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Random excitation of mechanical systems occurs in a wide variety of structures and, in some ap-
plications, calculation of the power dissipated by such a system will be of interest. In this paper,
by extending the Wiener series approach, a general methodology is developed for calculating the
power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by
random Gaussian base motion of any spectrum. The Wiener series method was originally devel-
oped to compute the output of a nonlinear system to a white noise input, but is extended here to
encompass a general non-white input. From the extended series a simple expression for the power
dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the
input. Calculation of the first kernel can be performed either via numerical simulations or from
experimental data and a useful property of the kernel, namely that the integral over its frequency
domain representation is proportional to the oscillating mass, is derived. The resulting equations
offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and
hence assist the design of any system where power dissipation is a consideration. The results are
validated both numerically and experimentally using a base excited cantilever beam with a non-
linear restoring force produced by magnets.
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1. Introduction

In a number of applications the power dissipated by a vibrating system will be of interest. In some
instances, such as vibration energy harvesting [1]], the aim will be to maximise power, whereas in
others, such as those involving concerns over fatigue or heat generation, the aim will be to minimise it.
In addition, for single-degree-of-freedom (SDOF) systems with linear damping the power dissipated
is proportional to the mean square velocity, a useful measure of the response of an oscillator.

Of particular interest here are general methods for calculating power dissipation of nonlinear
systems from random excitation. In general, the most prevalent technique is to solve the Fokker-
Planck equation which governs the probability density function of the response [2, 3 4, 5]. Whilst
robust, this must be achieved computationally or via simplifying the resulting equations by making
assumptions. As the number of degrees of freedom increase, these solutions become significantly
more involved. A noteworthy result in the case of power dissipated under white noise excitation is
derived partially in [6} 2} 7,15, 8], and more generally in [9]] and shows that for a general multi-degree-
of-freedom (MDOF) nonlinear system subject to white noise base excitation, the power dissipated is
simply proportional to the total oscillating mass and the magnitude of the noise spectrum regardless
of the specific details of the system. This result is extended in [10] which uses the Wiener series to




ICSV24, London, 23-27 July 2017

show that for systems exhibiting detailed balance the power dissipated under white noise excitation
will be greater than or equal to the power dissipated under non-white excitation where the peak of the
spectrum is taken as the magnitude of the white excitation.

The Wiener series is a useful method for analysing an output from a nonlinear system with a
Gaussian white noise input via an orthogonal series expansion of the random output [11]. It is a
commonly used tool for nonlinear system identification, particularly for physiological systems [12].
Whilst generally associated with white noise inputs, it can also be extended to non-white inputs
[13] and this form, herein called the extended Wiener series, is applied in this paper. A thorough
description and explanation of Wiener theory and its applications can be found in [11].

The aim of this paper is to provide a general methodology for calculating the power dissipated
by a general nonlinear oscillator under non-white excitation. In what follows an introduction to the
extended Wiener series is presented in Section 2] followed by the derivation of the method for calcu-
lating power dissipation in Section 3] The theory is then validated numerically and experimentally in
Sections ] and [5|respectively before conclusions are made in Section [6]

2. Wiener Series for Non-white Excitation

In this section, the extended Wiener series for non-white input excitation is introduced. The series
is very similar to the Wiener series for white noise and as such, the notation of [11] is used. A
nonlinear system with a Gaussian random input, x(¢), will produce a random output signal, y(), that
can be described as a sum of functionals

= Zgn[kn;x(t)]. (1)

When compared to the Wiener series of [11], the G-functionals, G, [k,; z(t)], have been replaced
with a lower case g, [k,; z(t)] to represent that these are extended Wiener functionals for non-white
noise. Each g-functional is defined as a sum of Volterra functionals, K, [x(t)], up to the order of
the g-functional such that

gk 2:(t Z K;m|® 2)

where the Volterra functional K,y [x(t)] takes the form

](n / / j(n 7'1,...,Tj)l’(f—Tl)...l'(t—Tj)dTl...de. (3)

The order of the Volterra functional is j and k;(,)(71, ..., 7;) is called an extended Wiener kernel of
order j and must be calculated. The (n) term in the subscript of both the functional and the kernel
denotes that they both belong to the Volterra series of the nth order g-functional. When j = n the nth
order kernel £,y will be rewritten as k,, and is called the leading order kernel.

