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INTRODUCTION

The complex modulation transfer function (CMTF) has important applications in many fields including audio.
for example, the magnitude of the CMTF or MTF is the basis for the speech transmission index (STI}. A well
known theorem shows how the CMTF of a noiseless linear time-invariant system can be derived from its impulse
response. ' When maximum-length sequence (MLS) methods are employed, this theorem can be extended to
include noise-contaminated as well as weakly non-linear systems, Furthermore, with M1S methods, there is no
requirement that the interfering noise be stationary,

0. BACKGROUND

Given a noiscless lincar time-invariant system having an impualse responsc, h(t), Schroeder [1] has shown that its
complex modulation transfer function (CMTF) denoted, m,(f), can be expressed as,

ey
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The numerator of (1) is the Fourier transform of the squared impulse response while the denominator is the
total energy of the impulse response. The denominator can be interpreted as the DC value of the numerator.
‘When system noisc is present, however, (1) is no longer valid but it can be corrected to yicld the true CMTF,
m(f). This corrected form, derived by Houtgast and Steencken [2] is,
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where pzs denotes the mean-square signal level and pzn the mean-square system noise, Relation (2) can
therefore, in principle, be used to determine the CMTF of a noise-contaminated linear system based on two
independent measurements of a) the noiscless system impulse response and b) the system signal-lo-noise ratio,
While sometimes practicable, (2) is ronctheless always inconvenient because of the need to make two separate
syslem measurcmenis.

Furthermore, (2) cannot easily be applicd in those cascs where the syslem noise Yevel is dependent upon the
input signal level. This is often the case with digital systems (¢.g. CODEC's) in which quantization noise appears
when a signal is present but disappears cntirely when the signal is absent. A noise measurement of such a system
cannot be performed simply by measuring the residual output noise with the input terminal grounded. Another
Limitation of the direct application of (2) is the need to measure an essentially noiseless impulse response. This
requircment might require very long averaging times when measuring particularly noisy systems.

Proc.l.O.A. Vol 14 Pant 5 {1992) . 149



Proceedings of the Institute of Acoustics

MODULATION TRANSFER FUNCTION MEASUREMENT WITH MLS

These limitations of (2) could be overcome if somehow (1) could be used dircaly simply by subsliluting a noise-

contaminated impulse response for the noiseless version b{t). Unfortunately this approach, in general, will not

work. Although the Fourier transform generally exists for finite energy functions such as the noiseless impulse

response, h(t), this is not the case for stationary (persistent) functions that generally characterize noise. That is,

noisc processes generally possess infinite energy when integrated over all time as in the denominator of (1)

causing it 1o "blow up”, The lack of convergence of (1) under this infinite energy condition therefore generally

forces us to employ (2) instead. However, if the total noisc energy contaminating h(t) could samchow be

guaranteed to be finitc there is at least a possibility that (1) would converge to (2). This last conjecture is, in |

essence, the subject of this paper. |
1
\

A previous paper [3] presented a comprehensive analysis of the maximum-length sequence (MLS) methods
which can measure the ordinary transfer function as well as the related coherence funetion of linear time-
invariant systems. Maximum-length sequences are binary (fwo-level) periedic sequences of period L which is
always on less than a power-of-two thus,

The important property of any MLS is that its circular autocorrelation sequence is essentially an impulse, This
property is exploited by an MLS analyzer 10 measure the periodic impulse response (PIR) of a linear time-
invariant system according to,

4 1 L-1
ng(n) = —e E_s(X)y(n+e),
L+1 k=0 ,

(3) L = 2N.1, where Nis an integer }
|
|

where the index (n+k) is evaluated modulo L.

Here hp,(n) denotes the measured PTR sequence, s(n) Lhe driving MLS and y(n) the raw system output

scquence. It can be seen that (4) is essentially a circular cross-cortelation operation. Furthermore, because the

measured PIR sequence is periodic, it is naturally suited to analysis by means of the discrete Fouricr transform ‘

(DFT).

1. THEOREM i

In an MLS measurement a maximum-length sequence is applied to a system whose output, ¥(n), which may
contain additive noise, is cross correlated related with original sequence according to (4) to yield,

(5) hmgm(n) = h(n} + n(n})
where  hg,(n) is the measured PIR sequence of period L
h({n) is the noisclcss system PIR sequence

n{n) is an additive noise component

Thus h(n} is, in general, the MLS-derived PIR sequence of a noise-contaminated lincar time-invariant system,
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The sequel will show that simply applying the discrete-time version of (1) to by (n) yields, as L increases without
Timit, the true CMTF of {2) for all modulation frequencies except zero. for large but finite L, the result will also
be correct except for a small random error.

