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INTROCUCTIGON

The secattering of a plane acoustic wave prcpagating in a liguid
by an elastic =phere is one of the few diffraction groblems thzt
can te solved analytically [1). The calculation of the acoustic
field diffracted by a srhere formed of several solid or 1liguid
elastic layers follows the same techniqgues. In this pager, we
present numerical results on the diffraction pattern of a hol=-
low aluminium sphere whose thickness varies between 1 and 20 %
of its radius, and by a sphere formed cf one liquid layer enclosecd
between two aluminium layers, These results include plots of the
total acoustic pressurs on the surface of the scheres as functions
of frequency for ka between 0 and 100, plots of the positions of
the resonances ¢f the spheres in the (frequency-harmonic number)
-plane, and sketches of the deformations induced in the spheriecal
layers by the incident plane wave at rescnance freguencies.
Theoretical results are then compared with experimental measure-
nentsz cobtained on an aluminium hollow =rhere,

THEGRY

Let us consider a plane accustic wave propagating in a fluia,
incident cn & =sphere formed of several solid cor fluid elastice
concentric layers. The acoustic field oqutside the sphere and in
its fluid layers is fully determined by its velocity potential o
The reference frame can be chesen so that the problem is axially
symetric about the vertical axis, and the acoustic potentials,
stresses and displacements do not depend on the azimuthal angle.
A general solution for @ in spherical coordinates is then:

v o]

- <D-:=1 (a, j (kr) + b, yn(kr))_Pn(co§6) (1)
j_ and y_ being spherical Bessel functions, P_ Legendre polynomials
k''the wave number 1n the fluid and r and 8 the spherical ccordinates.
Two potentials are needed to describe the acoustic fields in a
solid layer of the sphere: ¢, the scalar potential of longitudinal
waves, and ¥, the vector potential of shear waves. @ can be writ-
ten as a linear combination of spherical harmonics of the same
type.as the expression in Eq. (1}, k being the wave number of lon-
gitudinal waves in the solid. PBecause of the azimuthal symetry of

the geometry, has only one non-zero component,w@ y which can be
written as: :
oo . . ' dP '
Y,= 3 (c_ j (k'r) +d_y (k'r)) _n (2)
T peq BD n’n 38

k' being the wave number of shear waves in the material. The
acoustic displacements and stresses are computed from Egs. (1) and
(2), and expressed as linear combinaticons of Legendre polynomials
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or of their derivative with respect to @ . The boundary conditions
at an interface between two different materials are then written:
continuity of the force applied on any type of interface, conti-
nuity of the radial displacement at a fluid-fluid or fluid-solid
interface and of the total displacement at a solid-solid interfa-
ce. Finally, the incident plane wave potential is decomposed in a
series of spherical harmonies.

Because of the orthogzonality propertles of the Legencre polynomials
and of their derivatives with respect to @, the calculation of the
unknown constants appearing in Egs. (1) and (2) is reduced toc the
resolution of one system of linear equations with complex coeffi-
cients for each spherical harmoniz considered. Theoretically,
an infinite number cof spnerical harmonies is needed to write the
exact acoustic field inside and outside the sghere. In practice
the convergence of the series is obtained with less than Zka terms.

A FCRTRAN routine has been written to calculate the acoustic field
diffracted by an elastic layered sphere. From the geometry of the
sphere, and from the acoustic characteristics c¢f the materials
used in the different layers, the program generates a2rnd solves the
linear system of equations associated with each spherical harmo-
nic. It will accert spheres formed of up to § s£0lid or fluid
layers. The frequency range that can be studied for a2 given sphe-
re extends from 0 to a frequency such that ka is of the order of
100 (k being in this case the largest wave number used in thea
problem). The absorbing properties cof lossy materials are nmeodel-
led by the use of complex celerities,

Several types of results can be obtained from this program. The
acoustie pressure scettered by the sphere or the total szcoustic
pressure around the sphere can be plotted as functions ¢f the fre-
quency of the incident wave or of tane position of the observation
point. Colour-coded maps of the modulus of the acoustic pressure
around the sphere and in its fluid layers, and of the radial com-
ponent of stress in its sclid layers, and images of the deforma-
tions induced in the sphere's layers by the incident wave are also
produced.

MUMERICAL RESULTS

To demonstrate its capabilities, we have calculated the acoustic
field scattered by a hollow aluminium sphere, for several values
of the b/a ratio of the inside radius of the sphere to its cutside
radius, and by a hollcow sphere formed of three concentric layers,
one water layer separating two aluminium layers. The outside ra-
dius of all spheres is 0.239 m, so that the value of the product
ka of the wave number in the extericor fluid (water) ty the outside
radius of the sphere 1is equal to the frequency of the ineident
wave in kkz. The following parameters are used:

for water p=10320 kg/m3, C=z1500 m/s

for aluminium p=2700 kg/m3, C1=6300 m/s, Cs=3100 m/s.

