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For over 60 years, the torsional vibration of high-powered reciprocating aircraft engines has 

been controlled by centrifugal pendulum vibration absorbers. Loose weights attached to an en-

gine’s crankshaft act as tuned-mass absorbers by oscillating at a frequency in proportion to rota-

tional speed. More recently, similar loose masses have been attached to the flywheels of car en-

gines. The need to achieve increased power from fewer cylinders, while reducing weight and 

improving economy, has exacerbated torsional vibration of the drive train. The dynamics of a 

wheel carrying many centrifugal pendulums of bifilar design has been the subject of a growing 

literature, but much less has been written about roller-type pendulums and about overall system 

performance. When both crankshaft-mounted and wheel-mounted pendulums have been incor-

porated in the same engine, the system dynamics becomes even more complicated and difficult 

to predict. The current state of knowledge about practical design limitations will be explained 

and the need for further research discussed. 
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1. Introduction 

The use of a tuned-mass absorber to reduce harmonic vibration of fixed frequency is well-

known. In the 1930s, this principle was extended to reducing the torsional vibration of machinery 

where there is excitation whose frequency increases with speed. Loose masses moving in a curved 

track or constrained by rollers to move in a curved path serve as tuned-mass absorbers whose natu-

ral frequency is proportional to rotational speed, or approximately so. This allows the irregular fir-

ing torque of a reciprocating engine, whose frequency also increases with engine speed, to be resist-

ed, at least in theory. There is a good introduction in Den Hartog’s classic textbook [2]. The bifilar 

or Sarazin type of centrifugal pendulum is used widely, while the roller or Salomon type still finds 

new applications. Examples are shown in figs. 1(a) and (b). 
 

  
  

Figure 1: (a) Sarazin or 

bifilar pendulums 
Figure 1: (b) Salomon 

or roller pendulums 
Figure 1: (c) Solid bifilar 

pendulum design 
Figure 1: (d) Laminated bifilar 

pendulum design 
 

These devices are basically tuned-mass absorbers. They serve to reduce the amplitude of a trou-

blesome resonance by generating negative reaction forces at the pendulums’ resonant frequency. 
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Because centrifugal force acts to hold the pendulum or roller in its equilibrium position, as men-

tioned, their natural frequency is speed dependent. Each pendulum has a natural frequency that is 

proportional to engine speed. For example, a fourth-order pendulum, n=4, has a natural frequency 

of 4 times engine rotational speed. This is important because the excitation harmonics of a recipro-

cating engine increase in frequency in proportion to engine speed. When the rotational speed is such 

that the n=4 excitation coincides with a torsional natural frequency of the drive train assembly, 

large amplitude torsional vibration may occur. Properly working centrifugal pendulum absorbers, 

tuned to n=4, reduce the n=4 harmonic of excitation at all engine speeds, and therefore they reduce 

resonant torsional response to this harmonic. 

 

The usual theory for their operation as dynamic absorbers is a constant speed theory. But, in 

practice, matters are not so simple.  At low rotational speed, centrifugal forces are insufficient to 

hold the moving masses close to their central positions. Instead they rattle within the available 

clearance. Indeed the name “Rattler” has been registered as a trademark for one particular device of 

the Salomon type. As engine speed increases, the loose masses are pulled into their central posi-

tions. If there is significant excitation, there may still not be enough centrifugal force to generate 

sufficiently large harmonic reaction forces and some rattling continues. Then, above a critical 

speed, the centrifugal pendulums overcome the excitation, and pull into synchronism with the 

torque harmonic to which they are tuned. Above this engine speed, they start to work properly, re-

ducing the amplitude of crankshaft torsional vibration. 

 

So far as the author knows, a comprehensive analytical treatment of the large-amplitude dynamic 

response of an accelerating engine with centrifugal pendulums has not yet been made. Modelling all 

aspects of the engine dynamics is extremely complex and most studies have been confined to single 

pendulums or to several pendulums attached to the same wheel.  

 

2. Constructional details 

Commonly used bifilar pendulum designs may have pendulums of solid or laminated construc-

tion. Where separate pendulums are attached to each or some of the crankwebs of an engine’s 

crankshaft, a solid construction may be used, fig 1(c). But for automobile applications, a laminated 

construction from pressings is usual, fig 1(d). 

