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I. INTRODUCTION
In this paper the problem of how to correct direction-of-arrival estimates froman array which has unknown phase errors is addressed. The standard MUSIC algorithmis discussed as a starting point, but in terms of the signal rather than noisesubspace. The effect of array perturbations on this spectrum result in a lossof resolution and small deviations in the peaks from their true angles. A methodis presented which uses the initial direction-of-arrival estimates from thestandard MUSIC spectrum and finds the projection of these into the perturbedsignal space. An algorithm which derives the corrected signal space is thengiven. This also finds the phase deviations on each sensor and can be used toimprove the output of MUSIC or other spectral estimators such as Capon’s minimumvariance, or indeed of a conventional beamformer.
Current approaches to spatial power spectrum estimation include the minimumvariance (MV) method due to Capon [1], Burg's maximum entropy(MEN) [2], theminimum norm method (TK) proposed by Tufts and Kumaresan [3], and MUSIC due toSchmidt [4]. in terms of resolution the minimum norm is accredited with beingthe best. while MUSIC and MEM come in a close second and third, leaving Capona poor fourth. It has been shown that the minimum variance spectra is the averageof a number of MEM spectra of increasing order. hence its resolution will alwaysbe less than that of MEM. Now. if the criteria adopted is robustness then theordering of these techniques reverses. the minimum variance method makes noassumptions about the noise spatial correlation and is applicable to arbitrary,but known array shapes. Since TK is derived from autoregressive theory it isstrictly applicable to linear equispaced line arrays only and like MEM and otherAR methods it incorrectly models an additive noise process (MA) and is only anapproximation to the true ARMA case.
Recently other methods have been proposed which iteratively rotate vectors inthe signal space [5]. [6]. These will cope with severe array miss—calibration.but in some circumstances they are slow to converge and the procedure followedhere is a fast sub-optimum approach to the rotation.
Schmidt correctly used the measurement model which includes an additive noiseprocess in the MUSIC method. It also has the added advantage of being applicableto arrays of arbitrary geometry. Just as for Capon’s MV, it is necessary tostore an array calibration table in memory (often referred to as the arraymanifold). which enables a search over all possible source bearings. It hasbeen shown that the MUSIC algorithm is sensitive to a miss-match between themodelled and true array geometries, especially for closely spaced sources. It
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can, in such circumstances, fail to resolve them [7]. But MUSIC may be made

more robust to array calibration and positioning errors by accounting for this

discrepancy in the array manifold.

When using a towed array. for example, phase and amplitude errors can arise due

to a number ofcauses:

(i) Poor matching of sensors and manufacturing tolerance
(ii) Drift in amplifier circuits

(iii) Ageing of components
(iv) Snakeing of the array following tow speed variations [8)

This paper addresses one way in which calibration errors may be measured from

the acoustic data and then used to enhance the resulting MUSIC or Capon spectra‘

in the context of bearing estimation, the only assumption it makes is that the

received source signals are wide sense stationary. while each source wavefront

is perturbed identically by the errors in sensor positions and calibration.

The notation is introduced first, then the MUSIC algorithm is derived using a

signal space approach which gives a better insight to its nature. Section 4

derives the effect of array calibration errors on the signal subspace and an

algorithm to measure them is presented. Finally the performance is evaluated

using simulated data in Section 5.

2. DATA MODEL AND NOTATION

Lowercase underlined letters refer to vectors. uppercase letters indicate

matrices. For complex valued matrices V)“ is the Hermitian transpose or complex

conjugate transpose operator and a ti de (') above a variable implies it has

been perturbed. At all times a working knowledge of linear algebra is assumed

and the reader is referred to Strang (9] or another suitable text if in difficulty.

Data from an array of sensors is divided into narrow frequency bands and one of

these is processed to find the source directions-of—arrival. The transmission

medium is taken as isotropic and non-dispersive so radiation propagates in a

straight line. Furthermore the sources are assumed to be in the far field so

.- they appear as plane waves at the array. For simplicity the case of a line array

is examined here but the ethod can also be extended to planar arrays. Following

this the signal on the pi- sensor can be written as

M

x(p)= Z scm>e"""°‘“’+e(p). p=1.....P (I)
m-I

where s(m) is the complex envelope of the nth source at the first (reference)

sensor“ and ¢(m) is the electrical phase shift between adjacent sensors due to

the Int plane wave source.

