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DIFFRACTION OF A PLANE ACOUSTIC WAVE E!
A LAYERED ELASTIC SPHERE

V D. E. husson

G.E.R.D.S.M. Le Brusc, 831N0 SIX FOURS LES PLACES, FRANCE

INTRODUCTION'

The scattering of a plane acoustic wave propagating in a liquid

by an elastic sphere is one of the few diffraction problems that

can be solved analytically U] . The calculation of the acoustic
field diffracted by a sphere formed of several solid or liquid

elastic layers follows the same techniques. In this paper, we

present numerical results on the diffraction pattern of a hol-

low aluminium sphere whose thickness varies between 1 and 20 i
of its radius. and by a sphere formed of one liquid layer enclosed

between two aluminium layers. These results include plots of the

total acoustic pressure on the surface of the spheres as functions

or frequency for ka between 0 and 100, plots of the positions of

the resonances of the spheres in the (frequency-harmonic number)

»plane, and sketches of the deformations induced in the spherical

layers by the incident plane wave at resonance frequencies.

Theoretical results are then compared with experimental measure—

ments obtained on an aluminium hollow sphere.

THEORY

Let us consider a plane acoustic wave propagating in a fluio,

incident on a sphere formed of several solid or fluid elastic

concentric layers. The acoustic field outside the sphere and in
its fluid layers is fully determined by its velocity potential 0 .

The reference frame can be chosen so that the problem is axially

symetric about the vertical axis, and the acoustic potentials,

stresses and displacements do not depend on the azimuthal angle.

A general solution for o in spherical coordinates is then:
m

‘ I 0-32:1 (an Jn(kr') + bn yn(kr)) >Pn(cois9) (1)

jn and y being spherical Bessel functions, Pn Legendre polynomials

k the wave number in the fluid and r and 9 the spherical coordinates.

Two potentials are needed to describe the acoustic fields in a

solid layer of the sphere: 0, the scalar potential of.longitudinal

waves, and w, the vector potential of shear waves. 0 can be writ—

ten as a linear combination of spherical harmonics 'of the same

type.as the expression in Eq. (1), k being the wave number of ion-

gitudinal waves in the solid. Because of the azimuthal symetry of

the geometry, has only one non—zero component,u% , which can be

written as: -
m - .

w: z (c j (kw) + d y (k'm dPn (2)
n n n n

n:1 d0

k' being the wave number of shear waves in the material. The

acoustic displacements and stresses are computed from Eqs. (1) and

(2), and expressed as linear combinations of Legendre polynomials
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or of their derivative with respect to 0 . The boundary conditions
at an interface between two different materials are then written:
continuity of the force applied on any type of interface, conti—
nuity of the radial displacement at a fluid-fluid or fluid-solid
interface and of the total displacement at a solid-solid interfa-
ce. Finally, the incident plane wave potential is decomposed in a
series of spherical harmonics. ’
Because of the orthogonality properties of the Legendre polynomials
and of their derivatives with respect to 9, the calculation of the
unknown constants appearing in Eqs. (1) and (2) is reduced to the
resolution of one system of linear equations with complex coeffi-
cients for each spherical harmonic considered. Theoretically,
an infinite number of spherical harmonics is needed to write the
exact acoustic field inside and outside the sphere. In practice
the convergence of the series is obtained with less than 2ka terms.

A FORTRAN routine has been written to calculate the acoustic field
diffracted by an elastic layered sphere. From the geometry of the
sphere, and from the acoustic characteristics of the materials
used in the different layers, the program generates and solves the
linear system of equations associated with each spherical harmo—

nic. It will accept spheres formed of up to 9 solid or fluid
layers. The frequency range that can be studied for a given sphe—
re extends from O,to a frequency such that ka is of the order of
100 (k being in this case the largest wave number used in the
problem). The absorbing properties of lossy materials are model—
led by the use oI complex celerities.

Several types of results can be obtained from this program. The
acoustic pressure scattered by the sphere or the total acoustic

pressure around the sphere-can be plotted as functions of the fre—
quency of the incident wave or of the position of the observation
point. Colour—coded maps of the modulus of the acoustic pressure
around the sphere and in its fluid layers, and of the radial com-
ponent of stress in its solid layers, and images of the deforma-
tions induced in the sphere's layers by the incident wave are also

produced.

