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INTRODUCTION

The complex modulation transfer function (CMTF) has important applications in many fields including audio.
for example, the magnitude of the CMTF or MTF is the basis for the speech transmission index (STI). A well
known theorem shows how the CMTF ofa noiseleu linear limevinvariant system canbe derived from its impulse
response. When maximum-length sequence (MLS) methods are employed, this theorem can be extended to
include noise-contaminated as well asweakly non-linear systems. Furthermore, with MIS methods, there is no
requirement that the interfering noise be stationary.

0. BACKGROUND

Given a noiseless linear time—invariant system having an impulse response. h(t), Schroeder [i] has shown that its
complex modulation transfer function (CMTF) denoted, mum, can he expressed as,

«a
(1) «2 nzten'jz’m" an

En ( f) =
+4:
—n n3 (e) at:

The numerator of (t) is the Fourier transform of the squared impulse response while the denominator is the
total energy of the impulse response. The denominator can be interpreted as the DC value of the numerator.
When system noise is present. however, (i) is no longer valid but it can be canceled to yield the true CMTF,
m(l). This corrected form. derived by Houtgast and Steeneken [2] is.
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where p2s denotes the mean-square signal level and p2,I the mean-square system noise. Relation (2) can
therefore, in principle. be used to determine the CMTF of a noise-contaminated linear system based on two
independent measurements of a) the noiseless system impulse response and h) the system signal-to—noise ratio,
While sometimes practicable, (2) is nonetheless always inconvenient because of the need to make two separate
system measurements.

Furthermore, (2) cannot easily be applied in those cases where the system noise level is dependent upon the
input signal level. This is often the ease with digital systems (eg. CODECs) in which quanliulion noise appears
when a signal is present but disappears entirer when the signal is absent. A noise measurement of such a system
cannot be performed simplyby measuring the residual output noise with the input terminal grounded. Another
limitation of the direct application of (Z) is the need to measure an essentially noiseless impulse response. This
requirement might require very long averaging times when measuring particularly noisy systems.
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These limitations of (2) could be overcome if somehow (I) could be used directly simply by substituting a noise-

oontaminaled impulse response for the noiseless version h(t). Unfortunately this approach, in general, will not

work. Although the Fourier transform generally exists for finite energy functions such as the noiseless impulse

response, h(t). this is not the case for stationary (persistent) functions that generally characterize noise. That is,

noise processes generally possess infinite energy when integrated over all time as in the denominator of (1)

causing it to 'hlow up'. The lack of convergence of (1) under this infinite energy condition therefore generally

forces us toemploy (2) instead. However, ifthe total noise enery contaminating h(t) could somehawhe

guaranteed to be finite there is at least a posibility that (I) would converge to (2). This last oonjeuure is, in

essence, the subject of this paper.

A previous paper [3] presented a comprehensive analysis of the maximum-length sequence (MB) methods

which can measure the ordinary transfer function as well as the related coherence fundinn of linear time-

iuvariant systems. Maximum-length sequences are binary (two-level) periodic sequences of period L which is

always on less than a power-of-two thus.

(3) L = ZN-l, where l is an integer

The important property of any MLS is that its circular autocorrelation sequence is essentially an impulse. This

property is exploited by anMlfi analyzer to measure the periodic impulse response (FIR) of a linear time-

invariant system according to,

(4) t L-l.
hum) a _— t. s(k)y(n+k),

L+1 k=0

where the index (n+ k) is evaluated modulo L

Here hm(n) denotes the measured PIR sequence, 5(a) the driving M15 and y(n) the raw system output

sequence. it can be seen that (4) is essentially a circular cross-correlation operation. Furthermore. because the

measured PIR sequence is periodic, it is naturally suited to analysis by means of the discrete Fourier transform

(Di-T).

l. THEOREM

in an M15 measurement a maximum-length sequence is applied to a system whose output, y(n), which may

contain additive noise, is cross correlated related with original sequence according to (4) to yield,

(5) "m0!) = l‘01) 4* I1(It)

where hm(n) is the measured PlR sequence of period L
h(n) is the noiseless system PlR sequence
n(n) is an additive noise component

Thus hm(n) is, in general, the MLS~derived PIR sequence of a noise-contaminated linear time-invariant system.
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The sequel will show that simply applying the discrete-time version of (1) to hm(n) yields, as L increases without

limit, the true CMTF of (1) for all modulation frequencies exoept zero. for large but finite L, the result will also

be com except for a small random error.