2. ENERGY CONSERVATION PROPERTY

The MLS circular cross-correlation operation that recovers the PIR from the system output can be interpreted as
a linear filler having an impulse response that is the time-reverse of the original MLS [3]. Such a linear filler is
ofica called a matched filter. The time-reverse of any MLS is also an MLS denoted here also as s(n) for
convenience. Now, if y(n) is an arbitrary input signal to an MLS analyzer, then the measured PIR sequence,
hp(0), can be express as,

1
€)  pyny = — y(n)rs(n)
L+1

where * denotes circular convolution [3].

By the convolution theorem of the DFT,

1
D ey = — (080
L+l

Taking the magnitude and squaring both sides gives,
@

1
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The squared magnitude of the S(f) denoted |5(f)]2 can be shown 1o equal L+1 at all frequencies except DC
yielding,
®

1
[Hp(£)]2 = el [¥(£y |2, ¥(o) = o.
*

summing both side over all frequencics gives,

(10) L

1 1 L-1 2
|Hp(£) |2 = — I [¥(£)|%, v(o) = 0.
=0

L+l £=0

0

Equation (10} shows the rclationship between the energy in the respective DFTs of the system output signal and
the measurcd PIR. We can cxpress (10) entircly in time-domain terms by use of Parseval's energy relation [4)
given as,
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(11) L-1 1 L-2
Txfk) = - T Ix(£))2
k=0 L £=0

which holds for any sequence x(n). this yiclds,

a
-1 1 L-1 2
T hpf(k) = =—— I y*(k), ¥(0) =0
k=0 L+1 k=0
i L-1
= - E yi(k), L >> 1.
L k=0

Thus the MLS circular cross-correlation operation can be interpreted as a linear filler having an absolutely Mat
frequency response, except at DC. Therefore, assuming (he input signal contains no DC component, the energy
in the MLS-derived PIR, hyp{n), ncarly equals the mean-square value of y(n) over the measurement period for
large L. It's important ta realize that (12) holds regardless of whether the system output, ¥(n), is correlated
(signal) or uncorrelated {noise) with the MLS stimutus. That is, the signal-to noise ratio (SNR) in, hy(n), will
exactly mirror the SNR of (he actual measurement situation over the measurement interval T = Lt where is the
sampling interval. :

3. PHASE RANDOMIZATION PROPERTY

While the MLS method preserves the system SNR i the measured PIR, it also randomizes the phase spectrum
of any system output component that is not correlated with the input MLS. Let ny(n) be the. actual system
output noise defined as the sum of all system output components that are not carrelated with the driving MLS.
As defined by {5), n(n), is simply a filtered version of n,y(n), the lincar filler here being the MLS cross-correlation
operation itself. The DFT of the neise appearing in the measured PIR is therefore,

1
(1B)  yey = — NatIS(D),

L+1

or in polar form,
1 -

(14) N(E) = —— lNa(f)lls(f}ieja{Na(f)}ejG(S(f)}
L+1

Jr [Na(2) | |s(g) |d (8T (D)} e{S(f1}]

L+l

so that,

(15) B{N(f)} = @{Na(f)} + 8{sS(f]l}-
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By definition, the actual noisc ng(n) is uncorrelaled with the driving MLS. Thercefore, their respective phasc
spectra q{N,()} and q{5(f)} are statistically independent, Furthermore, and of greater significance, is that fact

- that an MLS exhibits a highly erratic and therefore essentially random phase spectrum having a uniform or
constant probabitity density function (PDF) over its domain of -T p ra + T p radians [see 3, figure 2. The numbcr of
unique Fourier coefficients ia the MLS spectrum is shown by Golom to equal the number of cyclotomic cosets of
the sequence {5]. The number of unique Fourier coefficients (K) for various MLS orders (N) and periods (L) is
reproduced in the table below.

Table 1

Number of unique MLS Fourier coefficients (K} vs. MLS order (N) and MLS period (L) from Golomb.
N L K

12 4095 351
13 8191 631
14 16383 1181
15 32167 2191
16 65535 4115
17 131,01 71
18 262 143 14,601
19 524,287 27,595
20 1,408,575 52,487

But since: the magnitude of the MLS spectrum is a constant at all frequencies except DC, then 1able T can be
taken to represent the number of unique phase angles in the MLS spectrum. As can be seen from this table, for
the longer MLS periods Lhere are a sufficient number of phase angles that the PDF of the MLS phase spectrum
can be considered continuous for practical purposes. In the limit, this last condition is exactly true as the MLS
period L approaches infinity. '