NUMERICAL RESULTS

To demonstrate its capabilities, we have calculated the acoustic

field scattered by a hollow aluminium sphere, for several values

of the b/a ratio of the inside radius of the sphere to its outside

radius, and by a hollow sphere formed of three concentric layers,

one water layer separating two aluminium layers. The outside ra-

dius of all spheres is 0.239 m, so that the value of the product

ka of the wave number in the exterior fluid (water) by the outside
radius of the sphere is equal to the frequency of the incident

wave in kHz. The following parameters are used:

for water p:1030 kg/m3, C:1500 m/s
for aluminium p=2700 kg/m3, Cl=6300 m/s, Cs:3100 m/s.
The fluid filling the spheres is supposed to be perfectly soft.

Hollow spheres. . -

Figures 1 to 5 show the evolution of the characteristics of the

acoustic field scattered by a hollow aluminium sphere when the

b/a ratio is reduced from 0.99 to 0.8. Each figure is formed of

two parts. The top plot is a plot of the total acoustic pressure

in front of the sphere on its outer surface, normalised by the
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Figure 1: Hollow aluminium sphere, b/a:0.99
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Hoilow aluminium sphere, b/a=0.97
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value of the pressure of the incident wave, as a function of fre-

quency for ka between 0 and 100. From figure 1, for example, it
is clear that the total pressure on the sphere is the-sum of two
parts: a background which varies smoothly with frequency, and se-
veral series of resonances which appear on the plot as sharp peaks.

This function of frequency is also the sum of a series, each term
being the product of a spherical Hankel function (which describes
the outgoing diffracted wave) by a complex coefficient. Whereas
several coefficients contribute to form the smooth background at a
given frequency, a resonance peak of the acoustic pressure is pre-
sent in only one spherical harmonic coefficient. A resonance
appears when the perimeter of the sphere is equal to n+1/2 wave-

lengths of a guided wave, excited in the shell by the incident
plane wave. It is then possible to group the resonances of the

sphere in several families associated with the different types of

guided waves that can propagate in a plate or a shell. This is
usually done by searching, for each spherical harmonic n, the

complex values of the frequency that null the denominator of the

nth coefficient [fl . Eut searching the roots of a complicated
function in the complex plane is not simple. The method presented
here allows for the determination of the order of a given resonan-
ce, and the separation of the resonances of the sphere in fami-

lies, using very simple signal processing techniques. Each coef-

ficient of the decomposition of the diffracted acoustic field in

spherical harmonics is considered as a signal, function of fre—

quency. To isolate the resonances form the rest of the curve, an

average background is substracted from the total coefficient.

This is easily done by filtering the signal with a high—pass fil-

ter. The resonances are then detected by comparing the filtered

signal to a given threshold. But our signal is a function of fre-

quency, and filtering a function of frequency with a high-pass

filter corresponds, in the time domain, to suppressing the specu-

lar echoes reflected by the sphere, and keeping only the echoes

arriving after the specular reflection, those having travelled

through the sphere or around its'surface. In the bottom part of

each figure are plotted, in the (frequency-harmonic number) plane,

the filtered coefficients of the decomposition in spherical harmo-

nics of the potential diffracted by the spheres; The black dots

correspond_tc points where the filtered coefficient is larger than

the threshold. ' _ _

The results plotted in figure 1 were obtained with b/a:0.99.

The resonances of the sphere_can be separated in three families.

The first series (noted A) appears at very low frequencies only,

and is characterised in the total pressure plot by very sharp

peaks. The second series (noted E) is present in the whole fre-

quency range. It generates broad dips in the top plot, regularly

spaced along the frequency axis. The third series which will be

noted A' appears only at very high frequencies, above 80 kHz.

When the thickness of the shell is increased to b/a=C.97 (figure

2), the resonances of the E series are almost unperturbed. But

the resonances of the A' series appear now at much lower frequen—

cies, between ka:20 and ka=65.' If b/a is increased to C.95. the A

and A' series merge into a single mode of resonance. This shows

that in fact the resonances of the A and A' series in figures 1, 2

and 3 are due to the same type of wave propagating around the

sphere. The resonances of this mode which are missing in figure 1

.163' "
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Figure 3: Hollow aluminium sphere, b/a=0.95

 

S. 90 198

WINES

III

 

I. I I.

IREOUINBE ( KN! )

Figure M: Hollow aluminium sphere, b/a=0.90
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Figure 5: Hollow aluminium sphere. b/a=0.50
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Figure 6: Sphere formed of three layers
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(between ka=2 and ka:80) and in figure 2 (between ka=5 and ka=10)
exist probably, but are too weak to be detected. At b/a:C.90

(figure A) a third mode of resonance appears around ka=55. At
b/a:0.80 (figure 5), the starting point of this mode on the fre-

quency axis is around ka=33, and three other modes appear in the

high frequency part of the plot. The analogy between the four

first plots and the dispersion curves of Lamb wave modes in a pla—

te is striking. Resonances of type A are probably due to the

excitation of the first antisymetric Lamb wave mode in the shell;

the very high dispersion of this mode a low frequencies explain

the curved shape of the line formed by the resonances in the (fre—

quency-harmonic number) plane in figures 2 and 3. Resonances

of type E would then be those of the first symctric Lamb wave mo—

de. This mode is not dispersive at low frequencies, and this

explains why the positions of its resonances are almost unchanged

when b/a is decreased. The third mode appearing in figure A is

probably the second antisymetric Lamb wave mode.