The fluid filling the spheres 1is supposed to be perfectly soft.
Hollow spheres.

Figures 1 to 5 show the evolution of the characterlstlcs of the
acoustic field scattered by a hollow aluminium sphere when the
b/a ratio is reduced from 0.99 to 0.%. Each figure is formed of
two parts. The top plot is a plot of the total acoustic pressure
in front of the sphere on its outer surface, normalised by the
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Figure 1: Hollow aluminium sphere, b/a=0.9%9
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Figure 2: Hollow aluminium sphere, b/a=z0.97
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value of the pressiore of the incident wave, as a fuvtiztion cof fre-
quency for ka between 0 and 100. From figure 1, for example, it
is clear that the total pressure on the sphere is the -sum of two
parts: a background which varies smcothly with frequency, and se-
veral series of resonances which appear on the plot as sharp peaks.
This function of freguency is also the sum of a series, each term
being the product of a spherical Hankel function (which describes
the outgoing diffracted wave) by a complex coefficient. Whereac
several coefficients contribute to form the smooth background at a
given frequency, a resonance peak of the acoustie pressure is pre-
sent in only. one. spherical -harmonic coefficient. A resonance
appears when the perimeter of the sphere is equal to n+1/2 wave-
lengths of a guided wave, excited in the shell by the incident
plane wave. It is then possibtle to group the resonances of the
sphere in several families associsated with the different types of
guided waves that can propagate in a plate or a shell. This is
usually done by searcning, for each spherical harmonic n, the
complex values of the frequency that null the denominator of the
nth coefficient [2] . Eut searching the roots of a complicated
function in the complex plane is not simple. The method presented
here allows for the determination of the order of a given resonan-
ce, and the separation of the resconances c¢f the sphere in Fami-
lies, using very simple siznal processing techniques. Fach coef-
ficient of the decomposition of the diffracted acoustic field in
spherical harmonics 1is considered as a signal, function of fre-
quency. To iscolate the resonances form the rest of the curve, an
average btackground is substracted from the total coefficient.
This is easily done by filtering the signal with a high-pass fil-
ter. The resonances are then detected by comparing tne filtered
signal to a given threshold., But our signal is a function of fre-
guency, and filtering a function of freguency with a higzh-pass
filter corresponds, in the time domain, to suppressing the specu-
lar echoes reflected by the sphere, and keeping only the echoes
arriving after the specular reflection, those having travelled
through the sphere or around its surface. In the bottom part of
each figure are plotted, in the (freguency-harnonic number) plane,
the filtered coefficisnts of the decomposition in spherical harmo-
nics of the potential diffracted by the spheres.- The black dots
correspond tc points where the filtered coefficient is larger than
the threshold. ' . _
The results plotted in figure 1 were ottained with b/a=0.%g.
The resonances of the sphere can be separated in three families.
The first series (noted A) appears at very low frequencies only,
and is characterised in the total pressure plot by very sharp
peaks. The second series (noted B) is present in the whols fre-
quency range. It eenerates broad dips in the top plot;, regularly
spaced along the frequency axis. The third series which will te
noted A' appears only at very high frequencies, above &C kEz.
When the thickness of the shell is increased to b/a=C.97 (figure
2), the resconances of the B series are almost unperturved. Cut
the resonances of the A' series appear new at much lower frequen-
cies, between ka=20 and ka=z65. If b/a is increased to (.95, the A
and A' series merge intc a single mode of resonance. This shows
that in fact the resonances of the A and A' series in figures 1, 2
and 2 are cdue to the same type of wave propagating around the
sphere, The resonances of this mode which are missing in figure 1
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Figure 3: Pollow aluminiuw sphere, b/a=0.9%
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Figure U4: Bollow aluminium sphere, b/a=0.90
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(tetween ka=2 and ka=80) and in figure Z (between ka=5 and ka=10)
exist probably, but are too weak to be detected. At b/a=0C.0C
(figure Y4) a third mode of rescnance appears around kasE£t. Lt
b/a=0.80 (Figzure %), the starting point of this node on the fre-
queney axis is around ka=32, and three other modes appear in the
high frequency part of the rlot. The analofy between the four
first plots and the dispersion curves of Lamb wave modes in a pla-
te is striking. Fesonances of tyre A are probably due to the
excitation of the first antisymetrie Lamb wave rode in the shell;
the very high dispersion of this mode a low frequencies exnplain
the curved shape of the line formed by the resonanccs in the (fre-
gquency-harmcnic number) plane in figures 2 and 3. fesonances
of type E would then be those of tne first symetric Lamb wave mo-
de. This mode is net dispersive at low frequencies, and this
explaing why the positions of its resonances are almost unchanged
Wwhen b/a 1is decreased,. The third mecde appearing in fisure 4 is
probably the second antisymetric Lamk wave mcde.