The relationship between the extended Wiener kernels in a g-functional can be found by enforcing
the orthogonality condition

B [Hy[x(t)|gnlkn; 2@)]] =0 for p<n €

where E [X] represents taking the ensemble average of the random variable X and H,[z(t)] is any
Volterra functional of order p. This condition is required to create an applicable orthogonal series, like
the Wiener series, that converges and where the contributions from each g-functional can be isolated
in order to calculate them.
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When the orthogonality condition is applied, the form of the nth order g-functional can be shown
to be

floor[n/2]

g lkn; x(t) Z:O / / n—2m 'm'Qm/ kn(T1y ooy Tomy 01y vy Op—om) X

Racx(Tl - 7’2)~-~Rm(7‘2m_1 - Tgm)dTl...dTQmX
x(t —o1)..x(t — op_om)doy...doy_on  (5)

where R, (7) is the autocorrelation function of the input at a time lag 7. Equation (5) shows that each
extended Wiener kernel within a g-functional can be derived from the leading order kernel and the
autocorrelation function of the input and so the bracketed term in the subscript of the kernel in Eq. (3]
can be dropped.

In this paper only the first extended Wiener kernel is of interest and following a similar method to
[L1]] can be calculated as

Ki(w) = (6)

where S, (w) is the cross-spectrum between output and input and K;(w) and S,,(w) are Fourier
transforms of k(1) and R, (7) defined as

Ki(w) = /OO ki (T)e ™7dr. (7)

o0

Using Eq. (6)) the first extended Wiener kernel can be calculated provided the input spectrum and the
cross-spectrum, Sy, are known. These two spectra can be found either from experimental or numer-
ical results and the time domain kernel can then be found by taking the inverse Fourier transform of

Eq. (7).

3. Calculating Power from the Extended Wiener Series

The theory from the previous section can be applied in order to provide a framework for cal-
culating the power dissipated under random excitation with a general spectrum. In order to derive
a theory that encompasses as many systems as possible, this section analyses a general nonlinear
N-degree-of-freedom-system identical to that of [10] of the form

M(y)y + g(y, ¥.t) = —£(y)b(t) (8)

where y is a vector of the N generalised coordinates describing the system, g(y,y,t) is a vector of
length N that represents a general nonlinear dissipative and restoring force, b(t) is a random base
acceleration and f(y) is a forcing vector that relates the base motion to the force on the system.

The power, P, input by the base excitation and therefore dissipated by this system can be calcu-
lated by summing the effective force on each mass multiplied by its velocity such that

P =[5 E(x)h()]
= E[2()§(1)] )

where z(t) = yTf(y) = f(y)"y and £(t) = —b(t).
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An extended Wiener series can be created for the random variable z(t) with input £(¢) and the
power from Eq. (9) can be calculated using this series as

P_E [i galln 5(t>]5(t>]

n=0
)

— B[kt (t)] + E [/

— 00

_ /_ " i (7) Ree (7)dr

[e.9]

(et r)dfat)}

1 o0
= /_ K )See(w)d (10)

where Sg¢(w) is the autocorrelation of the input £ which has been considered as a first order Volterra
functional and the orthogonality property of Eq. (d) was used to remove any g-functionals of order
greater than unity.

3.1 Properties of the First Extended Wiener Kernel

In what follows, a useful property of the first kernel, namely

o0 TAf-1
B0 = 5 [ Fife)do - Bl an
that influences understanding of power dissipation is derived by following a similar process to con-
volution whereby the base excitation is considered as a series with impulses of magnitudes given by
&(t). A small change in z(t) due to an impulse £(7°) at time 7', termed 2(t)|¢(r) to differentiate it from
the change in z due to previous impulses, can be assessed both from physical reasoning and from the
Wiener series.
Physically, the effect of an impulse will instantaneously only change the acceleration term, M(y)y,
and have no effect on the nonlinear term g(y, y,t) so from Eq.

.
tim M(y) Y0 — g(y)¢(1) (12)

59 . . . o
where % represents the accelerations of the generalised coordinates only due to the excitation

at time 7. This equation can be described physically as a unit impulse generating a unit change in
momentum.
Rearranging Eq. (12), a small change in y from the excitation, §y|¢(r), is therefore

lim 8y |ery = M™'EE(T)6t. 13
Iim 63 |ecr) &(T) (13)
The small time-step, dt, here is from a time just before the impulse, 7, to a time just after the
impulse, 7", where T — T~ = 4t and the magnitude of the impulse is £(7T")0t.