 

 

  
Fig. 2: (a) 8-cylinder aircraft crankshaft with  

attachments for 8 bifilar pendulums 

Fig. 2: (b) Gearbox side of automobile dual-mass 

flywheel with 4 bifilar pendulums 

 

 

 
Figure 2: (c) Experimental automobile engine 

with bifilar pendulums 

Fig. 2: (d) TCI “Rattler®” roller-type absorber 
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In aircraft applications, bifilar pendulums may be attached to the webs of every crank, fig 2(a) 

but for automobile engines it is more usual to attach pendulums, of either bifilar or roller design, to 

one of the wheels of a dual-mass flywheel, fig 2(b). 

 

Salomon or roller pendulums are usually wheel mounted, and there may be 6 or more rollers on a 

single wheel. One commercial off-the-shelf design has 9 rollers, with 6 rollers tuned to one excita-

tion order and 3 to a different order, fig. 2(d). 

 

Most commercial centrifugal pendulum absorbers move in a circular arc with respect to their at-

tachment wheel or crank. As pendulum amplitude becomes large (of the order of 45 degrees) its 

natural frequency decreases. For this reason, pendulum geometry is usually set so that the pendu-

lum’s small-amplitude (linear) natural frequency is higher than its intended value when the pendu-

lum is operating at its design amplitude. For a pendulum designed to absorb nth order vibration at 

rotational speed , the pendulum’s natural frequency ωn is usually set according to ωn
2
 = (1+ε) n

22 

where the detuning parameter ε is in the order of 0.1. This is intended to ensure that ωn is close to 

nwhen the pendulum is working properly. 

3. Linear calculations 

During design, the expected time-history of torque applied at each crank (of a multi-cylinder 

engine) must first be computed, including allowance for the reciprocating inertias. This data is then 

fourier analysed to generate the amplitudes of each order of excitation torque and its variation over 

the required operating range of the engine. The major orders of excitation, for a 4-cycle (4-stroke) 

engine are usually the 4
th

 and 2
nd

 orders, in that order. 

 

According to linear theory [2], if a pendulum is tuned precisely to an order of excitation, it will 

swing to enforce a nodal point for torsional vibration of the system to which it is attached. The cen-

trifugal pendulum acts as an infinite inertia. However, as explained, as the amplitude of pendulum 

vibration increases, the natural frequency of the pendulum in its centrifugal field reduces slightly. 

The pendulum then becomes less effective as a vibration absorber. To mitigate this effect, practical 

pendulum vibration absorbers are “detuned”. Typical values range from  = 0.05 to  = 0.25. For 

small amplitudes of vibration (small excitation torque amplitudes), the total effective inertia offered 

by a pendulum can be shown to be expressed as follows: 

 

   Added inertia due to pendulum = I + m(a + l)2  +  m(a + l)2/   


where I  =  inertia of pendulum (or roller) about its centre-of-mass 

  m = mass of pendulum (or roller) 

  a = radial distance from axis of rotation of carrier to 

                 pivot point of pendulum (or centre of roller track) 

  l = length of pendulum (or distance from centre of roller 

        track to centre of roller). For definitions of a and l  

        for a bifilar pendulum, see [6], fig. 2 

r = roller radius 

 = detuning 

 

In the case of a roller pendulum, with a roller of radius r, the corresponding expression is 

 

  Added inertia due to roller  =  I + m(a + l)2  +  m(a  +  l  -  I /mr )2/  (1 + I/mr2)                (2) 
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In both cases, when the detuning  is zero, the effective inertia is infinite. For a solid, cylindrical 

roller I = mr
2
/2, in which case the added inertia due to a roller becomes 

 

Added inertia due to solid roller  =  I + m(a + l)2  +  (2/3)m(a  +  l  -  r/2 )2/   (3) 

 

Equations (2) and (3) assume that the rollers do not slip on their tracks, but roll without sliding 

once they have synchronised with the excitation. Because of the high normal force at the line of 

contact, this is a good assumption. These results show that, for the same mass, the effectiveness of a 

roller pendulum is less than that of a corresponding bifilar pendulum, but this disadvantage is com-

pensated by the greater simplicity of the roller system and its ease of manufacture and installation.  

 

These results (1) – (3) are not thought to have been presented in this form before. Their deriva-

tion will be published separately. 

