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I INTRODUCTION

This paper discusses the possibility of direction-finding using the ‘ al~subs ace or spatial cross-spectral
density matrix (SCSDM) without performing a re-conceived scare throu the array manifold. It is
advantageous in uhcgsau the information contain in the ongmal'' data matrix or from an eigen-decomposiu''01:
performed on the S DM. With present technology arrays may be several kilometres in length and therefore
It is no longer inconceivable that sources lie purely In the far field. This means that near an far field sources
have to be treated equally and the curvature of near field wavefronts revealed. allowing further processing to
be performed that may locate the sources.

The approach followed in [l finds the wavefronts by rota ’ eigenvectors taken in pairs from the whole
' a] space until a suitabl elined cost function converges. a similar manner the method described in
Wrotates eigenvecwrs in Vidually. The intent of this present paper is to show how all the signal subspace
eigenvectors can be rotated simultaneously.

The problem in [1] and [2] is related to that of mixed near and far field emitters being received by an ideal
linear array, where the spatial phase distributions are very much direction and range dependent. In particular,
the signal received from an emitter in the near field e riences a non-linear time delay pro ession between

' adjacent transducers. Time domain methods which estimate the inter-element ropagation clays from peaks
in the cross-correlation function are commonly employed in this situation. owever there are few papers
that focus on the signal processing required to extract this information from the frequency domain.

The effect of spreading will be taken as negiegible, which uts a lower limit on how close an emitter may be
to the array, but this IS not considered to a serious oncominggasg is the observation that an acoustic

esource is received with equal power on each sensor that forms th for the algorithms presented here.

2 SIGNAL AND NOISE MODEIS

The observed spatial snapshot x(k) is assumed to have come from a simple model for M uncorrelated sources
in isotropic white noise. The signals are received by alinear equispaced array having P transducers.

x(k)-Ds(k)+n(k) (l)

The columns of matrix D contain the M wavefront phase delay vectors while s(k) and Mn are the vectors
of source and noise complex amplitudes respectively.

The spatial cross-spectral density matrix (SCSDM) is given by

a - ocu”+ oil (2)

where C- E [s(k)S"(k)] is the diagonal source cross-power matrix and E [] is the statistical expectation
operator. Since the cross-power matrix is diagonal it may conveniently be combined with the matrix D so
that A - DJE This allows the covariance matrix to be written as

R-AA”+af,I (3)

It is seen that the columns of A are simply the source rms amplitudes multiplied by their respective array
phase responses.

Performing an eigen-decomposition on the SSDM results in

R - vzv” (4)
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where V-[v,.....v,] are the eigenvectors and Z-diag[§......§,] are the eigenvalues arranged in
descending order of magnitude.

If an infinite number of snapshots are taken, it can be shown that the smallest P - M eigenvalues are all equal
to the noise power of, This allows one to rewrite this identity in an equivalent form to Eq.(3)

R-V(2-a§l)v"+afi,l

a BB" + oil (5)

where B contains only those eigenvectors associated with the largest M eigenvalues weighted by the square
root of their noise canceled eigenvalues.

In practice the smallest e' nvalues will not be equal so a maximum likelihood estimate of the isotropic noise
power can be calculated om their mean.

Comparing equations 3 and 5 one can see that A and B are related by an MxM unitary transformation T in
the followmg manner.

A - ET (6)

Notice that the columns of B are orthogonal whilst those of Rare not. Also each column in A has the form
of la! conglant multiplied by a vector of complex exponentials, so the magnitude of each element in a column
IS 1 enu .

Our objective is to find this transformation matrix, using purely magnitude information contained in the
structure of matrix A By ignoring phase when determining T then the issue of whether an emitter is in the
near or far field is irrelevant. However, having found the transformation, one can then examine A and
determine the phase.

3 OBTAINING WAVEFRONT VECTORS DIRECILY FROM THE SIGNAL SUBSPACE

The approach followed in [2] attempts to find each column in T sequentially by minimizing this cost function

J-lr-IBTIIZ (7)
r - 1 ,t’ '

where l ,is a Pit] vector ofone: and f contains the estimated source rtns amplitudes. These can be found

from averaging down each column of IBTI. In this text PI is the element-wise magnitude operator and PI
is the Frobenius norm.