The PDF of the sum of two independent random variables, as in (15), is ¢qual to the convolution of the two
PDFs [6]. In this case, however, the convolution must be performed on a circular basis because phase is circular
over its domain. This means that the PDF of the sum of these two phase spectra must also be uniform because
the circular convolution of a constant function with any ofher funcrion is also constant. Thus the PIR noise, n(n),
except for a scale factor, will have the same magnitude spectrum as the actual noise, ny(n), but its phase
spectrum will be completely randomized by the MLS cross-correlation operation. Thus the additive noise
componenl, n(n), will generally be stationary even if the actual system noise is non-stationary {cg. transicnt
noise),

These two desirable properties namely, energy conservation and phase randomization are, individually, not
unique to MLS methods. All methods which employ a truly random stimulus {eg. dual-channcl FFT methods)
exhibit phase randomization bul they fail to conserve energy, this heing due to the random nature of the stimulus
which shows up in the measurement as variance or excess noise over and above the actual system background
noise. On the other side, some other deterministic methods, for instance cross-correlation employing Legendre
sequences | 7], exhibit energy conscrvation but these fail to randomize the phase of uncorrelated system noise.
tbe phase spectra of Legendre sequences, for mstance, are two valued, not uniformly distributed. MLS methods
are currently the only ones known which posses both of these desirable properties. In retrospect, this result
should not be surprising for it turns out that maximum-length sequences satisfy all three of Golomb's
randomness postulates and hence are, in his works, “the true pseudo-noise sequences® | 5].
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Golomb's randomness postulates derive from the observed properties of true randomness such as the flipping of
a fair coin. In that casc we observe that a} the number of heads nearly equals the number of tails (due to equal
probability of heads and 1ails), b) (here are twice as many runs of heads (or tails) of length r as there are runs of
length £ + 1 (due 1o the independence of suceessive cain flips) and c) by setling heads = -1 and tails = +1, the
auto correlation sequence is nearly an impulse (due to an overall lack of a pattern in a sequence of coin {lips).
Maximum-length sequences satisfy all three of Golomb's randomncss postulates while Legendre sequences
violate postulate b. Thus although maximum-length sequences are not truly random they can, with confidence,
be regarded as such in many applications including the present one.

4, COMPLEX MODULATION TRANSFER FUNCTTON

Using relation (1) in diserete time, the MLS-derived CMTF or MLS-CMTF denoted, my,(f), is given as,

(16) DFT(hy2 (n) ]
(L) =
L-1
T h?p(k)
k=0
Substituting (5) in (16)
a7 BFT{h?(n)] + DFT(2h(n)n(n)] + DFE{n2(n)]
mm [ f, = r
L1, L-1 L-1
2 h%(k) + I 2n{k)n(k} + I n¥(k)
k=0 k=0 k=0

and applying the proguct theorem of the DFT gives

(18) H{E)*H(E) + R(L)*N(L) + N(E)wH(L)
oy () =
L-1 L-1 L-i
£ h2(k) + I zh(k)n(k} + T n2(k)
k=0 k=0 k=0

.Because n(n} has been phase-randomized by the MLS cross-corrclation operation, the expected value of the
second term of the numerator and the denominator must both be zero so that,

a9 . H(f)*H{f]) + N(f}*N(f}
E{mg(£)} = .
L-1 L-1
T hi(k) + T n?(k)
k=0 k=0
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Where E{m,()} denotes the expected value of my,(f). The expected value of N(f)*N(I} is.a special case.
Because n(n) is a real sequence, its DFT, N{f}, must be conjugate symmetric around zero frequency. Therefore,
for a zero frequency shift, the indicated convolution denoted appy(0) is

O sant oo
1) n 0] & — £ N r
(20) W (0] T o

1 L-1

-— z |NI3,

L k=0
where * denotes comptex conjugale,
Then by Parseval's relation,
(213 L 2

0] = £ n“{x).
Qe (0) K0

for all other frequency shifts, hawever, the expected value of Lapg(f) = N{f)*N(f) will be 7ero given that N(f)
exhibits uniformly distributed phase. [Since the complex scquence N(f) exhibits uniformly distributed phase then
50 must the convolutional lag prodect N(k)N([-k) for any non 7ero [ The summation of this lag product over all
k must therefore approach zero.] Therefore, in general, the expected value of N{[}*N(N can he wrillen as

(22) L-1
E{yn(£)} = &(8) E n3(k),

k=0

where,
dfy=1,f=«0
= (, otherwise.