2. ENERGY CONSERVATION PROPERTY

The MLS circular cross-correlation operation that recovers the PIR from the system output an be interpreted as

a linear filler having animpulse response that is the time-reverse of the original MLS [3]. Such a linear filler is

ofien called a matched filter. The time-reverse of any MLS is also an MLS denoted here also as s(n) [or

convenience. Now. ify(n) is an arbitrary input signal to an Mls analyzer, tlten the measured PlR sequence.

hm(n), can be express as.

1

(6) hm(n) == — arm-sin)
L+1

where ‘ denotes circular convolution [3].

By the convolution theorem of the DFT.

1
(7) Ha”) = - vmsm.

L+1

Taking the magnitude and squaring both sides gives.
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The squared magnitude of the 80‘) denoted |S(t)|2 can be shown to equal 1.4-! at all frequencies except DC

yielding.

(9) 1
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summing both side over all frequencies gives,
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Equation (10) shows the relationship between the energy in the respective DFl's ol' the system output signal and

the measured FIR. We can express (ID) entirely in time-domain terms by use of Parseval's energy relation [4] 1

given as,
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(11) L-t 1 L-1
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which holds for any sequence x(n). this yields,

(12)
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Thus the MLS circular cross-correlation operation can be interpreted as a linear filter having an absolutely [lat

frequenq response, except at DC. Therefore, assuming the input signal contains no DC component. the energy

in the MLS—derived FIR, hm(u), nearly equals the mean-square talue of y(n) over the measurement period for

large L It's important to realize that ()2) holds regardless of whether the system output, )‘(n), is correlated

(signal) or uncorrelated (noise) with the MLS stimulus. That is, the signal-to noise ratio (SNR) in, hm(n), will

exactly mirror the SNR ol'lhe actual measurement situation over the measurement interval T - [1 where I is the

sampling intervaL '

3. PHASE RANDOMILATION PROPERTY

While the M18 method preserves the system SNR in the measured FIR, it also randomizes the phase spectrum
of any system output component that is not correlated with the input Mls. let na(n) he the actual system
output noise defined as the sum ofall system output components that are not correlated with the driving MlS.
As defined by (5), n(n), is simply a filtered version of na(n). the linear filter here being the MLS cross-correlation
operation itself. The DFT of the noise appearing in the measured P"! is therefore.

I.

(‘3) Nut .- —Namsm.
L+1

orinpolarform,

(14)
1 e.

um = — 1mml15(1)Iej°‘"a“”ej°‘5(m
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so that,

(15) 901(1)) :1 swan” + Sistin-
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By definition, the actual noise na(n) is uncorrelated with the driving MLS. Therefore. their respective phase
spears q(Na(1)) and q(S(f)) are statistically independent. Furthermore, and of greater significance, is that fact

that an MLS exhibits a highly en-atic and therefore essentially random phase spectrum having a uniform or
constant probability density function (PDB over its domain of -T p to Ir Tp radians [sec 3, figure 2|. The number of
unique Fourier coefficients in the MLS spectrum is shown by Golom to equal the number of cyclotontic cosels of
the sequence [5]. The number of unique Fourier coellicients (K) for various M15 orders (N) and periods (L) is
reproduced in the table below.

Table l
Number of unique MLS Fourier ooeflicienls (K) vs. MLS order (N) and M15 period (L) from Golomb.

N L K
12 4095 351

13 8191 631
14 16383 1181
15 32767 2191

16 65535 4] 15
17 131,071 771 1

13 252,143 14,601
19 524,287 27,595
21) 1,408,575 52487

But since the magnitude ofthe MLS spectrum is a constant at all frequencies except DC, then table I can be
taken to represent the number of unique phaseangles in the M15 spectrum, As can be seen from this table, for
the longer M'LS periods there are a sufficient number of phase angles that the PDF of the MLS phasc spectrum
can be considered continuous for practical purposes. in the limit, this last condition is exactly true as the MLS
period L approaches infinity. '

The PDF of the sum oftwo independent random variables, as in (l5). is equal to thc Convolution of the two
PDFs [6]. In this case, however, the convolution must be performed on a circular basis because phase is circular
over its domain. This means that the PDF of the sum ofthcse two phase spectra must also be uniform because
the circular convolution of a constant function with any allterfuncn'an is also constant. Thus the Pill noise, n(n),
except for a scale factor, will have the same magnitude spectrum as the actual noiseI nu(n), but its phase
speurum will be completely randomized by the MLS cross-correlation operation. Thus the additive noise
component. n(n). will generally be stationary even if the actual system noise is non-stationary (cg. transient
noise).