4. Nonlinear characteristics 

A practical design procedure for estimating pendulum amplitude, after first determining the am-

plitudes of torque excitation, is to make a linear calculation using the effective moment of inertia 

derived from (1) or (3). It is prudent not to allow this amplitude to exceed about 45 degrees, as will 

be shown below.  

 

First, an understanding of how the centrifugal pendulum works can be seen from the following 

quasi-static analysis.  Assume that the pendulum swings in a high centrifugal field and the ampli-

tude of motion of its carrier wheel is very small. By making this simplifying assumption, a simple 

analysis illustrates why centrifugal pendulums becomes ineffective when required to swing through 

a large amplitude in order to generate sufficient torque. 

 

 

 

 
  

Figure 3: (a) Simplified 

quasi-static analysis of a 

centrifugal pendulum. 

Arm OA rotates about 

the fixed centre O at 

angular velocity . The 

simple pendulum of 

point mass m and length 

l is hinged at A. 

Figure 3: (b) Com-

parison between 

paths for constant 

length pendulum 

(blue) and constant 

frequency pendulum 

(red). Pivot at O, 

point mass at P (con-

stant length) or T 

(variable length) 

Figure 3: (c) Time history 

of non-dimensional  

pendulum torque 

T/mal2 during one full 

period for sinusoidal 

pendulum motion at an 

amplitude of 60 with its 

harmonic fundamental 

shown by the broken line. 

Figure 3: (d) Time history of 

non-dimensional pendulum 

torque T/mal2 during one 

full period for sinusoidal 

pendulum motion for a 

tautochronic pendulum of 

changing length at an 

amplitude of 60 with its 

harmonic fundamental shown 

by the broken line 

 

 Consider the simplified model shown in fig 3(a). Arm OA rotates about the fixed centre O at 

angular velocity . A simple pendulum of point mass m and length l is hinged at A. Assume a static 

analysis, with the only force on the pendulum mass coming from the centrifugal acceleration 2R 

where R is the distance from O to C, the centre of mass.  This centrifugal force generates a tension 

in the pendulum arm, which applies a load at A and exerts a torque about O. The component of cen-

trifugal force perpendicular to the pendulum causes the pendulum to rotate but does not apply a load 

at its point of support A. The analysis is made slightly more complicated when the additional cen-
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trifugal acceleration arising from the pendulum’s relative angular velocity d/dt(ϕ) is included, but 

the result is the same in principle. The results of such a calculation are shown in Fig. 3(c). The solid 

line shows the time-history of non-dimensional pendulum torque T/mal2 during one full period 

for sinusoidal pendulum motion at an amplitude of 60. The fundamental component of this 

response is shown by the broken line. It can be seen that, during each period of the pendulum’s mo-

tion, the torque it exerts on its carrier wheel does not change harmonically, but instead follows the 

irregular curve shown. For this example, the amplitude of motion is taken to be 60, order n=4 and 

detuning  ε=.25. 

 

 Because the natural period of a centrifugal pendulum increases with amplitude, so that its nat-

ural frequency decreases, much has been written about reducing the effective length of the pendu-

lum to achieve a constant frequency pendulum, or so-called tautochronic pendulum [3, 8, 9]. For a 

simple pendulum attached to a carrier wheel which rotates at constant angular velocity , and for 

<1 (rad), the pendulum length must decrease according to the approximate result l = l0 (sin ϕ)/ϕ, 

when the trajectory of the pendulum mass is shown by the red curve in fig 3(b). The calculated pen-

dulum reaction torque for a tautochronic pendulum satisfying this length relationship is shown in 

fig 3(d). The irregularity of the pendulum torque during a cycle is reduced but so is the amplitude of 

its fundamental component, and the practical design significance of tautochronic pendulums is un-

clear. In practice, changing pendulum length has to be achieved by adjusting the profile of the track 

followed by the rollers that attach each pendulum to its carrier wheel.  

 

5. Steady harmonic calculations 

 Theoretical calculations of the effectiveness of a particular installation are usually made by 

the application of some method of harmonic balance in which the motion of the pendulum is ap-

proximated by an assumption of harmonic time dependence, responding to the chosen harmonic of 

engine torque. This approach was adopted by the author in a 1964 paper [6] for which results were 

computed largely by hand. Applying Matlab
® 

to the same problem allows much quicker results. 