By_rninimizing this cost function the eigenvalue weighted eigenvectors are rotated to become rms amplitude
weighted wavefront vectors ln [3] it is shown that minimizing Eq.(7) is functionally equivalent to maxzmizing
the cost function given below

1- 2u:new».as;hexagon-)1 ,HI‘R'I [2-]

where the notation m<n-l can be read asm- l .n-l.m1‘n This rather daunting expression involves
the covariance between difi‘erent columns whereas the old cost function used the variance of individual columns.

The advantage of this cost function is that all the eigenvectors can be rotated simultaneously: using a simple
iterative algorithm whereas for the case above they had to be rotated individually. This produces far superior
convergence characteristics.

This cost function can be maximized with respect to all the elements in the transformation matrix T
simultaneously. As the transformation matrix is constrained to be unitary then its columns must satisfy
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tit-l . f
u p I 1.1-1.....M

t, tI-O I!)

These may be appended to the cost function with un-determined Lagrangian multipliers A”. so denote the

augmented cost function by script font 7
M M

7=J+(M-XZAUt,”t,) (9)
l-ll'l

Due to the unitary constraints Aul S i S M must be real but M, i! j may in general be complex. Since the

cost function is by definition real and positive then M, - A;..

To find the maximum requires differentiating this function with respect to the transformation matrix T and
sett' the result equal to zero. The angina constraints help confine the search path so that the optimum
trans ormation matrix is unitary. For 'ty this lengthy derivation is performed in [3] and the final result
is stated here. The simplified derivative of 7 with respect to t. is found to given by the 1"“ column of this
matrix expression

11,? "( -1)-8T PB E Pr ZTA (10)

where . E-Ao[|A|2(llT-l)]

r - I‘M-"A — D) D- diagtlaII’w. iaulz]
also 0 is the element-by-element multiplication operator and A is the matrix oflagrangian multipliers.

Setting this equal to zero and dividing out the factor of 2 then one arrives at the maximization condition

1 ,, 1 .Fe [E-FF) TA or H TA (11)

Pro-multiplying both sidesbyT” and noting thatTis unitary

u -l u( -l )-T H PA E PF A (l2)

But the i"‘ diagonal element of the left hand side is

J: i[l:|a' a '2.
‘ P up!In! p-l

Elli

 

I

] (13)

which is immediately recognized as the contribution to the cost function of the 1‘“ column from A Therefore
maximizing J is the same as maximia'ng the trace of A and this is also the value of the cost function. The
maximum is found by aniterative procedure which starts with an approximation '_I'. which gives starting
values A. - BT . for an approximation to the optimum value of A Then matrices E h F. and H. are calculated.
To complete each iteration, a Hermitian symmetric positive definite matrix A has to be found that lies in the
span of H 0n pre-multiplying both sides of E.q.(11) by its transpose

Him-MA. (14)

 

l ' .
sz'lapna‘"

then since HfH l is positive definite symmetric it may be expresed in terms of the singular value decomposition
of H
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H,-uvw”

HfH,-uv=w" (15)

where U and w are the matrices of left and right singular vectors, and V is the matrix of singular values. A
.Hermitian symmetric matrix in the span of H is therefore given by

Al - wvw" (16)

Lastly. the new iteration begins by finding a unitary transformation that satisfies the equation

Tzlt.I - Hl _ (17)

So substituting for the inverse Lagrange multiplier matrix

T,-H‘.A;'- uvw”wv"w"

-Uw” (18)

In practice the Lagrange multiplier matrix does not have to be calculated sincethe updated transformation
matrix is obtained directly from the SVD on H

A good initialization is required in poor signal-to-noise ratio conditions. If a direction finding algorithm such
as a spatial Fourier transform or MUSIC is available then the columns of A may be estimated. This can be
used to initialize T as shown below

T=(B”B)"B”A (19)

The iterations may look expensive from a computational point of view, but it should be borne in mind that
the dimensions of H are MxM where M is the number of sources, which may be small. Also the orthogonal
polar decomposition UN ” of H can be calculated directly by anumber fast methods. see [4), which are less
computationally expensive than a full SVD. In practice veranfew iterations are needed and if a good
guess at the transformation matrix is available only two or ee iterations may be required. The algorithm
Is summarized in Appendix A.