These two desirable properties namely, energy conservation and phase randomiiatitvn are, individually, not
unique to MLS methods. All methods which employ a truly random stimulus (cg. dual‘channcl FFI' methods)
exhibit phase randomization but they fail to conserve energy, this being due to the random nature of the stimulus
which shows up in the measurement as variance or excess noise over and above the actual system background
noise. 0n the other side, some other deterministic methods. for instance cross-correlation employing Legendre
sequences [7]. exhibit enery conservation but these fail to randomize the phase of uncorrelated system noise.
the phase spectra of Legendre sequences. for instance, are two valued, not uniformly distributed. MLS methods
are currently the only ones known which posses both of these desirable properties In retrospect. this result
should not be surprising for it turns out that maximum-lengh sequences satisfy all three 01 Golomh’s
randomneg postulates and hence are. in his works, 'the true pseudonoise sequences' [5].
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Golomb's randomness postulates derive from the observed properties of true randomness such as the flipping of

a fair coin. In that case we observe that a) the number ol’ heads nearly equals the number of tails (due to equal

probability of heads and tails). b) there are twiee as many runs oi heads (or tails) of length r as there are runs ol’

lenyh :- + 1 (due to the independence of successive coin flips) and c) by setting heads == -1 and tails =- H, the

auto correlation sequence is nearly an impulse (due to an overall lack of a pattern in a sequent: of coin flips). ‘

Maximum-leth sequences satisfy all three of Golomh's randomness postulates while Legendre sequences

violate postulate b. Thus although maximum-length sequences are not truly random they can, with confidence,

be regarded as such in many applications including the present one.

4. COMPLF)( MODULATION TRANSFER FUNCTION

Using relation (1) in discrete time. the MUS-derived CMTF or MLS-CMTF denoted. mm“), is given as.

  

(16) Dflthmztnll
mm“) - .

L-l .

: hzmtk)
k=D

Substituting (5) in (16)

(‘7) m m Dmh‘tnn + nnrzntninrnn + ongnlmnm .,
Lglhztk L-l L-l 2 '

1* 22h(k)nk+: k ‘
k=0 k=0 ( ) kan ( )

and applying the product theorem of the DFT g‘ves

(‘8) Eur-Hm + zxmmm 4» rim-um ‘
mutt) = ._____._.—_.__._

L-1 L-l L-l

: hztk) + : 2h(k)n(k) + t: n2(k)
kao Kan kco

Because n(n) has been phase-randomized by the MLS cross-correlation operation, the expected value of the i

second term of the numerator and the denominator must both be zero so thatI l

(19) . Htrmut) + N(!)‘N(f)
Etmmtm =—— v

L-l L-l

s n2(x) + z nzlkl
k-O k=0
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Where E{mm(f)) denotes the expeaed value of mm“). The expected value of N(f)'N(f) is a special mse.
Because n(n) is a real sequence. its DPT, NU), must be conjugate symmetric around zero frequency. Therefore,
for a zero frequency shift. the indicated convolution denoteanNw) is

1 1'4 mu‘mm n o a — I: N I( ) m l L ha

1 L-l
a _. r. lutkHz-

L k—O

where ‘ denotes complex conjugate.

Then by Parseval's relation,

(21) L“ 2o =- S n 0:)-nm( ) kw

for all other frequency shifis, however, the expected value offl-NNO) = N(l)'N(l') will he 7cm given that NU)
exhibits uniformly disln'buted phase. [Since the complex sequence NU) exhibits uniformly distributed phase then
so must the convolutional lag product N(k)N(l‘—k) for any non rem l. The summation of this lag product over all
k must therefore approach zero.] Therefore, in general. lhc expected value of N(l)'N(l) can he written as

(22) L-t. 2
Emmi!” = 5(2) Z n (k).

k=0

where,
d(f) :1 1,! n 0

= 0,0therwise.

Substitution in (19) yields,

 

L-l
(3) tutu-Hm + sm-x n2(k)

- k=0
2mm"); 3 I

L-l L-l
z h2(k) + : n2(k)

k-O k-O

which is the final result. In words. relation (3) simply states that, except at zero modulation frequency the
expected value nithe MLS-CMTF, E(mm(l)), will equal the true CMTF, m(t’) nt‘ (2). To see this more clearly,
(73) can be exprcss in fauored form as.

L-l

 

(24) Htfl'fltt) : hztk)
x-u

ztmmttn— -——-‘———,e>o
L-l 2 L-1 L-l
: n (k) 2 nzm + : n2(k)

k-o k-O k=g
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which isjust a disaete4ime version of (2).