We have drawn in figures 7, 8 and 9 the (exageretod) computed de-

formations induced in the sphere with b/a:0.99 at a given instant

in time, at three frequencies corresponding to the first three

resonance peaks of the A series. At the first resonance frequen—

cy, for ka=0.76 (figure 7), the sphere is deformed in an ellipsoi—

dal shape, characteristic of a mode of order 2. In figure 8, for

ka:C.96, the sphere is deformed in a pear shaped shell: this is a

resonance of order 3. For ka=1.12, corresponding to a resonance of

order A, the cross section of the sphere takes a square shape.

The antisymctry of the acoustic displacements about the middle

line of the shell confirms that the resonances of the A series are

due to the first antisymetric Lamb wave mode.

S here formed of three 1a ers

1his sphere is formed of three layers or equal thickness O.NE cm

(2% of the sphere's radius), one water layer between two aluminium

layers. Figure 6 shows the total acoustic pressure in front of

the sphere for ka between 0 and 100, and the position of its

resonances in the (frequency—harmonic number) plane. Two different

series of resonances of type A appear at high frequencies at posi-

tions which seem characteristic of a shell of b/a ratio close

to 0.98. These are the resonances of the two aluminium shells,

vibrating independently of each other. The E series of resonances

is also doubled. Figure 10 shows the deformations of the three

layers for ka=u.28, corresponding to the resonance of order 1

of the E series.

EXPERIMENTAL RESULTS

In order to test the validity of our model, we have performed

experimental measurements of the acoustic pressure field around

a hollow aluminium sphere of outside diameter 20 cm, of thickness

1 cm (b/a=0.90). insonified by a plane wave. This sphere had

been built for other purposes, and was not perfect. It was formed

of two half spheres screwed together. Twelve cylindrical 1 cm

diameter holes drilled through the shell had been filled with

aluminium plugs. The receiver, placed in the sphere's equatorial

plane, 10 cm away from the sphere's surface, recorded the total

acoustic pressure,sum of the pressures of the incident plane wave

and of the diffracted wave, as a function of the angle of rotation

of the sphere, at several frequencies between 10 and 100 kHz.
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Fig. 7: b/a=0.99, ké:0.76 Fig 8: b/a:0.99, ka:0.96

   
Fig 9: b/a:0.99, ka=1.12 Fig 10: Three layers, ka:fl.2€

 

  
 

Figure 11: Frequency 19 kHz Fig'125 Frequency 38 kHz
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Fig 13: Frequency 66 kHz Fig 1“: Frequency 83.86 kHz

Figures 11 to 1N show the comparison between theoretical and expe-

.rimental results at four frequencies, respectively 19, 38, 66_and

83.86 kHz. In each picture the plane wave is incident on the

sphere from the top of the drawing. The heavier line is the plot

of the total pressure calculated from our model, in decibels,

and the lighter line the plot of the experimental results. The

agreement between the two sets of results is excellent. The posi—

tions and amplitudes of the different lobes of the experimental

patterns are very well predicted by the theory. Small differences

appear principally on the back of the sphere, in the sidclobes of

the pressure field. They are probably caused by the imperfections

of the sphere, which tend to attenuate the guided waves propagating

in the shell, and also to the finite size of the receiving trans-

ducer which averages the pressure field over the volume of its

active element. . For the same reasons we were unable to detect

any of the resonances predicted by the theory in the frequency

range of the experiment (ka from u to no).

CONCLUSIONS

A computer program has been developed to calculate the acoustic

field diffracted by an elastic layered sphere, insonified by a

plane wave. It will solve the case of spheres formed by up to

nine layers, for frequencies up to ka=100. A simple signal pro—

cessing method is used to isolate the resonances of the elastic

shells, to identify their order and group them into resonance mo—

des corresponding probably to Lamb wave modes. Experimental re-

sults, obtained on an aluminium hollow sphere of b/a ratio 0.90

confirm the validity of our theoretical model.
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