Substitution in (19) yields,

L-1
(23) H(L)*H({f) + 8(f}' T n2(k)
. k=0
E{mp(f)} = ,
L-1 L-1
£ n¥(k) + T n?(k)
k=0 k=0

which is the final result. 1o words, relation (23) simply states that, except at zcro modulation frequency the
expected value of the MLS-CMTF, E{mp(f)}, will equal the true CMTF, m(f) of (2). To sce this more clearly,
(23) can be cxpress in factored form as,

L-1
29 H(f)*H(f) £ hik)
k=0
E{oy(Lf)} = - - , £ >0
L-1 L-1 L-1
T h (k) T hi(x) + T n(x)
k=0 k=0 k=0

Proc..0.A. Vol 14 Part 5 (1992) 1585



Proceedings of the Institute of Acoustics

MODULATION TRANSFER FUNCTION MEASUREMENT WITH MLS

which is just a diserete-time version of (2).
But at zcro modulation frequency E{mgy(l}) must be unity because analogous to (21)

29)

L-1 2
nHH(O) o kzo h {k}.

Therefore, there is an crror in the MLS-CMTF but only at zero modulation frequency. At all ather modulation
frequencics the result will be correct except for a random error which will decrease as the MLS period increases.

In the limit, as L. goes to infinity, thc MLS-CMTF and the true CMTF will agree cxactly except at zero
modulation frequency. We can be sure that this limit exists because the additive noise component, n{n), in the
measured PIR is of finite encrgy even for infinite L. This can be appreciated by careful examination of (12)
which shows that the total energy of n{n) wilt approach the mean-square value of the actual noise ny(n). And
while it is true thal ny(n) generally possesses infinite encrgy, its mean-square value is clearly finilc and so

_ therefore is the encrgy of a(n).

Another way 1o look at the convergence of myy (I} is to recognize that the mean-square amplitude of n{n) will go
1o zero as L increases without limit. Thus in one sense, the measured PIR will not contain any noise at all for
infinite' L. Yet paradoxically, n(n), will still possess 2 definite amount of encrgy. But there is no real
contradiction here because, in the limit, the finite energy of n{n} is simply dispersed or diffused over all time.
This apparent paradax explains why MLS methods are at once immunc to background noise and yet still able o
perfectly account for it in MLS-CMTF measurements!

$. VARIANCE ESTIMATE

In any practical measurement, of course, L must be finite leading to a certain amount of random error or
variance in the MLS-CMTF. Obviously, the variance of My ([} dencted Var{m (N} will be 7ero if no system
noise is present. Conversely, it will be at a maximum when only noise is present. This last worst case condition
will be the working assumption in the analysis fo follow. The noise, n(n), is alsa assumed Lo be stationary, 7cro-
mean Gaussian, white and ergodic (i.c. time averages equal cnsemblc averages). While these last two conditions
are not always true in practice, they are necessary to make the analysis tractable. The noise-only MLS-CMTF
denoted mp, () is

25) DF‘I‘[nz(n)]

Ban{f} =

L-1
£ n?(k)
x=0

It is more transparent Lo express (26) entirely in terms of N{f) yiclding,
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1-1
@9 T N{KIN(£-k)
K=0
f -
mmn (£) -1 )
T |¥(k)|
k=0

In practice it is oftcn useful to pre-filier the measured PIR in order to determing the CMTF over a particular
band of frequencics. If we denote B (o be the filter bandwidth in Hz then,

(28) R
T N(RIN{f-Xk)
k=kj
mmn {f) = B

kp
£ |N(k)|®
k=k)

where k is the lower cut-off frequency index and ky, the upper cut-off frequency index. The DFT frequency
spacing will be 1/T Hertz where T = Lrseconds is the PIR duration so that,

(299 B =(1/T) (kp-ky + Dor,
BT = (kp - k; + 1)

Note that because the DFT is a linear transformation, N{f) must also be a zero-mcan Gaussian sequence.
Assuming n(n) is also whitc and ergodic, the variance of N(f) is,

(30 1 L-1
var{N(f)} = - £ |N(x)i% =02,
L k=0
and so (28) can be expressed as,
31 1 kh
£) = —_ T N{KIN(£-K)
Panlf) = Tre? ke

The variance of the lag product N(k)N(f-k) will equal the product of the variance of its two lactors or ot

(assuming N([} is zero-mean Gaussian). Further, if we add together BT points of this lag product the variance of
the resulting sum will be BTod, therefore,

(32) 1
var{mmpn(f)1 = . B'I‘a“
(BTo2)2
1
= , £>0
BT
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Thus the variance or random error of mp(f) will be inversely proportional to the time-bandwidth product BT.
This is the case simply because more points of the lag product, N(k)N(f-k), are averaged together as BT
increases. When a signal is also present, equalion (32) represents an upper bound on the variance so that in
general,

33 1

var 4 5 —
ar {my (£} } -

6. EXPERIMENTAL VERIFICATION

To illustrate the soundness of the above theory, the MLSSA acoustical measurement sysiem was used to measure
a noise-contaminated system whose outpul contained exactly 50% uncorrelated white noise. The test system’s
noiseless impulse response was that of MLSSA's B-pole Chebyshey antialiasing filter -- essentially a delta funciion
-- in order to focus exclusively on the noisc clfects. A 32767-point MLS was used to measure an equally long
PIR. MLSSA's antialiasing filtcr bandwidth was set to 10 kHz with a sampling rate of 30.1 kHz. Thus T = 1.09
scconds and B = 10 kHz so that BT = 10,000 and thc maximum variance expected in the MLS.derived CMTF
should be 10.0 x 10°3.