Typical results are shown below, fig. 5. A bifilar pendulum, in figs 5(a), (c), (e) is compared with a 

roller pendulum, figs 5(b), (d), (f). In (a) and (b), the amplitude of (non-dimensional) pendulum 

torque is plotted against pendulum amplitude, in (c) and (d), pendulum torque versus carrier ampli-

tude and, in (e) and (f), pendulum amplitude versus carrier amplitude. The assumption in all these 

results is that the excitation is purely harmonic and that the corresponding harmonic of pendulum 

amplitude and carrier amplitude is identified by the “harmonic balance” that is carried out. For the 

graphs below, a version of the Ritz Minimising Method has been used, but other methods produce 

similar results 

 

The essential result is that, as pendulum amplitude increases, the carrier reaction torque increases 

until it reaches a maximum, but thereafter decreases. The corresponding carrier amplitude at first 

increases with increasing torque amplitude, but then reduces to zero at an “optimum” condition, 

before changing phase and approaching a jump instability. There is little to choose between the ef-

fectiveness of a bifilar pendulum and a roller pendulum of the same mass, less so than for the linear 

calculations. However, as already pointed out, where the bifilar construction fits within the crank-

case of an engine, it is usually more effective because its pendulum can be heavier than that of a 

wheel-mounted roller pendulum.  

 

In the literature a lot of attention has been given to the interaction that may occur when there are 

multiple pendulums on the same wheel, whether bifilar pendulums or roller pendulums. The upshot 

seems to be that, provided the detuning is not zero, there is unlikely to be interference between 

multiple pendulums, and this seems to be borne out by practical experience. As explained above, as 
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an engine speeds up, at first its loose pendulum weights rattle, when there is insufficient centrifugal 

force to pull them into synchronism. Sometimes they can be heard audibly falling into synchronism, 

when there is a change in the noise emitted and engine smoothness improves. This behaviour is 

known to operators of aircraft with reciprocating engines. A 1976 Operator’s Manual, approved by 

the FAA, for aircraft engines with centrifugal pendulum vibration absorbers, carried this cautionary 

warning: “These engines are equipped with a dynamic counterweight system and must be operated 

accordingly, …  Use a smooth, steady movement of the throttle (avoid rapid opening and closing). 

If this warning is not heeded, there could be severe damage to the counterweights, roller and bush-

ings.” 

 

   
(a) Non-dimensional bifilar pendu-

lum torque versus pendulum am-

plitude  

(b) As (a) except for roller pendu-

lum 

(c) Non-dimensional bifilar pendu-

lum torque versus carrier amplitude 

 
  

(d) As (c) except for roller pendulum  (e) Bifilar pendulum amplitude 

versus carrier amplitude 

(f) As (e) except for roller pen-

dulum 
 

Figure 5: Approximate harmonic response amplitudes for a bifilar and a roller pendulum (γ=I/mr
2
=0.5, ρ=r/l=4) 

that have synchronised with the n=4 order of engine excitation for different values of detuning  

 

6. System calculations 

Relatively little attention has been given to the analysis of multi-pendulum configurations, when 

crankshaft-mounted centrifugal pendulums are combined with wheel-mounted pendulums on the 

engine’s flywheel. Establishing an accurate model for the torsional vibration response of a system 

without absorbers, and then introducing multiple centrifugal pendulums, which are essentially non-

linear devices, brings formidable computational problems. But interesting results are found. There 

is space for just one example. Figure 6 shows results for a simple two degree-of-freedom torsional 

system, with one pendulum on the wheel that carries 4
th

 order excitation. The horizontal axis in fig-

ure 6(a) represents frequency, expressed as the ratio of the speed of rotation to the speed at which 

the 4
th

 order of  equals the torsional natural frequency of the system without its pendulum c. The 

top graph shows loci of carrier amplitude plotted against frequency; the middle graph, pendulum 

amplitude against frequency, the bottom graph pendulum reaction torque amplitude against fre-

quency. Loci are plotted for four different excitation torque amplitudes (which are constant): 5 

(red), 10 (green), 13.2 (black) 13.6 (blue) and 25 (magenta). The system parameters are chosen so 
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that the second wheel acts as a vibration absorber for the first wheel when  = 0.5 c. For this ex-

ample  = 0.06. When the torque amplitude is 13.6, a nonlinear instability occurs when /c ap-

proaches 1, the system’s critical speed. For torque of 13.2, this instability is just avoided. An inter-

esting feature arises for speeds close to /c = 0.5. Additional instabilities occur. A much magni-

fied detail of the top graph in figure 6(a) is shown in 6(b). This looping of the loci is a curious com-

plication, with one side of each loop describing an unstable solution from the harmonic balance 

calculation. The unstable solutions do not occur in practice. The inset view shows the same behav-

iour found in an earlier analysis [7]. 