4 PROOF OF MAXIMIZATION

The derivation above does not prove that the cost function will necessarily increase at each iteration, but this
is nowdproved. However it does not necessarily follow that the al orithm will iterate to the global maximum,
and in eed this is sometimes the case with a poor initialization. ince it is sufficient to prove that the trace
of A increases at each iteration. then from Eq.(11) A = T” H the trace of this can be written as

trace(T”H)-trace(T”UVN")-trace(ZV) (20)

where Z = w”T”U is a unitary matrix. The trace of 2V can never be greater than the trace of V since 2 is
unitary, the equality comes for Z equal to the identity matrix.

inn”... 5 i v... (21)

The upper bound of which is achieved when T a UN”, which was the result given in the previous section.
Therefore the trace of A is maximized by this choice of transformation.
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5 OBTAINING WAVEFRONT VECTORS DIRECI'IX FROM THE COVARIANCE MATRIX

This method is applicable when the sources are known to be uncorrelated but the s atial noise statistics are
either unknown or cannot be estimated with any de ee of confidence. It operates ectly on the covariance
matrix, so one is not required to perform an eigen- ecomposition of this, as was necessary in section 3. Once
again the covariance cost function Eq.(8) is used, since it simplifies the computational cycle and notation.

The derivation proceeds by eliminating the necessity to compute updates using the formula Ah . = BT.. 1,
since the matrix of eigenvectors B is unknown. Instead the expressions are manipulated so that BB” can be
replaced by the full rank covariance matrix (recall from Eq.(5) that R - BB” 4 air). The initialization of A
is chosen in a sensible although ad-hoc fashion. It must have dimensions PxM , M < P so the number of
sources has to be determined in advance.

Denoting the term in brackets in Eq.(11) by G then it is expressed more conveniently as

ENG-TA where G-l/P(E-F/P) (22)

I'm-multiplying both sides of Eq.(22) by their transpose and noting that T is by definition unitary results in

c"BB”c -A"A (23)

However BB” is the rank M signal space approximation to the covariance matrix. In this case it is now
replaced by the original full rank covariance matrix.

c”Rc-A"A (24)

This matrix has dimension MxM, where M is the number of sources. It is known that A, the matrix of
Lagrangian multipliers, must bepositive definite symmetric. soone is required to find a matrix of this form
in the range space of 0” R0. The eigenvalues of G”RG will be positive semidefinite and its
eigen-decomposition can be expressed as

0"Rc-wv’w” (25)
|

where w and V2 are the matrices of eigenvectors and eigenvalues respectively. A positive definite symmetric
matrix in the range space of G”RG is therefore given by

A - wvw" (26)

From Eq.(22) and Eq.(26) the transformation matrix is

T: B“cwv”w" (27)

But also the relationship between A and B can be exploited to avoid this direct calculation of T to give the
final result as follows

A - BT- an"cwv"w”

-Rewv”w” (28)

To determine the stopping point then, once again, the cost function is equal to the trace of A and this should
be monitored as an indicator of convergence.

The computation involved in this method requires the eigen-decomposition of a Hermitian symmetric MxM
matrix at each iteration. An algorithm summary is given in Appendix A.

6 INTERPRFI'ING THIS MAXIMIZATION

The effect of applying this algorithm can be readily explained in that the trace of 6" RC is equal to the sum
of its eigenvalues. This is maximized when G is a projection matrix into the signal subspace of the covariance
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matrix, in fact the optimum choice of matrix A best satisfies two conditions. The first is that each column
of A lies in the signal space and the second is that the elements in each column have equal modulus. With
the help of Eq.(28) this rank reduction can be explicitly shown. The covariance matrix withM sources in an
arbitrary noise field can be expressed as

R-AA”+oNRN (29)