We have drawn in figures 7, 2 and § the (exageratcd) computed de-
formations induced in the sphere with b/2=0.99 at a given instant
in time, at three frequencies corresponding to the first three
resonance peaks of the 4 series. At the first resonance frequen-
cy, for ka=(0.76 (figure 7), the sphere is deformed in an ellipsoi-
dal shape, characteristic of a mede of order 2. In figure &, for
kz=0.%6, the sphere is defeormed in a pear shaped shell: this is a
resonance cf order 3. For ka=1.12, corresponcding te 2 resonance of
order Y4, the cross section of the sphere takes a square shage.
The antisymetry of the acoustic displacements =about the middle
line of the shell confirms that the resonances of the A series are
due to the first antisymetric Lamb wave nmode.

Spkere formed of three layers

This sphere 1is formed of three layers ot equal thickness 0.4 ecm
(22 of the sphere's radius), one water layer between two aluminium
layers. Figure 6 shows the total acoustic pressure in front of
the sphere for ka tetween C and 100, and the position of its
resonances in the (frequency-harmonic number) plene. Two different
cseries of rescnances of type A appear at high frequencies at posi-
tions which seem characteristic of & shell of b/a ratio close
to 0.98. These are the resonances of the two aluminium shells,
vibrating independantly of each other. The B series of rescnances
is alsc doubled. Figure 10 shows the deformations of the three
layers for ka=zl.28, corresponding to the resonance of order 1
cf tne E series.

EXPERIMENTAL RESULTS

In order to test the validity of our model, we have performed
experimental measurements of the acoustic pressure field around
a hollow aluminium sphere of outside diameter 20 em, of thickness
1 em (b/a=0.90), insonifisd by a plane wave., This sphere had
tecen built for other purposes, and was not perfect. It was formed ’
of two half spheres screwed together. Twelve cylindrical 1 cm
diameter holes drilled through the shell had been filled with
aluninium plugs. The receiver, placed in the sphere's equatorial
plane, 10 cm away from the sphere's surface, recorded the total
acoustic pressure,sum of the pressures of the incident plane wave
and of the diffracted wave, as a function of the angle of rotation
of the sphere, at several frequencies between 10 and 100 kHz.
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Fig. 7: b/a=0.99, ka=0.76 Fig €: b/a=0.69, ka=0.9¢€

Fig 9: b/a=0.96, ka=1.12 Fig 10: Three layers, kaz4,2¢€

Figure 11: Frequency 19 kHz Fig "12: Frequency 28 KKz
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Fig 13: Frequency 66 kihz Fig 1U4: Frequency E2.E6 kbz

Figures 11 to. 14 show the comparison between theoretical and expe-
_rimental results at four frequencies, respectively 19, 38, €6 =and
23,86 kBz. In each picture the plane wave is incident on the
srhere from the top of the drawing. The heavier line is the plot
of the total pressure czalculated from our nodel, in decibels,
and the ligzhter line the plot of the experimental results. The
agreement between the two sets of results is excellent. The posi-
tions and amplitudes of the different lobes of the experimental
ratterns are very well predicted ky the theory. Small differences
appear principally on the back of the sphere, in the sidelobes of
the pressure field. They are ‘probably caused by the imperfections
of the sphere, which tend to attenuate the guided waves propagating
in the shell, and also to the finite size of the recelving trans-
ducer which averages the pressure field over the volume of its
active element., . For thne same reasons We WeEre unable to detect
any of the resonances predicted by the theory in the frequency
range of the experiment (ka from I to 40). :

CCHCLUSICHS

A ccmputer program bhas been developed to calculate the acoustic
field diffracted by an elastic layered sphere, insonified by a
plane wave. It will solve the case of spheres formed by up to
nine layers, for f[requencies up to ka=100. A simple signal pro-
cessing method is used to isolate the resonances of the elastic
shells, to identify their order and group ther into resonance mo-
des corresponding rrobably to Lamb wave mcdes., Experimental re-
sults, ottained on an aluminium hollow sphere of b/a ratic 0.90
confirm the validity of our theoretical model.
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