boundary
condition at r = r5, the definition of specific acoustic impedance of perforated liner, and continuity

of normal velocity (u,) at r = ;.
By applying these boundary conditions, we obtain

(a - b) [Jm<krr1) + (er/]k)J;n(krrl)] — a[‘]m(krrl) B me(krrl)]

R = , , 16
T Cr) — OV Gher)] = (0 ) (o) + (o [R) V() 1

where Tk Tk
a = m( Tr1)7 b: m( "’7/‘2)7 (17)

Yn’l(krrrl) Yél(k’r’l“g)
and ( is the normalized specific acoustic impedance defined as
1 1) _ @
¢ = (p ]9> (18)
PoCo Uy r=r

In the above analysis, it is assumed that the axial and the azimuthal wavenumbers in the annulus
cavity (pipe-2) are same as that of the perforated pipe (pipe-1). It can be shown from the Eq. (1] that
the equivalent reflection coefficient (R) can related to the function « as

o= (19)

2.3 Derivation of velocity potential

Assume that there is a hypothetical piston moving back and forth with uniform velocity u; at
the inlet and with velocity us at the outlet ports. The total velocity potential generated by these
hypothetical pistons can be obtained from the principle of superposition since the problem is assumed
to be linear.

From the Kirchoff Helmholtz integral equation, we can find velocity potential ¢ at r due to the
source of area .S; as

G(r) = — / / (G(x|re) Ve (ro) — VG (xlro)(ro)] dSo. (20)
Since the normal derivative of GG vanishes at the inlet and the outlet ports, it can be written as
ov) = - [[ Glelro)Votra)ds: - [ [ Girivo)Votro)ds. @)

where S and S, are cross-sectional area of the inlet and the outlet ports, respectively.
The boundary condition required to evaluate the above integrals are[9, |10]:

% - U1f1(7“7 0) - N1<T7 0)7 (22)
2=0
% = wh(n0) = M), 23)
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where f; and f5 are the functions that depend on the position of the inlet and the outlet ports, respec-
tively. Therefore,

_ / / G(r|ro) Vi (r, 0)dS, — / / G(x[ro)No(r,0)dSy = ¢ (r) + 6o(r),  (24)

where ¢, is the velocity potential generated by the inlet piston, and ¢ is for that of the outlet. For the
present configuration f; = fo = 1.
2.4 Calculation of transmission loss

From Eq. (2) we can find the average pressure acting on the piston ¢ due to the velocity potential
generated by the piston j as given in Kim et al.[9],

Pij = _jwpo / ¢;(r)dS; = v;Eij, (25)
N Jwﬂo/ é,(r (26)

where v; = u;S; is the volume velocity. Substituting Eq. and Eq. into the above equation
leads to

“_7TJWP0
Y ZSS

/1/11 Si, X;—/ Py(r (28)

It must be noted that the velocity of the outlet piston is in the opposite direction to the inlet piston.
Therefore, by using the principle of superposition the total pressure acting on the piston 7 can
written as

27)

where

Pi = Dy + iy = viki + v By, (29)

and the corresponding transfer matrix (77) as

D1 Ty Ti2| |Do
= ) 30
{UJ [T21 Tzz} {’UJ (30)
The transmission loss (TL) is defined as the difference between the incident sound power level and

the transmitted sound power level when there are no downstream reflections, and can be expressed
as[L1]

1
TL = 20log Z1\? T+ T2/ Zy + To1Zy + Toy( 2o/ Z1) ’ 31)
Zs 2
where poc poc
7. = 00 s F0T0 32
1 Sl ) 2 82 ( )

are the characteristic impedance of the inlet and the outlet ports, respectively.

3. Numerical Model

A finite element model has been prepared by discretising the perforated pipe as well as the an-
nulus cavity in HyperMesh[12]. Maximum element size is kept below one-sixth of the minimum
wavelength present in the analysis to ensure that all the waves are captured properly throughout the
frequency range of interest.
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The discretised model is imported directly into the Harmonic FEM Acoustic module of LMS
Virtual.Lab[13]]. By applying unit normal velocity excitation at the inlet and anechoic end-termination
at the outlet, the model has been solved for acoustic pressures with admittance transfer relation be-
tween the perforated pipe and the annulus cavity. Imposition of anechoic termination ensures that
the total pressure at the outlet is identical to the incident component of the transmitted pressure by
eliminating the reflected component.

The transmission loss is calculated by using the acoustic pressures associated with the incident
pressures at the inlet and the outlet ports from the formula

Din + PoColin

Pout

(33)

4. Results

In this section, the transmission loss (TL) obtained from the analytical model has been compared
with numerical predictions. For this purpose, a CTR with typical dimensions: 7, = 20 mm, 72 = 60
mm and L = 200 mm is considered. A finite element model is prepared with the same dimensions by
using tetrahedron elements with approximately 1,07,300 nodes in the entire domain.

The expression for the normalized specific acoustic impedance (¢) in Eq. is adopted from
Sullivan et al.[1] by neglecting the resistance part as shown in Eq.

¢ = jk(t +0.75dy) /o (34)

with orifice diameter d;, = 4 mm, liner thickness ¢ = 1 mm and porosity o = 0.05. Properties of the
medium are taken as py = 1.225 kg/m? and ¢y = 340 m/s.

Figure [3| shows the comparison of TL obtained from the analytical model with that of the numer-
ical prediction. It can be observed that there is a good agreement between the results at lower as well
as higher frequencies.
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Figure 3: TL of a CTR obtained from analytical and numerical models

In the limiting value of ¢ — 0, i.e. when the impedance offered by the perforates is negligible, the
CTR configuration approaches to that of the simple expansion chamber with shell radius 73, and the
inlet and the outlet radii ;.
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It can be observed from the Fig {4| that in the limiting case of ( — 0 in the analytical model of
CTR, the TL approaches to that of the simple expansion chamber, predicted numerically. This also
assures the validity of the analysis.
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Figure 4: TL of a CTR in the limiting value of ¢ — 0 (simple expansion chamber)

It must be noted from Eq. (TT)) that the Green’s function analysis presented here is not only applica-
ble to a CTR but for any configuration for which the value of « or the equivalent reflection coefficient
(R) can be found. In another way, it provides the means of developing three-dimensional transfer
matrices for the acoustic elements such as the side branch resonator, Pod silencers, Herschel-Quincke
tube, lined ducts and ducts with compliant walls etc.

Moreover, the effect of uniform mean flow can be incorporated into the analysis by changing
the governing equations and thence by developing modified Green’s function with the corresponding
modified wavenumbers. However, it has been observed in some cases where the contribution of
the resistance part becomes significant when compared with the reactance part in the normalized
specific acoustic impedance expression due to the presence of flow through the orifices or due to non-
linearities associated with high sound pressure levels; the analytical model is susceptible to numerical
errors.

5. Summary

The computational domain of CTR is reduced by an equivalent model of uniform pipe with a
wall reflection coefficient. The Helmholtz equation is solved for velocity potentials with appropriate
boundary conditions on the reduced model by using Green’s function analysis and the expressions for
four-pole parameters are obtained.

A numerical model with transfer admittance relation across the perforated liner is simulated in
commercial software to validated the proposed analytical model. It is observed that good agreement
has been achieved in the results. A limiting case study is conducted to further validate the methodol-
ogy.

It is understood from the formulations that the analytical model presented in this work is applicable
to a configuration as long as the equivalent wall reflection coefficient for that configuration is able to
find. Further, it can be used under uniform flow conditions with minor fixes.
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