And A is the exact wavefront matrix. Therefore R - A A " is simply the noise covariance matrix. Combining
Eq.(25) and Eq.(28) one can write for the approximation A of A

-II!
A=RG(G”RG) (30)

hence

R—AA"-R-Rc(c”kc)"o"k ‘ (31)

This can be recognized as the general form of a rank reduced matrix. Therefore although one beg'ns with
an arbitrary initialization for the M columns of matrix A Eq.(30) ensures the rank of R is reduced by M.
Furthermore the cost function maximization ensures that the columns of A converge to having constant
magnitude columns. This is not achieving exactly the same result as Eq.(29) which leaves a residual full rank
noise term, but if the signal-to-noise ratio is high the estimation of A will be satisfactory.

7 SIMULATION RESULTS

A simulation was performed using a 32 element linear array with a 1m lspacing between sensors. The array
0 rates at 0.4 wavelength spacing to ensure the hue-unwrapping algori does not fail for endfire sources.

e Fresnel distance for this array works out to 380m. Four uncorrelated sources are present in the near
field as shown in Figure 1. with the closest only 2.5 arra lengths away. A second weaker source is almost
directly under this and is masked in a conventional spati FFI‘ by the closer source. Two more close targets
are located at the edge of the near field.

Two hundred snapshots were taken and the ei envector rotation algorithm used to find the wavefront shapes.
The transformation matrix was initialized to e identity matrix, which is a reasonable approximation if the
sources are widely spaced. The signal space eigenvectors are plotted in the complex plane and it can be seen
that they are indeed a good approximation to the actual wavefronts. The iterations terminated when J changed
by less than 0.(Ill%. Unwrapping the phase of matrix A resulted inthe target wavefi'onts graph, while the
hydrophone SNR graph was obtained as

Hydrophone SNRs - 20109 “IA l — lOlog “of, + lOlong

and includes the snapshot processing gain (23dB). The noise power was taken as the mean of the 28 smallest
eigenvalues.

Figure 2 shows the same situation but using the covariance matrix method. Instead of sensibly initialia'ng
the matrix A its elements were chosen from a complex gaussian random number generator. It can be seen
that even with a com letel random stamng' ' t the al orithm has near] conver after 20 iterations but
takes '78 iterations topstabiiize to 0.001%. pom g y sad

There appears to be little difference in the algorithms performance until two sources are veg closely spaced
when the covariance matrix method outperforms the eigenvector method. This may be ue to the wide
eigenvalue separation for these two eigenvectots, leading to one eigenvalue dominating the cost function and
slowmg convergence.

8 CONCLUSIONS

Two simple iterative algoritms have been presented. One rotates eigenvcctors whilst the other intrinsicly
rotates vectors in the covariance matrix signal subspace. The advantage of such an algorithm is that the
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sources can be in the near or far field and this will not efiect the algorithm performance. The individual
wavefront curvatures arerevealed as are the SNR's of each source at each hydrophone. Both methods show
near equal performance.

[1]

[2]

[3]

[4]
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APPENDIX A

Eienvector Method Covariance MatrixMethod

 

M = number of sources.
P = number of sensors.

Choose A.-[a..az.....a,] (M<P)
k'i

repeat

Druiagtlatl’n... laulz]

El-Alo[lAll2(llT_l)]

FA” A1(AilAa‘Dr)

Gx-iiEriFn)
H.-Rc.
Lu’GL’H.

wv’w” = L. (eigen—decomposition)
A...-H.wv"w"
J-tracefldVW”)

k - k+ l

until J is stable

M = number of sources.
P = number of sensors.

Form transformation T. - (B"B)"B"A
A.-BT,
k-l
repeat

D.-dia9[|a.|’m-.lanlzl

Er'AnoilAnleV'IH
F.=A.(AfAk-Dk)

HK-;B”(E,-%F.)
UVW"=H. (singular value decomposition)
T...-Uw”
AhIBBT...

J-trace[WVW”] or trace[T£'.lH.]
k - k s 1

until J is stable
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Figure 1. Algorithm performance for rotating the eigenvectors.
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Figure 2. Algorithm performance fox intrinsic rotations using the
covariance matrix.
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