Figure I shows the actual measured CMTF magnitudc for these conditions. The measured variance below 100
Hz is shown 10 be 1.2 x 1075 which is well below the upper bound of 10.0 x 105, The mean value over the same
range is shown to be 0.498 which is in close agreement with the expected value of 0.5. Note that this curve rolls-

~ off significantly above a modulation frequency of about 100 Hz, This is to be cxpeaied for as the modulation
frequency, f, increases, the lag product Hpp (k)Hp, (f-k) exhibits less scif-overlap assuming that hy,(n) is band
limited as it must always be in practice. Thus, the CMTF of any band limited system, even an otherwise perfect
one, must always exhibit high frequency roll-ofl. In other words, any such roll-ofT is not an artefact or
measurement error but is the logical result of band limiting the transmission channel.

Figure 11 shows the MLS-CMTF computed from a digitally fltered version of the same PIR. MLSSA's 6-pole
Butterworth infinite impulse response (ITR) digital filter was set 1o a 1 kHz centre Irequency and a 1 octave
bandwidth. For these conditions, B = 707 Hz, T = 1.09 seconds, BT = 771 and the maximum expected variance
is 1.3x 10"}, The actual variance below 10 Hz is shown to be 1.9 x 10-4. Clearly, the amount of random error in
an MLS-CMTF measurement does increase as Lhe time-bandwidth product decreascs.

The foregoing results were obtained using stationary white interfering noise. We now consider non-stationary,
colored interfering noise. In place of white noise, impulsive noise was injected into the wideband signal path.
this noise, shown in Figure 11, consisted of 3.25 millisecond pulses repeated every 101 milliseconds, somewhat
reminiscent of machine gun fire. The wideband PIR of the noise-contaminated system is shown in figure IV,
Note the smooth stationary-like noise in the tail of the measured PIR bears no evidence of the impulsive nature
of (he actual noise of Figure III. Such is the expected result of MLS phase randomization. Figure V shows the
computed wideband CMTF magnitude oblained from the PIR of Figure IV. Note the increased variance due
mainly to the presence of spikes that falt on harmonics of the pulse repetition rate, that is, the spikes fall at
modulation frequencies of about 10 Hz, 20 Hz and 30 Hz ete. The spikes also tend (o alternate in direction thus
tending to cancel each other out in the calculation of the mean. Clearly, impulsive and colored interfering noise

E
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does increase the MLS-CMTF variance over while noise but the results are still quite good. Recall that the
previous analysis of MLS-CMTF variance assumed white interfering noise which is nol the case for Figure V. the
residual variance can be reduced somewhat by smoothing the CMTF magnitude. Figure V1 shows the same data
as figure V which has now been smoothed to 033 octave. Such smoothing is accomplished as follows, Every
smoothed CMTF point is computed as the RMS value of the raw CMTF curve taken over a 1/3 octave interval
centred on that poinl. Note that the spikes have disappeared in the smoothed version.

Figure VII shows the CMTF with impulsive noise for a 1 kHz, 1 octave band by passing the widcband PIR
throogh the same 6-pole bandpass filier. Note that the interfering noise level was readjusted here to give a mean
CMTF magmmde of about 0.5 for easicr comparison to figure 1. Note that the variance for the 1 kHz octave
case with stationary :nlerfenng noise shown in Figurc I1. Thus MLS- CMTF mcasurcments seem 1o be quite
tolerant of non-stationary noise as predicted by theory.

7. REQUIREMENTS FOR STI MEASUREMENT

Oune of the most important applications of the CMTF is the determination of the Speech Transmission Index
(STT). This irnportant measure of speech intclligibility is well documented elsewhere [2, 8, 9] but Jittle atiention
has been given in the past to instrumentation requirements when applying equations (1) or (2). 5T1 is computcd
from thc magnitude of the CMTF, often named Jusl the modulation transfer function (MTF), measured at 14
discrete 1/3 octave modulation frequencies ranging from 0.63 Hz to 12.5 Hz in each «f 7 oclave hands ranging
from 125 Hz to 8,000 Hz..