But at zero modulation frequency E(mm(l)) must be unity because analogots to (21)

(7-5) Pl 2n (a) a 2 n (k).
“H k=0

Therefore, there is an error in the MLS-CMTF but only at 7ero modulation frequcnq. At all other modulation

frequencies the result will be correct except for a random error which will decrease as the M15 period increases.

In the limit, as L goes to infinity, the MlS-CMTF and the true CMTF will agree exactly except at zero

modulation frequency. We can be sure that this limit exists because the additive noise component, n(n). in the

measured HR is of finite energy even for infinite L This can be appreciated by carelul examination of (12)

Which shows that the total energy of n(n) will approach the mean-square value of the actual noise na(n). And

while it is true that na(n) generally possesses infinite enery, its mean-square value is clearly finite and so

therefore is the energy ol‘ n(n).

Another way to look at the convergence of mm“) is to recogniu that the mean-square amplitude oi n(n) will go

to zero as L increases without limit. Thus in one sense, the measured PlR will not contain any noise at all for

infinite L. Yet paradoxically, n(n), will still possess a definite amount of energy But there is no real

contradiction here because, in the limit, the finite energy of n(n) is simply dispersed or diffused over all time.

This apparent paradox explains why MLS methods are at once immune to background noise and yet still able to

perfectly account for it in MLS-CMTF measurements!

5. VARIANCE ESTIMATE

In any practical measurement, of course, L must be finite leading to a certain amount of random error or

variance in the MlS~CMTF. Obviously, the variance of Mm(l') denoted Vartmmm) will be 7ern if no system

noise is present. Conversely, it will be at a maximum when only noise is present. This last worst case condition

will be the working assumption in the analysis to follow. The noise, n(n), is also assumed to be stationary, zero

mean Gaussian. white and ergodic (i.e. lime averages equal ensemble averages). While these last two conditions

are not always true in practice, they are necessary to make the analysis tractable. The noise-only MLS-CMTF

denoted mmn(l') is

(26) DF‘I‘Enzth
main“) '

 

L-l
x 112(k)
be

It is more transparent to express (26) entirely in ternis of N“) yielding,
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L-1
(27) 2 “(MIKE-k)

x=o
m (f) - ———————-
m L-t 2

2 IMKH
x=o

In practice it is often useful to pre-filter the measured FIR in order to determine the CMTF over a particular

band of frequencies. If we denote B to be the filter bandwidth in Hz then,

(23) hi2 N(k)N(t-k)
k=k1

mutt) = ——————-—— ,
kh
t: [nun]?

k=k1

where k1 is the lower cut-off frequency index and lq| the upper cut-oll’ frequency index. The DFl' frequency
spacing will be l/T Hertz where T = Lvseconds is the FIR duration so that.

(29) B = (1/1') (Rh-k1 + l)or.
BT=(kh-k1+l)

Note that because the DFT is a linear transformation, NU) must also be a zero-mean Gaussian sequence.
Assuming n(n) is also white and ergodic, the variance of N(l') is.

(30) l. L-l
Ver{N(f)} = - 2 maul: = a2 ,

L x=o

andso(28) canbeexpressedas.

(31) 1 kn
f . _ 2 Ntkwu-k)

“mt ) BTez k=kl

The variance of the lag product N(k)N(l-k) will equal the product of the variance of its two factors or 04

(assuming NU) is rem-mean Gaussian). Further, if we add together BT points of this lag product the variance of
the resulting sum will be BTJ. therefore,

 

(31) 1
var(mmn(f)} = - ara‘

(tat-:72)2

1
= —, f > 0

er
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Thus the variance or random error of man) will be inversely proportional to thc time-bandwidth product ET.

This is the case simply because more points of the lag product. N(lt)N(f-lt), are averaged together as BT
increases When a signal is also present, equation (32) represents an upper bound on the variance so that in
general,

(33) 1
V: I S ——a(%(ll 5T

6. HPERIMEN’I’AL VERIFICATION

To illustrate the soundness of the above theory. the MLSSA acoustical measurement system was used to measure

a noise-contaminated system whose output contained exactly 50% uncorrelated white noise. The test system's

noiseless impulse response was that of MLSSA's 8-pole Chebyshev antialiasing filter -- essentially a delta function
—- in order to focus exclusively on the no'ue effects. A 32767-point M15 was used to measure an equally long
PIR. MISSA's antialiasing filter bandwidth was set to to kHz with a sampling rate of 30.1 kHz. Thus T - 1.09
seconds and B u 10 kHz so that BT r“: H.000 and the maximum variance expected in the MLS-derived CMTF

should be 10.0 x 10-5.