Noise on the pth sensor is included as a zero mean complex Gaussian random

variable e(p) with variance 0%,. Let 5,, be the P x 1 observed signal vector from

the P sensors at time instant n, and g” be the additive noise at the array also

at time instant n. The N source envelopes are grouped together as a vector in.

Furthermore each source can be expressed as its complex envelope, s(m) multiplied
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by a direction vector gm, which defines the phase response of the array to the
m h plane wavefront arriving from hearing em. All the direction vectors for
the M plane waves present Form the columns of a direction matrix 0. These vectors
are detailed below

§:=[X(l).~--X(P)] §:=[s(1).....s(M)1

g:=[e(1)...l.e(P)] D=[c_1],_.__gM]

Using these definitions Eq.(1) can be simplified to

erenen (2)
The problem at hand can be stated as: knowing an. n=1,...,N, estimate the direction
matrix D. This requires the P x P spatial cross-spectral density matrix, defined
as

R“E[££"]
to be formed, where E[] is the expectation operator over time n. Also define
the N x M source cross-power matrix as

c-£[§§"] (3)
Now the cross-spectral density matrix can be expressed as

R=Dco"+ui,l (4)

which is known as the direction-of—arrival decomposition.

3. SIGNAL SPACE SPECTRUM ANALYSIS

A set of H orthonormal vectors that are contained in the same subspace as the
columns of D can be obtained by performing an eigen decomposition on R,

R - vzv” (5)

In the usual notation V is the matrix of orthonormal eigenvectors. and Z is a
diagonal matrix of the eigenvalues arranged in descending order. It is known
that the eigenvalues are distributed as follows [10L

t him: i=1.....M

‘ of, i=M+l.....P

The smallest P-M eigenvalues are all equal to the noise power and the largest
M are equal to the noise power plus the signal power referenced to the eigen-basis.
The usual approach is to split the space spanned by R into a signal and noise
subspace, but here a split is performed which mimics the direction—of-arrival
decomposition Eq.(4).
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R=BB"¢0},I (6)
where B=V(Z_°:I)uz (7)

Notice the similarity of Eq.(4) and Eq.(6), where the columns of DCDH and BB”
must span the same space. They are in fact related by a transformation matrix
T such that

DCD"=(D\I’)(D\F)"=BB” (a)
let T=\y"

therefore D=BT

The problem has been reduced to finding an arbitrary invertable matrix T which
operates on columns of B, to give the columns of D. In practice however the
exact covariance matrix R is unknown. but is approximated by averaging together
a number of array data snapshots, consequently the columns of B and D will not
span exactly the same space. If the number of sensors, P, is'very much greater
than the number of sources, M, then a solution is available in the least squares
sense for T, and is given by ‘

T=B'D (9)

where (*H is the pseudo-inverse operator. This least squares solution is in
effect equivalent to minimizing the following Frobenius norm

minimize J=|i3T—D|2 (10)
T

This would be fine if D were known completely, but since it is not then a search
vector g(e) can be used to search over the stored array manifold to find the
corresponding minimum in this reduced dimension Frobenius norm

J(i3)-=|13!_-g(9)|2 (11)
where i=3'g(e) (12)

The columns of T can be approximated by the M vectors {corresponding to the M
minima of J(e). This forms the optimum transformation in the range space of B
to give estimated source direction vectors lying as close as possible in a least
squares sense to the true direction vectors.

Now it is possible to simplify the cost function by expanding the expression
for the pseudo-inverse, whereupon J becomes

J(6)= IBB'g(9)-g(9)flz= IB(B”B)"B"g(e)-g(o)|2
=iV.vfg(e)—g(e)|’ (13)

This is simply the squared length of the error vector between g(6) and its
projection into the signal space V5. Forming the reciprocal of .1 results in
the conventional MUSIC spectrum but expressed in terms of the signal space.
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l I
—--———— 14
J(0) P—g"(e)v.Vi'g(e) ( )

The source cross power matrix may now be estimated by

c=(T")(T")" (15)

4. SPECTRUM ANALYSIS IN THE PRESENCE OF CALIBRATION ERRORS

The previous model for the sensor covariance matrix made the assumption that D
had a Vandermonde form. This can be shown to have full rank M [10]. provided
the source angle-of—arrivals are all different. This section shows how to
correctly use the MUSIC algorithm in the presence of perturbations from an ideal

Vandermonde structure. One must still assume however that D maintains ful rank
in its new form, or else the signal subspace spanned by the columns of DE will
have dimension less than the number ofsources present. This has the same efflevclt
as having fully correlated sources which will also degenerate the rank of DC .