An oft-neglected consideration is that, due 1o the time-frequency uncertainty principle, the 063 Hz modulation
frequency demands a minimum measured impulse response duration of 1/0.63 or about 1.6 seconds for good
acenracy. While it is true this requirement can be relaxed if the actual system impulse response decays to a
negligible value in somewhat less time, in practice, ST1 is often used to evaluate auditoria many of which have
long reverberation times. Indeed, the most reverberant halls are the oncs most likely to suffer from speech
intelligability problems and hence arc most likely to be evaluated by the STI method.

The upper cut-off frequency of the 8,000 Hz octave passhand is 1.414.8,000 = 11,310 Hz so that a total
measurement bandwidth of about 12 kHz is also required, Thus a minimum overall lime-bandwidth product of
12000.1.6 = 19,200 is nceded to assure accurate STI measurements using any method. These requirements can
be fully met by employing a 65535-point MLS 10 measure an egually long PIR.

To test the effects of noise on the MLS-STI, MLSSA measured a similar noise-contaminaled test system whose
oulput contained exactly 50% MLS signal and 50% uncerrclated stationary while noise. This time, however, the
instrument bandwidlh was sel to 12 kHz and 65535-point MLS was used to measure an equally long PIR which
was then analyzed by MLSSA's built-in STT function. The STI calculation required just 3 seconds to complete
running on a 33 MHz 486 computer. The PIR duration was 1.8 seconds which is well above the 1.6 second
minimum requirement for the 0.63 Hz modulation frequency. The results are presented in Figure VIII.

As can be secn, the individual MTF values as well as the final STI value all lic near 0.5 as would be predicted,
The MTF values of the lower bands show more variance than those of the upper bands also as predicied, All of
these random MTF errors are reduced further because the STI procedure effectively averages together the 14
individual MTF valucs (o determine each octave's transmission index (TT) shown on the botiom row of the MTF
matrix of Figure VIII. The largest TT crror is in the 125 Hz band as expected. Finally, the STT procedure
combines these 7 individual T1 valucs into a weighted average 1o form the final ST1 value. This further reduces
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the random error. In this exampie (he total error in the final STI value is -0.003 which is within 0.6% of the
expected value.

As previously demonstrated, impulsive interfcring noisc lends to generate spikes in the MLS-CMTF at
harmonics of the pulse repetition rate but that these spikes tend to occur in alternate directions. Thus such
spikes will tend to cancel each other out in MLS-STI measurements involving impulsive noise. As a practical
point, thereflore, one should not put too much weight on the individual MTF values in the STT matrix especially
when non-stationary noise is present. Whal counts is rather their mean as reflected by the octave TI values and
the final overall STI value.

Note that when the actual STI valuc is very close to zero a positive bias crror will appear in the MLS.STI. That
is, although the real and imaginary parts of my(f} are unbiased estimates of the real and imaginary parts of m(f),
the magnitude, |mp, (M)}, will show a positive bias error when the actual CMTF is near 7ero, this being duc to
squaring and summing Lhe random errors. Restated in statistical terms, il the real and imaginary parts of my, (f)
each exhibit a zero-mean Gaussian PDF then |myg,(f)| will exhibit a Rayleigh PDF whick always shaws a positive
mean [6]. Nevertheless, this bias crror only becomes significant for very low SNRs in which case exact knowledge
of the true STI is of little value anyway.

Note also, in order 1o make a real MLS-STI measurement that properly accounts for the background noise, the
white MLS stimulus must first be passed through a speech-weighting filter prior to applying it to the system
under test. A speech-weighting filter is one whose frequency response corresponds to the long-1erm average
spectrum of normal speech.

As discussed in 3], MLS mcthods can give rise (o lime aliasing, this being due Lo the periodic nature of
maximum-length sequences. Time aliasing occurs when the MLS period is short relative (o the reverberation
time of the system being measured. In such cases the tail of the true impulse response will wrap around and add
to its inilial portion to form the measured PIR [see 3, Figure 1). Because of this possibility, a theoretical analysis
is required to estimate the effects of time aliasing upon MLS-STI measurements in reverberant environments,

This is most easily accomplished by regarding the wrapped or aliased trailing portion of the impulse responsc as !
excess noisc which would not be present in the PIR if time aliasing did not occur. According to the definition of
$TI, however, octave noise levels 15 dB or more below the signal level have negligible cflect upon and octave’s TI
value. Therefore, a room's particular oclave RTgq can be up to 4 times longer than the MLS period when
making MLS-ST1 measurements. This resull is oblamed as follows. Assuming exponcntial reverberant decay, if
we divide the true impulse response at a point in time measured from the first arrival equal 1o RTgn/4 seconds,
then the encrgy in the trailing (timc-aliased) portion will be 60/4 = 15 dB below the total PIR energy. Thus a
PIR duration of 1.8 seconds can accurately measure the STI of rooms having an octave RTggof uplo4.18 = 7.2
seconds with negligible error. Normally, the 125 Hz octave will have the longest RTgg and this octave is given
lule weight in computing the final STI value, In conclusion, when employing a 65535-point MLS for MLS-STI
measurements, lime aliasing can gencrally be disregarded as a source of error except in the most pathologically
reverberant environments.
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8. SOME EXAMPLES OF MLS-STT MEASUREMENTS