Figure I shows the actual measured CMTF magnitude for these conditions. The measuer variance below 1w
Hz is shown to be 1.2 x 10‘5 which is well below the upper bound of 10.0 x10‘5. The mean value over the same
range is shown to be 0.498 which is in close agreement with the expected value of 05. Note that this curve rolls-
off significantly above a modulation frequency of about 100 Hz. This is to he expected for as the modulation
frequency, f. increases, the lag product Hm(lt)Hm(f-|t)exhibits less self-overlap assuming that hm(n) is hand
limited as it must always be in practice. Thus, the CMTF of any hand limited system, even an otherwise perfect
one, must always exlu'hit high frequency roll-off. In other words. any suchroll-0H is not an anefaa or
measurement error but is the loy'cal result of band limiting the transmission channel.

Figure II shows the MLS-CMTF computed from a digitally filtered version of the same PIR. MLSSA's 6-pole
Butterworth infinite impulse response (Ill) digital filter was set to a 1 kHz centre frequency and a t octave
bandwidth. For these conditions, B = 707 HzI T = 1.09 seconds, RT = 771 and the maximum expected variance
is 1.3 x 10‘3. The actual variance below 10 Hz is shown to be 1.9 x11)". Clearly. the amount of random error in
an MLS-CMTF measurement does increase as the time-handwidth product decreases.

The foregoing results were obtained using stationary white interfering noise. We now consider non-stationary.
colored interfering noise. In place of white noise, impulsive noise was injected into the wideband signal path.
this noise, shown in Figure III. consisted of 3.25 millisecond pulses repeated every 101 milliseconds, somewhat
reminiscent of machine gun fire. The widehand PIR of the noise—contaminated system is shown in figure IV.
Note the smooth stationary-like noise in the tail of the measured PIR bears no evidence of the impulsive nature
of the adual noise of Figure Ill. Such is the expected result of M15 phase randomiration. Figure V shows the
computed wideband CMTF magnitude obtained from the FIR of Figure IV. Note the increased variance due
mainly to the presence of spikes that fall on harmonics of the pulse repetition rate, that is, the spiltes fall at
modulation frequencies of about 10 Hz. 20 H1 and 30 Hz etc. The spikes also tend to alternate in direction thus
tending to cancel each other out in the calculation of the mean. Clearly, impulsive and colored interfering noise

)
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does increase the M'lS-CMTF variance over white noise but the results are still quite good. Recall that the
previous analysis of M'LS-CMTF variance assumed white interfering noise which is not the case for Figure V. the
residual variance can be reduced somewhat by smoothing the CMTF magnitude. Figure V1 shows the same data
as figure V which has now been smoothed to 033 octave. Such smoothing is accomplished as follows. Every
smoothed CMTF point is computed as the RMS value of the raw CMTF curve taken over a 1/3 octave interval
centred on that point. Note that the spikes have disappeared in the smoothed version.

Figure VII shows the CMTF with impulsive noise for a t Mir, 1 octave band by passing the widcband PIR
through the same 6-pole bandpas filter. Note that the interfering noise level was readjusted here to give amean
CMTF magnitude of about 0.5 for easier comparison to figure II. Note that the variance for the 1 kHz octave
case with stationary interfering noise shown in Figure II. Thus MlS-CMTF measurements seem to be quite
tolerant of non-stationary noise as predicted by theory.

7. REQUIREMENTS FOR STI MEASUREMENT

One of the most imponant applications of the CMTF is the determination of the Speech Transmission Index
(STI). This important measure of speech intelligibility is well documented elsewhere [7, 8, 9] but little attention

has been given in the past to instrumentation requirements when applying equations (I) or (2). STI is computh
from the magnitude of the CMTF, often named just the modulation transfer function (MTF), measured at 14

discrete 1/3 octave modulation frequericies ranging from 0.63 Hz to 125 Hz in each of 7 octave hands ranging

from 125 Hz to 8,0(0 HL.

An oR-neglected consideration is that1 due to the time-frequency uncertainty principle. the 0.63 Hz modulation
frequency demands a minimum measured impulse response duration of 1/063 or about 1.6 sceonds for good
accuracy. While it is true this requirement can be relaxed ifthe actual system impulse response decays to a
nefligible Value in somewhat less time, in practice, STI is often used to evaluate auditoria many of which have
long reverberation times. Indeed, the most reverberant halls are the ones most likely to suffer from speech
intelligibility problems and hence are most lilter to be evaluated by the STI method.