The change in the velocity vector from excitation {(7") at time 7', 6y|¢() can also be calculated
from the extended Wiener series. The change in the velocity vector provides a change in the z(t)
variable

82leery = £(y) 0 |ecry (14)

where the extended Wiener series can be rewritten in a variational form

02lery = Agnlkn; €(T)). 15)
n=0
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and the Ag,, terms represent the change in nth g-functional due to the excitation &(T').
The zeroth order Ag-functional is simply zero since it does not depend on the excitation. The first
order Ag-functional is

5t/2
Agi [k €(T)] = 5123%) s ki (m)E(T — 7)d7
= lim k:1(0+)§(T)5t (16)

6t—0

because the instantaneous response to a single impulse of magnitude £(7")dt is being assessed so the
integral disappears. This means that immediately after the impulse the first Ag-functional contributes
k1(0)E(T)ot to the response where the argument 0" in & (7) represents the time instantaneously
after 7 = 0. This is analogous to the impulse response of a linear system where immediately after
an impulse, the response would be given by the value of the impulse response just after the impulse
multiplied by the magnitude of the impulse. However, whilst in the linear case k;(7) would com-
pletely define the response, in the nonlinear case the higher order functionals may also contribute to
this value so must also be assessed.
The nth Ag-functional is

floor[(n—1)/2]

Melbsen) =i et [ [

o0 —00

+
/ / 7—17"'77—2m70 7027"‘70n—2m>x

Rgf T — 7'2) Rgg(TQm_l — Tgm)dTl...dTQmX
é-(T_O-Q)é(T_ O’n72m)d02...dan72m (17)
where the limit of the summation is different from that of Eq. (5)) because only terms that involve at

least one excitation term can affect 2. This term can be shown to be equal to zero by following a
similar process to that of proving Eq. (5) satisfies the orthogonality condition, Eq. (4).

Combining Eqs. (13), (14), (15) and (16) and setting Eq. to zero yields
ki(07) =E [fTM'f] . (18)

The value of the first kernel, k;(7), around the 7 = 0 point will now be explored. When 7 = 0™,
instantaneously before any excitation, the response must be zero because the system is causal so
k1(0~) = 0. Combining with Eq. ( . suggests that at 7 = 0 the value of the kernel is halfway
between k; (07) and k;(07), so k1 (0) = E [f"M~'f] /2 as required by Eq. (11). This is equivalent to
saying at k1 (0), only half of the impulse from the excitation has occurred so the response is only half
the magnitude.

Although the triple product term E [fTM_lf} in Eq. seems physically unintuitive, it has
been discussed in detail in [10] where it has been shown that for a system with a total oscillating
mass, Mo,

E [fTM'f] < Mry. (19)

In [10] Langley shows that if a system is constrained to reduce its number of degrees of freedom then
E [fTM lf] < M. However, if there is no constraint on the system, the inequality of Eq. .
becomes an equality so E [fTM™!f] = Mry,.

Since the time domain kernel, k;(7), is real, the frequency domain kernel, K;(w), is Hermitian.
The imaginary part therefore does not contribute to the integral in Egs. (I0) or (IT) so the equations
can be modified such that the integrals are only performed over positive frequencies and the real part

of the kernel giving

p-1 /0 " Re[ ()] Sec (@) dw (20)

™
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Figure 1: First extended Wiener kernel in a) the time domain and b) real part in the frequency domain
under narrowband noise when ¢ = 0 (blue), ¢ = 0.1 (red) and € = 0.3N m~! (yellow).

and .
1/ Re[K;(w)]dw = —E [f M f} . (21)
T Jo 2

The real part of the first kernel therefore completely defines the power dissipated.

To summarise the results so far: the power dissipated by a general nonlinear oscillator, Eq. (8,
under random excitation of a general spectrum, S¢¢(w), can be calculated using Eq. . To do this,
the first Wiener kernel must be calculated from either simulations or experimentally using Eq. (6),
but crucially for a designer of a system desiring a preliminary estimate of power dissipation, the first
Wiener kernel has the property of Eq. (21)).