In response to the request of one reviewer, this saction was added to give some more concrete example of MLS-
$TI measurements. The first example is a real STI measurement of a large church whose impulse TESponse is
shown in Figure IX. The MLS-STI calculation for this impulse response is shown in Figure X. Note that the
ratber poor intelligibility in this casc is due maostly to reverberations and reflections with the background noise
playing only a minor role.

The next example demonstrates just the oppesite situation. A telecommunications CODEC typically exhibits no
reverberation or reflection effects yet can casily degrade speech intelligibility due to its internally generated
quantization notse. MLS-STI measurements of such noise-dominated systems must always include a specch-
weighting filier for valid results. Figure XI shows the MLS-STI of a CODEC having a 3.4 kHz bandwidth, The
CODEC transmits digjtal voice but the data are encoded with only 2 bits per sample of resolution. Figure XiI
shows the MLS-STI of the same CODEC but now with 3 bits per samplc of resolution, The improvement in
intelligibility is notable. Both of these CODEC measurements employed a speech-weighting filter (o properly
account for the quantization noise,

9. DISCUSSION

It's important to realize that any CMTF measurement based on equations (1) or (2), whether MLS-derived or
otherwise, applies to linear time-invariant systems only. The CMTF of strongly non-linear or time-variant
gystems must be measured by the dircct method |1, 8] which involves passing bandlimited amplitude-modulated
white noise through the system and measuring the reduction in modulation 2t the output. Examples of systems
that must be measured by the direct method include vocoders, which are both strongly non-linear and time-
variant and, certain time-variant artificial reverberators. Furthermore, in such cases, direct CMTE
measurcments must be made one octave at a time leading 10 long measurement times. Note also that even if
direct CMTF measurements of such systems are possible, the STT derived from them might be invalidated due 10
other cffects such as pitch translation in vocoders.

Moarcover, even when used to measure linear time-invariant systems, the direct method can suffer from severe
errors if the interfering noise is non-stationary. This is the case when, as is typical with direct methods, ordinary
non-synchronous eavelope detection is employed to recover the output modulation. Anyone who has observed
the lack of noise immunity of ordinary AM radio can attest to this problem which can only be alleviated hy
resorting to long averaging times. The MLS approach, in contrast, due to synchronous defection and phase
randomization of interfering noisc, is generally much faster and more (olerant of non-stationary interfering noise
than the direct method.

Incidentally, the encrgy conscrvation and phase randomization properties of MLS methods are also the
fundamental reason why they can measure the coherence function of weakly non-lincar systems [3), That is,
weak non linearity creates harmonic and intermodulation (distortion) components that are largely (though not
entirely) uncorrelated with the driving MLS due to the fact that such components appear mostly al frequencics
that differ from the fundamental MLS frequencies that gave rise to them. (See [3] for a more delailed discussion
on this point.} These uncorrelated harmonic and intermodulation components, like the background noise, also
get phasc-randomized by the MLS cross-correlation operation and sim ply add to the stationary noise, n{n), of the
measured PIR. Thercfore, weak non-linear distortion will, in general, have an effca upon the measured MLS-
CMTF that is identical Lo the effect of background noise. This conclusion must be qualificd, however, when such
MLS-CMTF measurements are used to compute STL.
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As pointed out in }8], 10 preciscly account for non linearity in an STI measurement, the MTF values for cach
octave must be measured separately, one octave at a time, with running speech present simultaneously in the
ather octaves. The reason for this is not only because the non-linear distortion spills aver into adjacent ST1
analysis bands but that its level in the current analysis band depends strongly upon the statistical properties of the
signal present in the adjacent bands. As discussed in [€], the amount of distortion generated by a non-lincar
system when fed an artificial test signal will usually be lower than the amount of distortion generated by the same
system when fed running speech. Due to its random envclope and speech-like spectrum, a speech-fillered MLS
signal is at least a rough approximation at running speech bat, like most noise-like artificial test signals, its
envelope crest factor is generally lower than that of actual running speech. Thus paratlel MLS-STI
measurements will, in general, only partially account for the detrimental cffects of distertion upon speech
inteligibility while fully accounting for the detrimental effects of the background noise, reflections and
reverberation.