The upper cut-off frequency of the 8,000 He octave passband is 1.414.8,000 = 11,310 H7. so that a total
measurement bandwidth of about 12kHz is also required. Thus a minimum overall limefbandwidth product of
12000.15 = 19,21!) is needed to assure accurate STI measurements using any method. These requirements can
be fully met by employing a 65535-point MLS to measure an equally long FIR.

To test the effects of noise on the MLS~STI, MUSA measured a similar noise—wntaminalcd test system whose
output contained exactly 50% MLS signal and 50% uncorrelated stationary white noise. This time, however, the
instrument bandwidth was set to 12 erz and 65535point MIS was used to measure an equally long PIR which
was then analytued by MlSSA's built-in STI l'unuion. The STI calmlation required just 3 seconds to complete
mnning on a 33 MHz 486 computer. The FIR duration was 1.8 seconds which is well above the 1.6 second
minimum requirement for the 0.63 Hz modulation frequency. The results are presented in Figure VIII.

As can be seen, the individual MTF values as well asthe final STI value all lie near 0.5 as would be predicted.
The MTF values of the lower bands show more variance than those ofthe upper bands also as predicted. All of
these random MTF errors are reduced further because the STI procedure effectively averages together the 14
individual MTF values to determine each octave's transmission index (Tl) shown on the bottom row of the MTF
matrix of Figure VIII. The largest TI error is in the 125 Hz hand as expected. Finally, the STI procedure
combines these 7 individual TI values into a weighted average to form the final STI value. This further reduces
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the random error. In this example the total error in the final STI value is .0.003 which is within 0.6% of the

expeded value.

As previously demonstrated, impulsive interfering noise tends to generate spikes in the MlS-CMTF at

harmonics of the pulse repetition rate but that these spikes tend to occur in alternate directions. Thus such

spikes will tend to cancel each other out in MLS—STI measurements involving impulsive noise. M a practical

point. therefore, one should not put loo much weight on the individual MTF values in the 511 matrix especially

when non-stationary noise is present. What counts is rather their mean as reflected by the octave Tl values and

the final overall STl value.

Note that when the actual STI value is very close to zero a positive bias error will appear in the MLS-STI. That

is, although the real and imaginary pans of mm“) are unbiased estimates of the real and imaginary parts of m(f),

the magnitude, Imm(l')|, will show a positive bias error when the actual CMTF is near zero. this being due to

squaring and summing the random errors. Restated in statistical terms, ifthe real and imaginary pans of mm“)

each exhibit a rem-mean Gaussian PDF then Imm(f)| will exhibit a Rayleigh PDF which always shows a positive

mean [6]. Nevertheless, this bias error only becomes signifimnt for very low SN'Rs in which case exact knowledge

of the true STl is of little value anyway.

Note also, in order to make a real MLS~STl measurement that properly accounts for the background noise, the t

white MLS stimulus must first be passed through a speech-weighting filter prior to applying it to the system J

under test. A speech-weighting filter is one whose frequency response corresponds to the long-term average

spectrum of normal speech.

As discussed in [3]. MB methods can give rise to lime aliasing, this being due to the periodic nature of

maximum-lenyh sequences. Time aliasing occurs when the M15 period is short relative to the reverberation

time ofthe system being measured. In such cases the tail of the true impulse responsewill wrap around and add 1

to its initial portion to form the measured PIR [see 3, Figure 1]. Because of this possibility, a theoretical analysis 1

is required to estimate the effects of lime aliasing upon MLS-STI measurements in reverberant environments.

 

This '5 most easily accomplished by regarding the wrapped or aliased trailing portion of the impulse response as t

excess noise which would not be present in the FIR if time aliasing did not occur. According to the definition of

STI, however, octave noise levels 15 dB or more below the signal level have negligible ellect upon and octave's Tl

value. Therefore, a room's particular octave RT“) can be up to 4 times longer than the MLS period when

making MLS-STI measurements. This result is obtained as follows. Assuming exponential reverberant decay, if

we divide the true impulse response at a point in time measured from the first arrival equal to RTfio/d seconds,
then the energy in the trailing (time-aliased) portion will he 60/4 = 15 dB below the total PlR energy. Thus a

HR duration of 1.8 seconds can accurately measure the STI of rooms having an octave RT“) of up to 4.1.8 :1 7.2

seconrk with negligible error. Normally, the 125 Hz octave will have the longest RTm and this octave is given
little weight in computing the final STI value. In conclusion, when employing a 65535-point MLS for MLS-STI

measurements, time aliasing can generally be disregarded as a source of error except in the most patholoy‘cally
reverberanl environments
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8. SOME FXAMPLES OF MLS-STI MEASUREMENTS

In response to the request of one reviewer, this seetionwas added to give some more concrete example of M15-
STI measurements. The first example is a real ST’l measurement ofa large church whose impulse response is
shown in Figure IX. The MIS-STI calculation for this impulse response is shown in Figure X. Note that the
rather poor intelligibility in this case is due mostly to reverberations and reflections with the background noise
playing only a minor role.