4. Numerical Validation

In this section the results of Egs. and are validated via numerical simulations of the
Duffing oscillator in the form

34 4+ § + 100y + ey® = —3b(t). (22)

Time domain simulations were conducted where an ensemble of results is built up by exciting a
nonlinear oscillator with a number of realisations of random noise of a chosen spectrum. The ode45
routine in MATLAB was used and the first extended Wiener kernel can be found using Eq. (6)). In this
case B [f T™M-If } = 3 and an ensemble of 1000 excitation time-histories with non-white spectrum

10*
(102 — w?)? + 3602

Sip(w) = g (23)

was applied to three oscillators with different values of the nonlinearity constant, e = 0, 20 and SON
m~3,

The three first kernels are plotted in both the time and frequency domains in Fig. [T| where it can
clearly be seen that the initial jump of the time domain kernel is of magnitude 3. The integral of
Eq. is 1.53, 1.52 and 1.53kg for ¢ = 0, 20 and 50N m~* respectively, within 2% of the expected
value of 1.5kg from the theory. The power dissipated can be calculated directly from the simulations
as 8.62, 9.24 and 10.2W and from Eq. as P = 8.58,9.20 and 10.1W for ¢ = 0, 20 and 50N m—
respectively showing that the simulations agree well with the theory.
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Figure 2: a) Experimental setup, and first extended Wiener kernel in b) the time domain and c)
real part in the frequency domain when excitation magnitude is low (blue), medium (red) and high
(yellow).

5. Experimental Validation

To supplement the numerical validation of Eqgs. (20) and (21]in Section[d] experimental validation
has been undertaken. Calculation of the power dissipation using Eq. (20) is experimentally difficult,
and so only the property of the first kernel from Eq. (21)) is examined. A base-excited cantilever with
a tip mass as shown in Fig.[2]is used to approximate a SDOF oscillator. Neodymium cylinder magnets
have been placed on the tip mass and base arms to generate a nonlinear stiffening restoring force and
the tip velocity and base acceleration were found using accelerometers.

Since the experimental system is unconstrained and can be approximately modelled by a SDOF
equation of motion similar to Eq. , the triple product, E [fTM_lf], is equal to the oscillating
mass. The value of this mass will be difficult to calculate as some of the beam mass must be included.
It is therefore preferable to modify the output of the extended Wiener series from what would be
z = my to z = y where y is the relative tip velocity. The result is that the integral over the kernel
in Eq. is no longer equal to m/2, but 1/2. This is easier to validate since no estimate of the
oscillating mass is required, but is still validating the important property of the first kernel since its
magnitude has been divided by its mass.

Figure [2] displays the first extended Wiener kernel in the time and frequency domains with three
different excitation magnitudes where an increase in excitation increases the nonlinearity. The results
show similar characteristics to the numerical results of Fig. T[] and critically, the integral over the real
part of the frequency kernel behaves according to Eq. (ZI). The values of this integral are 0.51, 0.51
and 0.50 the low, medium and high magnitude excitation respectively providing excellent resemblance
to the theory. It should be noted that any higher order resonance effects of the cantilever have a
negligible effect on the integral of Eq. (ZI)) and the spectrum of the base excitation was non-white.

6. Conclusions

A methodology has been presented for calculating the power dissipated by nonlinear MDOF sys-
tems under general random base excitation. The Wiener series approach for a Gaussian random input
with general spectrum has been applied and the power dissipated is shown to be dependent only on
the first kernel and the spectrum of the input according to Eq. (20)). Calculation of the first kernel can
be made either via simulations or from experimental data and it is shown to have the property that
the integral over the frequency domain kernel is proportional to the total oscillating mass, Eq. (21,
for an unconstrained system. Both numerical and experimental validation has been undertaken and
produced strong results when compared to the values predicted by theory.

The combination of Egs. (20) and (21I)) provides a simple conceptual understanding of power
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flow in nonlinear randomly excited systems. The first extended Wiener kernel displays peaks around
the resonances of the system therefore for applications where power input to the system is to be min-
imised, the resonances of the system should be designed to be at a frequency where the input spectrum
is low. Conversely, for applications such as energy harvesting where power is to be maximised, the
resonances of the system should be tuned to frequencies where the input spectrum is high. Whilst
these conclusions are conceptually obvious, the derivation of Eq. provides a rigorous mathe-
matical framework for calculating power and Eq. provides valuable information concerning how
much power can be dissipated.
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