Note, however, that with proper modifications, MLS-STI methads could be extended to fully account for weak
non-linearity by following the examplc of [8], that is, by measuring the MLS-CMTF in each STI octave in turn
(serislly) with running speech present simultaneously in the adjacent octaves. Of course, such a modified MLS-
STI method would be more complicated and would require longer measurement times thanthe parallel method
which measares all 7 STI octaves simultaneously in are fell swoop. 1t is doubtful whether the modesity increased
accuracy of a serial MLS method would outweigh the speed and simplicity of the parallel MLS method.

Compared to time-delay spectrometry (TDS) or dual-channel FFT methods (FFT), only MLS methods can
satisfy the enormous time-bandwidih product requirement of $T1 (& 20,000} in reasonably short measurement
times. Furthermore, because the present thcorem does not apply to them, both TDS and FFT methods will still
require a separale measurement of Lhe system background noise, where applicable, in order to correct the
noiseless CMTF of (1} according to (2). Moreover, when using these other methods Lo make such noiscless
CMTF measurcments of particularly noisy systems onc may need to employ averaging techniques which use can
lead to even longer measurcment times. Not only is averaging not required with MLS-STT methods but such
averaging can actually invalidaie the measurement by artificially reducing the background noise in the measured
PIR thus leading to au overly optimistic (too high) 5T1 value.

In conclusion, MLS-STI measurements are applicable to a wide range of intelligibility verificalion applications
including auditoria, sound systems, telecommunications systems, as well as digital and analog tape recorders.
Unlike TDS or FFT methods, they do not require any special correction for background noise cffects provided
only that the MLS stimulus is first passed throng a speech-weighting filer. Nevertheless, MLS methods are not
applicable to strongly non-linear systems nor (o time-variant systems. Examples of common time-variant systems
include certain types of artificial reverberators and certain sound-cffects {fuzz) hoxcs that work by modulating
the frequency or phase of the audio signal. In such cascs only direct MTF measorements will suffice in
determining the ST, where applicable, as ncither MLS, TDS nor FFT methods are valid under condilions of
strong non lincarity and /for 1ime-variance.
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FIGURE CAPTIONS
1. MLS-MTF measurement of 10 kHz lowpass system contaminated with stationary white noise with 0 dB SNR.
Note thal the mean value is near 0.5 as cxpected.

Il. MLS-MTF measurement of a 1 kHz, 1 octave bandpass system contaminated with stationary white noise also
with 0 dB SNR. Note the increascd variance as compared to Figure 1.

NI, Artificially produced non-stationary impulsive noisc source consisted of 3.25 millisccond pulses repeated
every 101 milliseconds, somewhat reminiscent of machine gun fire,
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IV. MLS periodic impulse response (PIR) measurement of a 10 kHz Jowpass system contaminated with the |
impulsive colored noise of Figure 111, Note that, due to phase randomization, there is no evidence of the |
impulsive nature of the interfering noise in the measured PIR. |

V. Widehand (10 kHz) MLS-MTF magnitude calculated from the impulse response of Figure I'V shows thal the
impulsive colored interfcring noise increases the variance due.to the appearance of spikes that occur at
harmonics of the pulse repctition rate, namely 10 Hz, 20 Hz and 30 Hz etc.

V1. Same MLS-MTF as figure V but smoothed to 0.33 octave to reduce the variunce.

VIL MLS-MTF measurement of a 1 kHz, 1 octave bandpass syMem with colored impulsive interfering noise.
Note that the variance here is actually less than for stationary white interfering noise shown in Figure I1.

VT, MLS-STI analysis of a 65535-point PIR measurement of a 12 kHz lowpass system with a 03B SNR and
stationary white interfering noisc. ‘The top row labellcd "m-correction” is the auditory masking correction of the
STI method as described by Stcencken and Houtgast in [8]. The modified STI value shown in parcntheses was
calculated from the same octave T1 values as the normal STT value but with different octave weighting factors
recommended by French and Steinberg.

DX MLS-FIR measurement of a large but quiet church. Note the extended reverberation and the obnious late
reflection at 200 milliseconds.

X MLS-STI computed from the impulse responsc of Figure IX. The poor intelligibility of this space is due
mostly to reflections (or echoes) and reverberation. The background nioise ofien plays a minor role in such
cases.

XI. MLS-STI of a CODEC having a 3400 Hz signal bandwidth but, a resolution of only 2 bits per sample . The
less than perfect intclligibility of this CODEC is due entirely to quantization noise since (here are no significant
reflections or reverberation to hamper intelligibility.

X11, MLS-STT of 2 CODEC having a 3400 Hz signal handwidth but higher resulution of 3 bits per sample. Note
the improved intelligibility as compared to Figure XI.
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