The next example demonstrates just the opposite situation. A telecommunications CODEC typically exhibits no
reverberation or reflection eITects yet can easily degrade speech intelligflviliry due to its internally generated
quantization noise. MLS-STI measurements ol’ sueh noise-dominated systems must always include a speech-
weighting lilter for valid results. Figure Xl shows the MLS-STI of a CODEC having a 3.4 kHz bandwidth. The
CODEC transmits digital voice but the data are encoded with only 2 hits per sample of resolution. Figure Xll
shows the MESH of the same CODEC but now with 3 bits per sample of resolution. The improvement in
intelligibility is notable. Both of these CODEC measurements employed a speech-weighting filter to properly
account for the quantization noise.

9. DISCUSSION

It's important to realize that any CMTF measurement based on equations (1) or (2), whether MLS-derived or
otherwise, applies to linear time-invariant systems only. The CMTF of strongly non—linear or time-variant
systems must be measured by the direct method [1, 8) which involves passing bandlimited amplitude-modulated
white noise through the system and measuring the reduction in modulation at the output. Examples of systems
that must be measured by the direct method include vocoders. which are both strongly non-linear and time-
variant and, certain time-variant artificial reverberators. Furthermore, in such cases. direct CMTF
measurements must be made one oaave at a time leading to long measurement limes. Note also that even it
directMP measurements of such systems are possible, the Sn derived from them might be invalidated due to
other effects such as pitch translation in vocoders.

Moreover. even when used to measure linear tim ' variant systems, the direct method can suffer from severe
errors ifthe interfering noise is non—stationary. This is the case when. as is typical with direct methods, ordinary
non-synchronous envelope detection is employed to recover the output modulation. Anyone who has ohsen'cd
the lack of make immunity of ordinary AM radio can attest to th'u problem which can only be alleviated l’ry
resorting to long averay'ng times. The MLS approach. in contrast, due to synchronous detection and phase
randomiution of interfering noise. is generally much faster and more tolerant of non-stationary interfering noise
than the direct method.

 

Incidentally, the energy eonsenration and phase randomization properties of MLS methods are also the
fundamental reason why they can measure the coherence function of weakly non-linear systems [3]. That is,
weak non linearity ueates harmonic and intermodulation (distortion) components that are largely (though not
entirely) uncorrelated with the driving MLS due to the [act that such components appear mostly at frequencies
that differ from the fundamental MIS frequencies that gave rise to them. (See [3| for a more detailed discussion
on this point.) 11|ese uncorrelated harmonic and intennodulation components. like the background noise. also
get phase—randomized by the MLS cross-correlation operation and simply add to the stationary noise, n(n). of the
measured PlR. Therefore, weak non-linear distortion will, in general, have an ellecl upon the measured MLS>
CMTF that is identical to the effect of backyound noise. This conclusion must bequalified, however. when such
MlS-CMTF measurements are used to compute STl.
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As pointed out in [8], to precisely account for non linearity in an $11 measurement, the MTF values for each

octave must be measured separately. one octave at a time, with running speech present simultaneously in the

other octaves. The reason for this is not only because the non-linear distortion spills over into adjacent STl

analysis hands but that its level in the current analysis hand depends strongly upon the statistical properties of the

sigtal present in the adjacent hands. As discuscd in [8], the amount of distortion generated by a non-linear

system when fed an artificial test signal will usually be lower than the amount of distortion generated by the same

system when fed running speech. Due to its random envelope and speech-like spectrum. a speech-filtered MLS

signal '5 at least a rough approximation at running speech but, like most noise-like artificial test signals, its

envelope crest factor is generally lower than that of actual running speech. Thus parallel MLS-SH

measurements will, in general. only partially account for the detrimental effects of distortion upon speech

intelligibility whilefully accounting for the detrimental effects of the backyound noise, reflections and

reverberation.