 

 

 

Figure 6: (a) Left view: Approximate harmonic response of a torsional system with two wheels, with 

excitation on the wheel carrying a pendulum (see inset, top left). (b) Right view: enlarged view of carrier 

amplitude against speed around the speed at which the second wheel acts as a vibration absorber for the 

first wheel. 

 

 Now that centrifugal pendulum absorbers are increasingly used in automobile engines, and as 

designs combining crankshaft-mounted with flywheel-mounted pendulums become more common, 

research to study operation under transient conditions is needed to explore the disruptive effect of 

engine acceleration, and to widen the speed range over which satisfactory vibration absorption can 

be achieved. 

7. Measurements and practical design 

 The concept of a tautochronic bifilar pendulum was introduced by Denman in 1992 [3]. Den-

man showed that the optimal pendulum centre-of-mass curve was an epicycloid and that, for har-

monic terms at the excitation frequency, such tautochronic pendulums were found to be somewhat 

more effective in eliminating harmonic excitation than traditional pendulums. As mentioned, in 

putting this theory into a practical design, there is a problem that the required tautochronic track of 

the rollers that support a bifilar suspension only differs by a small amount from a circular track. 

 

The results of measurements on a typical automobile centrifugal vibration absorber show that 

the trajectory of the centre-of-mass follows is circular to close accuracy. To convert this to a tauto-

chronic path, the tautochronic path would deviate by less than 1mm from a circular path over the 

operating range of the pendulum (about 60 amplitude).  These measurements were made by a cam-

era fitted with a multi-exposure shutter focussed on the sharp corner of a pendulum, fig. 4(b). By 

moving only the pendulum while shooting multiple images, fig 4(c), its trajectory could be identi-

fied accurately and compared with an exactly circular trajectory, fig 4(d). The divergence from a 

perfect circle was extremely small and appeared to be within the limits of manufacturing accuracy. 

This complication in machining a non-circular track to the accuracy required for a tautochronic path 

mitigates against the adoption of a tautochronic design. 
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Figure 4: (a) Theoretical 

track for the roller of a 

bifilar tautochronic pen-

dulum (green) compared 

with tracks for constant 

length pendulums (with 

two different rollers) 

Figure 4: (b) Experi-

ment to record the pen-

dulum trajectory for a 

typical automobile bifi-

lar centrifugal pendulum 

Figure 4: (c) Multi-

exposure recording the 

trajectory of the bifilar 

pendulum in fig 4(b) 

Figure 4: (d) Best-fit tra-

jectory (green) compared 

with circular trajectory 

(red) for the bifilar pendu-

lum in fig 4(b) 

 

 There are numerous practical considerations that have not been mentioned. Strength is one. 

Very high g forces are generated on the pendulums, which may be as high as 1000g, and creep of 

the support structure under these loads may occur during long service. Lubrication is obviously im-

portant under the highly-stressed rolling-contact conditions. For crankshaft-mounted bifilar pendu-

lums, this may not be a problem because of the crankshaft lubrication system, but roller pendulums 

may need a low-viscosity high-pressure lubricant to be sealed within each roller’s housing; other-

wise surface pitting may occur due to surface fatigue under high contact stresses. The roller surface 

may have to be circumferentially grooved to provide a lubrication pathway. To reduce wear, further 

complications may include the introduction of shrink-fit liners, as shown in fig. 1(b). And to in-

crease the magnitude of the reaction torque generated by a pendulum, tungsten (=19.5) may re-

place stainless steel (=8). There is considerable skill in designing a satisfactory absorber that will 

provide enough vibration absorption and will last the working life of an engine. Both the design and 

the analysis of these devices still bring formidable challenges. 
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