For an im erfect array, D can be replaced by an array manifold which is the

product 0 a phase perturbation matrix, detailing the array phase mismatch. and

a Vandermonde matrix which is the ideal response.

D=AD (16)

“he” I A-diagll ela’,4...e'b’] (17)

A perturbed covariance matrix can be formed using the information about array
phase characteristics.

k=ADCD"A"~o:I (18)

=(AB)(AB)"+a§,I (19)

As a phase shift applied to the data does not affect its variance. then the
covariance matrix will maintain the same eigenvalues as before, but the
eigenvectors will have a simple phase shift equal to the phase perturbation added
to each element. Therefore the array phase deviation from linear is imbedded

equally in all the signal eigenvectors. each eigenvector coefficient carrying
the corresponding phase perturbation in that sensor.

Now following a similar argument to the one above, the correct cost function to

be minimized is

miniTmize J=II§T-ADIz

However A is unknown. so an initial spectral estimate is formed using a search

vector g(e) over the array manifold in the same way as before.

J(e)=|V.V:'g(e)-g(e)|‘ <20)
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‘At each of the N minima of this function then J is the squared length of the

error vector gm between gm and the space of V" therefore

V,Vfi'gm=gm+§m m=l.....M (21)

Also of course gm+§m is in the range space of 17,. such that

V.Vf(§m*§m)=gm+§m, but at each minima, Agm corresponds to the way the

all“ source was sampled by the array, so it is also'true to say that

. VsVi'AérAfl...
,therefore . Agm=g +5" m=l.....M (22)

This allows A to be found when the H minima search vectors are collected together

as the columns of Q. and the N projected search vectors are the columns of Q.

The first element of each projected vector should be normalized to l and subsequent

elements should have the same absolute value as the corresponding element in the

search vectors.

diag(A)=diag(QQ') (23)

The pseudo-inverse is a convenient mathematical tool at this point but A may

equally be found by phase unwrapping the columns of Q [5], and performing a

least squares fit to these.

An enhanced MUSIC spectrum can now be formed, still using the stored array

manifold, by correcting the signal space with the estimated perturbation matrix.

ryraawyra (24)

5. SIMULATION RESULTS

To show the accuracy of phase angle estimates that may be attained, then a

simulation has been performed using an 3 element array of sensors with half

wavelength spacing. Each sensor has a phase perturbation applied which varies

between -0.2 and +0.2 rads. The perturbation is held constant over the covariance
matrix integration time.

In the first simulation 2 sources, each of lodB SNR, are present with wavenumbers

1 and 1.4 rads, which ensures MUSIC may easily resolve them. The covariance

matrix is integrated over 100 snapshots. Fig.(1) shows the phase angle per-

turbation estimates obtained from each source for 5 runs. These estimates have

a mean equal to the true values and exhibit low variance. As the performance

of MUSIC is known to degenerate for fewer snapshots. then in Fig.(2) the same

two sources and SNRs are used but new the number of snapshots is reduced to 20.

The mean estimate once again converges to the true value. but more variance is

present.
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If the MUSIC spectrum is corrected by using Eq.(24) above then an improved
determination of the peak positions can be attained. In the final simulation
10 normal MUSIC spectra are plotted and using the same sets of data 10 enhanced
spectra are also plotted. For each run the phase perturbations on each sensor
are drawn from a Normal distribution with zero meanand variance of n/5 rads.
The source wavenumbers are I and 1.25, both of 10dB SNR with 100 snapshots.

The MUSIC spectra Fig.(3a) reveal that two sources are present but grossly
over-estimates their separation and exhibit high sidelobe levels. After pro-
jection. a least squares fit and noise space correction the two sources are
easily discriminated Fig.(3b) and at the correct bearings. Clearly even when
the initial bearing estimates from MUSIC are poor (in this case out by 20%),
then the method still shows good performance.

6. coNCLuswns
Information regarding the spatial sampling process can be extracted by considering
a signal space approach to high resolution bearing estimation. Having formed
a MUSIC spectrum, the estimated source direction vectors can be examined to
determine how closely they match the steering vectors. This reveals whether the
array manifold needs to be re-calibrated. If the perturbations are small then
the signal (or noise) space can be corrected to improve resolution at little
extra computational cost.
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