Note. however. that with proper modifications, MLS~STl methods could be extended to fully account for weak

non-linearity by following the example of [8], that is, by measuring the MLS-CMTF in each STl octave in turn

(serially) with running speech present simultaneously in the adjacent octaves. Of course, such a modified MIS-

S‘l'l method would be more complicated and would require longer measurement times thanthe parallel method

which measures all 7 SH octaves simultaneously in one fell swoop. it is doubtful whether the modestly increased

accuracy of a serial M15 method would outweigh the speed and simplicity of the parallel MLS method.

Compared to time-delay speurometry (TDS) or dual-channel FFl' methods (FFI'), only MLS methods can

satisfy the enormous time-bandwidth product requirement of 51"] (a 10.000) in reasonably short measurement

times. Furthermore. because the present theorem does not apply to them, both TDS and FFl‘ methods will still

require a separate measurement of the system background noise, where applicable, in order to correct the

noiseless CMTF of (1) according to (2). Moreover, when using these other methods to make such noiseless

CMTF measurements of particularly noisy systems one may need to employ averaging techniques which use can

lead to even longer measurement times. Not only is averaging not required with MlS>STl methods but such

averap'ng can actually invalidate the measurement by artificially reducing the background noise in the measured

Pm thus leading to an overly optimistic (too high) 511 value.

In conclusion. MLS-S11 measurements are applicable to a wide range of intelligibility verification applications

including auditoria, sound systems. telecommunications systems, as well asdigital and analog tape recorders.

Unlike TDS or FFI' methods, they do not require any special correction for background noise effects prot'idcd

only that the MLS stimulus is first passed throng a speechvweighting filter, Nevertheless MLS methods are not

applicable to strongly non-linear systems nor to time-variant systems. Examples of common lime-variant systems

includc certain types of artificial revorbcrators and certain sound-effects (fun) boxes that work by modulating

the frequency or phase of the audio signal. In such cases only direct MTF measurements will suffice in

determining the STII where applicable, as neither MLS, TDS nor FFl' methods are valid under conditions of

strong non linearity and/or time-variance.
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FIGURE CAPTIONS

l. MLS-MTF measurement of ill kHz iuwpass system contaminated with stationary white noise with 0 LIB SNR.
Note thal the mean value is near 05 as expected.

ll. MLS-MTF measurement of a l kHL 1 octave bandpass system contaminated with stationary v/hite noise also
wilh 0 dB SNR. Note the increased variance as compared to Figure I.

111. Artificially produced non-stationary impulsive noise sol-roe consisted of 3.75 millisecond pulses repeated
every 101 milliseconds. somewhat reminiscent of machine gun fire
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IV. MLS periodic impulse response (FIR) measurement rain 10 kHz lowpass system contaminated with the

impulsive colored noise ol Figure Ill. Note that. due to phase randomization, there is no evidence or the

impulsive nature of the interfering noise in the measured FIR.

V. Wideth (10 kHz) MLSpMTF magnitude calculated from the impulse response of Figure IV shows that the

impulsive colored interfering noise increases the variance due to the appearance of spikes that occur at

harmonis ofthe pulse repetition rate, namely IO Hz, 20Hz and 30 H1 etc.

Vl. Same MLS—MTF as figure V but smoothed to 0.33 octave to reduce the variance.

Vll. Mls-MTF measurement of a 1 kHz, 1 octave bandpass system with colored impulsive interfering noise.

Note that the variance here is actually less than for stationary white interfering noise shown in Figure ll.

Vlll. MLS-ST] analysis ofa 65535-point PlR measurement of a t2 kHz lowpass system with a OdB SNR and

stationary White interfering noise. The top row labelled ‘m-eorreetion' is the auditory masking correction of the

511 method as described by Steeneken and Houtgast in [8]. The modified $11 value shown in parentheses was

calculated from the same wave Tl values as the normal $11 value but with different octave weighting factors

recommended by French and Steinberg.

lX. MLS-FIR measurement of a large but quicl church. Note the extended reverberation and the ulm'ous late

reflection at 200 milliseconds.

X. MlS-STI computed from the impulse response of Frgure lX. The poor intelligibility of this space is due

mostly to reflections (or echoes) and reverberation. The background noise often plays a minor role in such

cases.

XI. MLS~STI of a CODEC having a 3400 Hz signal bandwidth but. a resolution of only 2 bits per sample . The

less than perfect intelligibility of this CODEC is due entirely to quantization noise since there are no siylilieant

refleaions or reverberation to hamper intelligibility.

XII. MLS-S11 of a CODEC having a 3400 Hz signal bandwidth but higher resolution of 3 hits per sample. Note

the improved intelligibility as compared to Figure X1.
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